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Abstract. The Ran/TC4 GTPase is required for the nu- 
clear accumulation of artificial karyophiles in perme- 
abilized cell assays. To investigate Ran function in a 
physiologically intact setting using mammalian cells, we 
examined the effects of several Ran mutants on cell 
growth and on the nuclear translocation of a glucocorti- 
coid receptor-green fluorescent protein fusion (GR- 
GFP). Glucocorticoid receptor is cytosolic in the ab- 
sence of ligand, but translocates to the nucleus on binding 
the agonist dexamethasone. After transfection into 
baby hamster kidney cells (BHK21), GR-GFP was de- 
tectable in living cells by direct fluorescence micros- 
copy. Addition of dexamethasone caused a rapid trans- 
location of the chimeric protein from the cytosol into 
the nucleus (tl/2 ~'~ 5 min). Cotransfection with epitope- 
tagged, wild-type Ran led to expression of HAl-Ran 
that was ~l.6-fold higher than the level of the endoge- 
nous protein, but it had no deleterious effect on nuclear 

import of the GR-GFP. However, expression of the 
Ran mutants G19V, T24N, or a COOH-terminal dele- 
tion (AC) mutant dramatically reduced the accumula- 
tion of GR-GFP in the nuclei. An L43E mutant of Ran 
was without significant effect on nuclear GR-GFP im- 
port. Identical results were obtained following micro- 
injection of recombinant Ran mutants into cells ex- 
pressing GR-GFP. Significantly, all of the Ran mutants, 
including L43E, strongly inhibited cell growth. These 
results demonstrate the use of GR-GFP in real-time 
imaging of nuclear transport. They also show that mul- 
tiple types of Ran mutant exert dominant effects on this 
process, and that normal Ran function requires cycling 
between the GTP- and GDP-bound states of the pro- 
tein. Most importantly, the results with the L43E Ran 
mutant provide strong evidence that Ran mediates a 
function essential to cell viability that is independent of 
nuclear protein import. 

APID progress has been made in recent years in elu- 
cidating the mechanism of transport through nu- 
clear pore complexes. Proteins that contain nuclear 

localization signals (NLSs) 1 associate with a 56-kD recep- 
tor called et-importin, o~-karyopherin, or hSRP1 (Gorlich 
et al., 1994; Moroianu and Blobel, 1995). The a-importin 
can associate with a second protein, p97, 13-importin or 
13-karyopherin (Adam and Adam, 1994; Radu et al., 1995). 
Together, these proteins appear sufficient to dock cargo at 
the nuclear pore (Gorlich et al., 1995). Ran in the GTP- 
bound state can associate with [3-importin (Rexach and 
Blobel, 1995) and addition of Ran to an in vitro assay al- 
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lows the accumulation of cargo within the nuclear com- 
partment (Moore and Blobel, 1993; Melchior et al., 1993; 
Melchior and Gerace, 1995). A 360-kD Ran-binding pro- 
tein, NUP358/RanBP2 (Wu et al., 1995; Yokoyama et al., 
1995), which contains four Ran-binding domains (Beddow 
et al., 1995), is located at the nuclear pore and may act as a 
docking site for Ran in the GTP-bound state. We have re- 
cently found that Ran-binding domains promote the inter- 
action of Ran with 13-importin/13-karyopherin, and they 
may therefore provide a link between the docking and 
translocation steps across the nuclear pore (Lounsbury et 
al., 1996). 

A constitutively activated (GTP-bound) mutant of Ran 
can block nuclear protein import in budding yeast (Schlen- 
stedt et al., 1995) and RNAlp, a GTPase-activating pro- 
tein (GAP) for Ran (Becker et al., 1995; Bischoff et al., 
1995), is needed for import, suggesting that GTP hydroly- 
sis on Ran is an essential step in the nuclear transport 
mechanism (Corbett et al., 1995). The interaction of Ran: 
GTP with Ran-binding domains increases by severalfold 
its sensitivity towards Ran-GAP (Beddow et al., 1995; 
Richards et al., 1995; Bischoff et al., 1995). 
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It remains unclear whether Ran possesses cellular func- 
tions other than the transport of nuclear protein cargo 
through the nuclear pore complex. The perturbation of the 
Ran GTP/GDP cycle, for instance by depletion of RCC1, 
can interrupt cell cycle progression, nuclear growth, RNA 
export, and RNA processing (Sazar and Nurse, 1994; 
Dasso et al., 1994; Kadowaki et al., 1993; Cheng et al., 
1995) but many of these effects could be secondary to a 
defect in nuclear protein import. Ideally, Ran mutants are 
required that can, if possible, separately disrupt these pro- 
cesses. 

Much of the work that has identified the factors neces- 
sary for nuclear transport has relied on the addition to per- 
meabilized cells of transport factors such as Ran, plus arti- 
ficial cargo bearing an SV40 nuclear localization signal 
(NLS). There is some evidence to suggest that the density 
of such signals on the nuclear cargo can affect the trans- 
port process (Cserpan and Udvardy, 1995). Moreover, cell 
permeabilization leads to a rapid depletion of Ran from 
the nucleus (Moroianu and Blobel, 1995). The addition of 
exogenous Ran to the permeabilized cells or isolated nu- 
clei therefore produces a gradient of Ran across the nu- 
clear envelope which is the inverse of that present in the 
intact cell. This inversion may significantly perturb the 
normal transport machinery. It is important therefore to 
relate data obtained using in vitro assays to the nuclear 
transport of endogenous cargo in living cells. 

To address this issue we have developed a method for 
following the agonist-dependent nuclear accumulation of 
the glucocorticoid receptor in living cells. The glucocorti- 
coid receptor (GR) possesses two distinct NLSs that can 
function independently when attached to heterologous 
proteins (Picard and Yamamoto, 1987). Unliganded GR is 
cytosolic and nuclear translocation occurs with a tl/z of 
N5-10 min following addition of the artificial agonist, dexa- 
methasone (Qi et al., 1989). Export after dexamethasone 
withdrawal is very slow. We reasoned that a GR-GFP chi- 
mera would provide an ideal system for studying nuclear 
translocation in intact living cells. We have created a fu- 
sion protein of human glucocorticoid receptor with an 
$65T mutant of the Aquoria green fluorescent protein 
(GFP) (Chalfie et al., 1994). GFP possesses an intrinsic 
fluorescence that does not require the presence of cofac- 
tors. The $65T mutation enhances the emission efficiency 
by N10-fold and improves the excitation and emission 
spectral characteristics such that the protein can very eas- 
ily be detected within cells using a standard epifluores- 
cence microscope (Heim et al., 1995). 

We show that the GR-GFP fusion protein translocates 
into the nucleus upon exposure to agonist with kinetics 
similar to those published for the glucocorticoid receptor, 
confirming that the system is useful for studying nuclear 
transport in vivo. We demonstrate both by cotransfection 
and by micro-injection of recombinant proteins that a con- 
stitutively activated mutant, G19V Ran, a constitutively 
inactive mutant, T24N, and a COOH-terminal deletion 
mutant of Ran, AC, all dominantly inhibit agonist-induced 
nuclear translocation of the GR-GFP chimera. An effector 
domain mutant, L43E, does not block nuclear transloca- 
tion. Remarkably, however, all mutants including L43E, 
are toxic to cell growth. These results provide strong evi- 
dence that Ran mediates an essential function additional 

to its role in nuclear protein import, and suggests that 
L43E will be a useful tool to elucidate that function. 

Materials and Methods 

Plasmid Constructions 
A new vector, pK7-GFP, was constructed based on the eukaryotic expres- 
sion vector pKH3 (Mattingly et al., 1994), in which the triple HA1 
epitope-tag was removed and replaced by the $65T mutant of GFP (Heim 
et al., 1995). Cloning sites were included both at the 3' and 5' ends of the 
GFP open reading frame. Expression is driven from a cytomegalovirus 
promoter. GR was amplified by PCR using primers containing XbaI sites, 
and the DNA product was cloned into the XbaI site in pK7-GFP such that 
the stop codon of GR was deleted and the coding sequence continued in- 
frame with that of the GFP. The 5' GR XbaI site obeys Kozak's rule for 
efficient initiation of translation. This construct was called pK7-GR-GFP. 
The various Ran mutants were constructed by megaprimer PCR and 
cloned into pKH3, which encodes a triple HA1 epitope tag at the NH2 ter- 
minus. They have been described and characterized previously (Richards 
et al., 1995; Lounsbury, K.M., S.A. Richards, K. Carey, and I.G. Macara, 
manuscript submitted for publication). The AC mutant lacks the COOH- 
terminal six amino acid residues (Lounsbury et al., 1994). 

Transfections 
Plasmid DNAs were transfected into baby hamster kidney ceils (BHK21) 
by the calcium phosphate method, without carrier DNA (Sambrook et al., 
1989). When the concentrations of specific plasmid DNAs were to be var- 
ied, empty vector (pKH3) was added to maintain equal total molar quan- 
tities of DNA transfected. Cells were grown at 37°C in DMEM lacking 
phenol red, plus 10% FBS and penicillin/streptomycin. The serum was 
stripped of endogenous glucoeorticoids by incubation with activated char- 
coal, before use (Eckert et al., 1982). After 24 h, the cells were rinsed with 
fresh medium and incubated an additional 16-20 h. Cells were then exam- 
ined by fluorescence microscopy to detect expression of GR-GFP. 

Microscopy 
Transfected cells were grown in 2-well LabTek slides, and the medium 
was replaced with Hepes-buffered saline (20 mM Hepes, 125 mM NaCI, 
4.8 mM KCI, 1.3 mM CaC12, 0.5 mM MgCI2, 5.6 mM glucose, 1 mg/ml bo- 
vine serum albumin) before microscopy because the DMEM exhibited a 
high background fluorescence. Living cells were examined using a Nikon 
Diaphot inverted microscope with a heated stage and epifluorescence at- 
tachment, using a fluorescein filter set. A 50% neutral density filter was 
placed in the incident light path to reduce cell damage due to local heating 
and photolysis. Photographs were taken using a 35-mm Nikon camera 
with 400 ASA color slide film (pushed to 800 ASA). 

Cells were fixed for immunostaining using a freshly prepared solution 
of 4% paraformaldehyde in PBS, for 15 min at room temperature. Cells 
were then washed three times with PBS and permeabilized on ice for 2 
min with -20°C methanol. After three additional washes with PBS, cells 
were blocked with 5% bovine serum albumin (BSA) in PBS and incu- 
bated with anti-HA1 monoclonal antibody, 12CA5 in ascites fluid at a di- 
lution of 1:400 for 45 min. The cells were then washed with PBS/5% BSA 
and incubated in the dark for 45 rain with Cy3-eonjugated goat anti- 
mouse IgG (Jackson ImmunoResearch, West Grove, PA) at a dilution of 
1:800. After an additional three washes, the cells were mounted (Vecta- 
shield, Vector Laboratories, Burlingame, CA) and examined by epifluo- 
rescence and confocal microscopy. 

For quantitation of nuclear/cytoplasmic ratios, an MC1000 confocal 
system was used (Bio-Rad Labs, Hercules, CA), attached to an Olympus 
BX50 microscope with a 40× objective lens. Data were collected and 
quantitated using Comos software (Bio-Rad). For each set of conditions, 
the intensities of pixels were summed within the individual nuclei and cy- 
tosols of at least 10 cells, using a Z-step value of 5 p,m, and corrected for 
background fluorescence (<5% of pixel intensity within the cells). N/C 
fluorescence ratios were calculated and pooled for each time point to give 
the means -4- 1 SD. Cells were randomly selected from those that were flu- 
orescent in both the fluorescein (GFP) and rhodamine (Cy3) channels. 
Using the Kalman filter, each image was accumulated from seven scans, 
but no image enhancement was performed before quantitation. 
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In addition to these quantitative measurements, at least 100 cells were 
scored qualitatively (by eye) for each condition to assess the nuclear vs cy- 
tosolic distribution of the GR-GFP. 

Micro-injections 
Ran mutants were produced as GST fusion proteins in Escherichia coli 
and purified by glutathione-Sepharose affinity chromatography as de- 
scribed previously (Richards et al., 1995). The Ran proteins were cleaved 
from the GST by addition of thrombin. Thrombin was removed by addi- 
tion of p-aminobenzamidine-Sepharose (Sigma Chem. Co., St. Louis, 
MO). The recombinant proteins were concentrated in a Centriconl0 to 
~4  mg/ml, in 10 mM sodium phosphate, pH 7.7, 70 mM KCI, 1 mM MgC12. 
The proteins were mixed with an equal volume of TRITC-dextran at 2 
mg/ml (as an injection marker) in the same buffer and micro-injected into 
BHK21 cells that expressed GR-GFP. An Eppendorf 5242 system at- 
tached to the Nikon Diaphot inverted microscope was used for injection. 
Fluorescent cells were visualized as described above. Injected cells were 
then incubated at 37°C for 30 min to allow recovery, before addition of 
1 t~M dexametbasone. Cells were photographed after an additional 15 min 
at 37°C, without fixation. 

Immunoblotting 
BHK21 cells in 100-mm plates were transfected with 15 Ixg of pKH3-Ran 
or empty pKH3 vector, as described above. After 48 h, cell extracts were 
prepared by direct addition of Laemmii sample buffer and analyzed by 
SDS gel electrophoresis. Proteins were transferred to nitrocellulose (0.6 
amps, 2 h) and immunoblotted using either the 12CA5 anti-HA1 antibody 
or an anti-Ran monoclonal antibody (Transduction Laboratories, Lexing- 
ton, KY). An antiserum prepared against a unique peptide near the 
COOH terminus of Ran (Richards et al., 1995) gave similar results to the 
monoclonal antibody (not shown). After incubation of the nitrocellulose 
with a horseradish peroxidase-coupled secondary antibody (1:10,000 dilu- 
tion), bands were detected by chemiluminescence using LumiGLO 
(Kirkegaard and Perry, MD). Bands detected by the anti-Ran antiserum 
that corresponded to endogenous Ran and to the larger HAl-tagged Ran 
were quantitated using a DPI densitometer. Recombinant Ran protein (1- 
100 ng), loaded in lanes adjacent to the cell extracts, was used as a stan- 
dard to calibrate the densitometer. 

Cell Growth Assay 
To measure the growth of cells expressing mutant or wild-type HAl -Ran  
proteins, BHK21 cells were cotransfected with 10 I~g of pKH3 alone or 
the pKH3-Ran vector of interest plus 10 p,g of pK7-GFP, which expresses 
an unfused green fluorescent protein. We have determined (see Results 
section) that a highly reproducible cotransfection efficiency of ~74% is 
obtained under these conditions. Thus, most of the cells that express the 
green fluorescent protein also express the HAl -R an  protein encoded by 
the vector with which it was cotransfected. Transfected cells were seeded 
sparsely into 10O-mm dishes and were then counted daily for 5 d to deter- 
mine the number of green fluorescent cells per dish, and the fraction of 
green fluorescent cells in the population. 

Results 

Real-time Imaging of Nuclear Translocation 
of GR-GFP 
To test the efficacy of using a GR-GFP fusion protein to 
study nuclear transport, we first characterized the ability 
of GR-GFP to respond to the agonist dexamethasone in a 
manner similar to that known for the glucocortocoid re- 
ceptor. 40 h after transfection of BHK21 cells with plasmid 
that expresses the GR-GFP fusion protein, fluorescence 
was detected in ~20-30% of the cells, and was predomi- 
nantly cytosolic. The percentage of transfected cells exhib- 
iting exclusively cytosolic fluorescence was increased to 
>90% by growth of the cells in charcoal-stripped serum. 
Picard and Yamamoto (1987) have noted previously that 
phenol red and serum can affect the subcellular distribu- 

tion of the glucocorticoid receptor resulting, in their hands, 
in a predominantly nuclear localization. 

Heterogeneity in subceUular distribution was occasion- 
ally observable among transfected cells even in the ab- 
sence of phenol red and with charcoal-stripped serum, 
which did not correlate with the level of expression of the 
chimeric fluorescent protein. The cause of this heteroge- 
neity is not known. Addition of the agonist dexametha- 
sone led to the rapid nuclear accumulation of the GR-GFP, 
was observable within individual living cells, and occurred 
with a half-time of ~5 min at 37°C (Fig. 1 A). This time 
course is similar to that which has been reported previ- 
ously for the GR (Picard and Yamamoto, 1987), confirm- 
ing that the addition of the GFP epitope to the COOH 
terminus of the receptor does not interfere with agonist- 
induced nuclear translocation. Most cells exhibited a simi- 
lar time course for complete translocation. In ~20% of 
cells the fluorescent protein could be seen to concentrate 
at the nuclear envelope before entry. 

Transfection of the parent vector, which expresses GFP 
alone, resulted in a diffuse fluorescence throughout the cy- 
tosol and nuclear compartments, the distribution of which 
is not altered by addition of dexamethasone (Fig. 1 B). 
Note that GFP is small enough (27 kD) to pass through 
the nuclear pores by passive diffusion (Melchior and Ger- 
ace, 1995). 

Removal of dexamethasone allowed the slow return of 
GR-GFP to the cytosol with a half-time of ~-,4 h, which is 
similar to that reported previously for the wild-type GR 
(Qi et al., 1989). 

To further determine if the chimeric receptor functions 
normally, we examined the effect of different concentrations 
of dexamethasone on nuclear translocation of GR-GFP. A 
half-maximal effect was observed at a concentration of 
,~50 nM (Fig. 2). This value is approximately fivefold higher 
than the K1/2 for binding of dexamethasone to endogenous 
receptors and for induction of gene expression (Bloom et 
al., 1980). However, in the studies by Bloom et al. (1980), 
the dexamethasone was allowed to equilibrate with the re- 
ceptor for at least 30 min, while in our studies nuclear im- 
port was assayed after incubation with dexamethasone for 
only 15 min. This difference may account for the slightly 
higher apparent K1/2. 

Expression Level of Transfected Ran 
The Ran GTPase is an abundant nuclear protein, consti- 
tuting ~0.3% of total cell proteins (Bischoff and Pon- 
stingl, 1991). We wished to determine the effects of vari- 
ous Ran mutants on the nuclear transport of GR-GFP, 
and were concerned that the level of expression of trans- 
fected Ran might be too low in comparison to that of the 
endogenous protein to produce significant effects. It was 
therefore important to estimate the amount of HAl-Ran 
expressed in transiently transfected BHK21 cells relative 
to that of the endogenous Ran protein. This information 
can be obtained if the fraction of cells expressing HAl-  
Ran is known, and if the relative amounts of the HAl-Ran 
and endogenous Ran present in the same cell population 
can be measured. The fraction of cells that express HAl-  
Ran can be determined by cotransfecting with a marker 
such as the green fluorescent protein, GFP, if the propor- 
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tion of  cells that take up D N A  and express both proteins is 
reproducible. The relative amounts of  H A l - R a n  and en- 
dogenous Ran  can both be determined by immunoblott ing 
with an anti-Ran antibody, because the epitope tag causes 
the H A l - R a n  protein to move with a reduced mobility in 
SDS-PAGE,  so that it can be easily distinguished from the 
endogenous Ran  protein. 

To determine the cotransfection efficiency of the cells, 
equal amounts of  the plasmids pK7-GFP and pKH3-Ran  
were mixed and transfected into BHK21 cells. After  48 h 
the cells were fixed and stained with the 12CA5 anti-HA1 
antibody and Cy3-1abeled secondary antibody to detect 
the H A l - R a n .  Red  and green fluorescent cells were then 
counted as a proport ion of  the total cell number  in several 
randomly selected fields of 100-mm plates of cells, to de- 
termine the number  of cells expressing either GFP alone, 
H A l - R a n  alone, or both proteins. We found in three inde- 
pendent transfection experiments that 74% + 8% of the 

transfected cells expressed both the G R - G F P  and the 
H A l - R a n .  Another  6-7.5% expressed H A l - R a n  alone; 
and 6-7.5% expressed G R - G F P  alone. Therefore both 
plasmids are reproducibly transfected into the BHK21 
cells with equal efficiency. 

To determine the relative amounts of  the tagged and en- 
dogenous Ran proteins in the same transfected cell popu- 
lation, cells were cotransfected with pKH3 and pK7-GFP 
as above. The plate was then examined by fluorescence 
microscopy, without fixation, to determine the proport ion 
of cells expressing GFP. The fraction of  the cell population 
transfected was 0.3 +__ 0.03 (n = 150 cells). The same cells 
were then harvested and extracts were analyzed by SDS- 
P A G E  followed by immunoblott ing with an anti-Ran 
monoclonal  antibody. As shown in Fig. 3 A, an intense 
band at ,-~25 kD is detected in both samples, which corre- 
sponds to the endogenous Ran protein. A second band of  
~33  kD is present only in the sample from cells trans- 

Figure 1. Nuclear transport of GR-GFP in single living cells. (A) Agonist- 
dependent nuclear accumulation of GR-GFP. BHK21 cells were trans- 
fected with 2 p~g of the vector pK7-GR-GFP + 2 p~g of pKH3, as described 
in Materials and Methods. The pK7-GR-GFP vector expresses a fusion of 
the glucocorticoid receptor and a mutant green fluorescent protein, $65T. 
Living transfected cells were detected by epifluorescence. Single fluores- 
cent cells were photographed at intervals after the addition to the medium 
of 1 IxM dexamethasone. Two typical examples of nuclear transport in re- 
sponse to dexamethasone are shown. Each frame shows two cells, and in 
both sets one cell appears to be expressing significantly higher amounts of 
GR-GFP than the other. However, the kinetics of transport appear to be 
similar. (B) Effect of dexamethasone on GFP distribution. As a negative 
control, BHK21 cells were transfected pK7-GFP, which expresses unfused 
green fluorescent protein. The 27-kD protein is diffusely distributed within 
the cell, and no relocalization is detectable after treatment for 15 min with 
1 I~M dexamethasone. Bar, (-4) 30 p~m. 
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Figure 2. Dose response for dexamethasone-dependent nuclear 
transport of GR-GFP. Cells were transfected with pK7-GR-GFP 
as described in Fig. 1.2 d after addition of DNA, separate cul- 
tures were treated with various doses of dexamethasone for 15 
min at 37°C. The living cells were washed with Hepes-buffered 
saline and examined by epifluorescence to count the proportion 
of ceils in which the GR-GFP was predominantly nuclear. At 
least 100 transfected cells were counted for each concentration of 
agonist. 

fected with HAl-Ran.  This upper band corresponds in size 
to that of HAl -R an  detected using the anti-HA1 mono- 
clonal antibody, 12CA5 (Fig. 3 A). When the bands were 
quantitated by densitometry, the density of the upper 
band was found to be ,-~47% of that corresponding to en- 
dogenous Ran. Given that the proportion of cells trans- 
fected with GFP was 0.3, and that the transfection efficien- 
cies for pK7-GFP and pKH3-Ran were equal, we estimate 
the level of expression of H A l - R a n  to be ~l .6-fold that of 
the endogenous Ran GTPase. 

Western blots of cells transfected with the pKH3-Ran 
mutants indicate that all of these constructs are expressed 
at approximately equal levels (Fig. 3 B). 

These data demonstrate that we can express epitope- 
tagged Ran at levels similar to those of endogenous Ran. 
This level is expected to be sufficient to interfere with Ran 
function, and is not so large that interference could be as- 
cribed to nonspecific effects. 

Effects of  Cotransfection of  Ran Mutants on GR-GFP 
Nuclear Translocation 

To determine the effects of the heterologous expression of 
Ran on agonist-dependent GR-GFP nuclear accumula- 
tion, we cotransfected vectors expressing either wild-type 
or mutant HAl-epi tope  tagged Ran/TC4 GTPase together 
with pK7-GR-GFP. 

Ran vectors were cotransfected with GR-GFP at ratios 
of 0:1, 0.25:1, 0.5:1, and 1:1. Higher concentrations of Ran 
mutants were rapidly toxic. The qualitative effects of Ran 
expression were determined by direct examination of liv- 
ing cells. However, to quantitate the import, transfected 
cells were fixed at intervals after addition of dexametha- 
sone and examined by confocal microscopy. Images were 

recorded and quantitated by summing pixel values sepa- 
rately within the nucleus and within the cytoplasmic com- 
partment. Wild-type HAl-tagged Ran did not affect the 
rate of GR-GFP nuclear translocation at any concentra- 
tion tested (Fig. 4, A and B). 

A mutant Ran (G19V) that does not respond to Ran- 
GAP and is predominantly GTP-bound when isolated 
from transfected BHK21 cells (Lounsbury, K.M., S.A. Ri- 
chards, K. Carey, and I.G. Macara, manuscript submitted 
for publication), significantly slowed the rate of import of 
GR-GFP into the nucleus in response to dexamethasone. 
The effect was dose-dependent (Fig. 4, A and B). There- 
fore, G19V Ran appears able to dominantly interfere with 
nuclear protein import in intact cells. 

AC-Ran, a mutant lacking the COOH-terminal acidic 
residues DEDDDL,  inhibited GR-GFP import more po- 
tently than did Ran G19V (Fig. 4, A and B). While the nu- 
clear/cytoplasmic ratio for 0.5 ~g of G19V Ran was ~0.5, 
no nuclear GR-GFP was observed on transfection of 0.5 
Ixg of AC-Ran over this time period. 

A third mutant, T24N, is analogous to a dominant-loss- 
of-function mutation in Ras, and binds with high affinity to 
the exchange factor, RCC1 (Dasso et al., 1994; Klebe et 
al., 1995; Lounsbury, K.M., S.A. Richards, K. Carey, and 
I.G. Macara, manuscript submitted for publication). Oth- 
ers have observed that T24N Ran interrupts cell cycle pro- 
gression in Xenopus oocyte extracts, but has no effect on 
nuclear transport (Kornbluth et al., 1994). However, we 
found that T24N inhibited GR-GFP nuclear accumulation 
as efficiently as did the AC-Ran mutant (Fig. 4, A and B). 
This result is consistent with a mechanism for Ran func- 
tion in which the protein must cycle between the GDP- 
and GTP-bound states. 

A fourth mutant, L43E, has been found to interact only 
weakly with Ran-binding proteins, and to be insensitive to 
Ran GAP. In intact cells a significant fraction of L43E is 
GTP-bound, and it associates almost exclusively with the 
nuclear envelope (Lounsbury, K.M., S.A. Richards, K. 
Carey, and I.G. Macara, manuscript submitted for publica- 
tion). We were surprised, therefore, to observe no inhibi- 
tion of GR-GFP nuclear transport by L43E (Fig. 4, A and 
B). The mutant Ran was expressed at a level similar to 
that of the other forms of Ran that were examined, but 
rates of nuclear accumulation were almost identical to 
those of mock-transfected cells. 

Effects of  Micro-injected Ran Mutants on GR-GFP 
Nuclear Translocation 

The results described above were obtained about 40 h af- 
ter cotransfection. During this period many cellular pro- 
cesses may have been perturbed by the Ran mutants. 
Therefore, the data do not prove that Ran is directly in- 
volved in the nuclear translocation of GR-GFP. To cir- 
cumvent this problem, we prepared recombinant Ran mu- 
tant proteins and micro-injected them into BHK21 cells 
that expressed GR-GFP (as determined by fluorescent mi- 
croscopy of the living cells). After permitting a brief recov- 
ery period (30 min), the injected cells were challenged 
with dexamethasone for 15 min. As shown in Fig. 5, wild- 
type Ran did not interfere with nuclear translocation, but 
the G19V, T24N, and AC mutants all potently inhibited 
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Figure 3. Relative expression levels of 
endogenous Ran and heterologously 
expressed HAl-Ran. (A) Expression 
of wild-type HAl-Ran. BHK21 cells 
(100-mm plates) were transfected with 
15 ~g of pKH3-Ran or pKH3, as de- 
scribed in Materials and Methods. Af- 
ter 48 h, the cells were rinsed with 
phosphate-buffered saline, and then 
lysed directly into Laemmli sample 
buffer and analyzed by SDS-PAGE. 
Proteins were transferred to nitrocellu- 
lose from the gel and parallel lanes 
were probed with either anti-Ran anti- 
serum (left panel) or anti-HA1 tag anti- 
body 12CA5 (right panel). Detection 
was by chemiluminescence. 10 ng of re- 
combinant Ran protein (middle panel) 
served as a control for the anti-Ran an- 
tiserum. The dark bands at ~25 kD in 
the left and center panels correspond 
to the expected location of endogenous 
Ran. The arrow refers to a band corre- 
sponding to HAl-tagged Ran. (Note 
that in the right panel the intensity of 
the anti-HAl-stained band was so 
great that it spilled over slightly into 
the adjacent lane. Some degradation is 
apparent in the HAl-Ran transfected 
lane.) (B) Relative expression levels of 
HAl-Ran mutants. Transfections 
were performed as in A, and cell ex- 
tracts containing equal amounts of to- 
tal protein were analyzed by SDS gel 
electrophoresis and immunoblotting 
with 12CA5 antibody. 

G R - G F P  accumulation in the nucleus. Notice in Fig. 5 that 
an uninjected cell, neighboring two that were injected with 
G19V Ran, underwent normal nuclear translocation, prov- 
ing that the manipulat ion of the plate during micro-injec- 
tion did not adversely affect the ability of the cells to re- 
spond to dexamethasone. 

Significantly, the micro-injected L43E mutant  of Ran  
did not  inhibit nuclear transport  (Fig. 5). 

These results support the data obtained by cotransfec- 
tion, and indicate that the observed inhibit ion of G R - G F P  
translocation by Ran  mutants  is a direct effect on nuclear 
transport, rather than a long-term, indirect response. 

Figure 4. Effect of Ran mutants on nuclear transport of GR-GFP. (A) Time courses for nuclear transport of GR-GFP in BHK cells 
cotransfected with 2 Ixg pK7-GR-GFP plus 0 Ixg (open circles), 0.5 Ixg (closed triangles), 1.0 ~g (open diamonds), or 2.0 p~g (open 
squares) of the indicated Ran mutant in pKH3. pKH3 vector containing no insert was added to equalize (to 4 ~g) the total amounts of 
DNA transfected in each experiment. After 48 h the cells were treated with 1 ~M dexamethasone for the indicated times, and then fixed 
and stained for HAl-Ran expression as described in Materials and Methods. Nuclear/cytoplasmic ratios of GR-GFP were quantitated 
for at least 10 cotransfected cells for each data point, using the Bio-Rad MRC-1000 confocal microscope as described in Materials and 
Methods. Error bars where large enough to be visible are _1 SD. (B) Representative images of GR-GFP subcellular distribution in 
cotransfected BHK21 cells 15 rain after addition of 1 p.M dexamethasone. Bar, 20 trm. 
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Figure 5. Effects of micro-injected recombinant Ran proteins on nuclear accumulation of GR-GFP. Cells were transfected with pK7- 
GR-GFP as in Fig. 4. After 48 h cells expressing GR-GFP were selected by fluorescence microscopy and micro-injected with recombi- 
nant Ran proteins (2 mg/ml) plus TR1TC-dextran (1 mg/ml) in 10 mM sodium phosphate, pH 7.1, 70 mM KC1, 1 mM MgC12. Cells were 
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Figure 6. Effects of Ran mutants on cell growth. Cells were 
plated at 10% confluence and were transfected as in Fig. 1 with 
10 I~g of pK7-GFP plus pKH3-Ran (wild-type or mutants), or 
pKH3 as a vector control. The GFP was used as a transfection 
marker. On days 2-6, 10 random fields of cells were examined in 
each plate by bright-field and fluorescence microscopy, to score a 
total number of cells in the field, and a number of green fluores- 
cent cells. Data are represented as a total number of GFP-posi- 
tive cells (A) and as the number of GFP-positive cells as a pro- 
portion of the total number of cells in the field (B). m- - - !  vector 
control; O---O, wild-type Ran; [3---lq, G19V; <>---(>, T24N; Q---O, 
AC; A---A, L43E. 

E f f e c t  o f  R a n  M u t a n t s  on Cell  Growth  

We had observed that high doses of plasmid DNA encod- 
ing Ran mutants were rapidly toxic to cells. This effect was 
to be expected for those mutants that inhibit cyto-nucleo- 
plasmic transport, but a similar response was apparent for 
the IA3E mutant. We therefore examined the effect of 

HAl-Ran  expression on cell growth. BHK21 cells were 
cotransfected with pK7-GFP plus either pKH3 as a vector 
control, or with pKH3-Ran mutants, and cells were 
counted over 5 d. The pK7-GFP vector expresses unfused 
GFP, which we used as a marker for the transfected cells. 
Results are presented in Fig. 6. Expression of wild-type 
HAl-Ran  has little effect on cell growth, as compared to 
the vector control. Note that the green cells increase both 
in absolute number and as a percentage of the total num- 
ber of cells counted between days 2 and 3 (Fig. 6 B). This 
effect is most likely a result of the continuing accumula- 
tion of GFP, which causes more transfected cells to be- 
come visibly fluorescent. Then between days 4--6, the per- 
cent GFP-positive cells falls as the plasmid is diluted out of 
the cells as they divide. This effect is normal for transiently 
transfected cells. 

Importantly, all of the Ran mutants, including L43E po- 
tently inhibit cell growth particularly from day 3 onwards. 
This result strongly suggests that Ran participates in some 
essential function other than the import of nuclear protein 
cargo, and that the L43E mutant dominantly interferes 
with this function. 

Discussion 

We have shown that a fusion protein of glucocorticoid re- 
ceptor and green fluorescent protein (GR-GFP) translo- 
cates into the nucleus in response to the receptor agonist, 
dexamethasone. This translocation can be visualized over 
time in single living cells and obeys kinetics similar to 
those reported for the endogenous glucocorticoid recep- 
tor. The system provides a unique opportunity to observe 
the nuclear transport of physiologically relevant nuclear 
cargo in real time, and to test the effects of various compo- 
nents of the nuclear transport machinery in an in vivo situ- 
ation. Cotransfections with unfused GFP proved useful for 
determining transfection efficiency without destruction of 
the cells, and for measuring cell growth rates of cotrans- 
fected cells. 

It is important that results obtained using in vitro or per- 
meabilized cell assays be corroborated by comparison with 
more physiologically relevant assays. Ran is rapidly de- 
pleted from the nucleus after permeabilization of the 
plasma membrane (Moroianu and Blobel, 1995), resulting 
in an inverted Ran gradient across the nuclear envelope in 
the in vitro assay system. This inversion very likely per- 
turbs the normal transport process. Additionally, RNA 
molecules may become trapped within the nuclear pores 
as cytosolic components are washed out of the cells. Con- 
ceivably, therefore, in vitro assays of nuclear protein im- 
port may identify cytosolic components that are not di- 
rectly involved in this process, but are instead essential 
either to re-establish a nucleo-cytoplasmic gradient or to 
release molecules from the pores that are inactivating the 
protein import machinery. Moreover, slightly different 

allowed to recover for 30 min at 37°C, and were then challenged with 1 IxM dexamethasone for 15 min. Cells were rinsed in isotonic 
buffer then examined by fluorescence microscopy to determine the subcellular location of the GR-GFP. Panels on the left show TRITC 
fluorescence, which was used as an injection marker. Panels on the right show GR-GFP fluorescence. At least 30 cells were injected for 
each Ran protein, and results identical to those shown in the photographs were obtained in two independent experiments. 
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protocols for the in vitro assays can lead to different con- 
clusions about what factors are essential for nuclear pro- 
tein import, depending on the level of depletion from the 
permeabilized cells (Melchior and Gerace, 1995). 

One concem with using cotransfection as an in vivo ap- 
proach to study nuclear transport is that the protein of in- 
terest is expressed for many hours before the assay, during 
which time it might interfere with multiple cellular pro- 
cesses. However, the advantage of GR-GFP is that the liv- 
ing cells that express this construct are fluorescent and can 
be micro-injected with recombinant proteins. The effects 
of these proteins can then be studied within minutes after 
introduction into the cells. 

We have used the GR-GFP system to examine the ef- 
fects of the expression of various mutants of the Ran GTPase 
on nuclear transport. Mutants were introduced into the 
cells either by cotransfection or by micro-injection of re- 
combinant proteins. Importantly, results obtained by both 
methods were identical, and support the conclusion that 
the phenotypes observed are mediated directly by the Ran 
mutants on nuclear transport rather than through an indi- 
rect effect on other processes. 

We found that while wild-type Ran has no effect on GR- 
GFP translocation into the nucleus, the constitutively acti- 
vated Ran mutant G19V blocks the nuclear accumulation 
of GR-GFP. This result agrees with predictions from ear- 
lier in vitro work using nonhydrolyzable analogues of GTP 
(Melchior et al., 1993), or recombinant G19V Ran and Xe- 
nopus oocyte nuclei (Kornbluth et al., 1994), and from 
studies in yeast using a constitutively nuclear substrate 
(Schlenstedt et al., 1995). Therefore, it is likely that the 
G19V Ran is interfering directly with protein import. 
However, Schlennstedt et al. (1995) demonstrated that in 
yeast this mutant also blocks mRNA export, and it re- 
mains possible that the inhibition of GR-GFP import is a 
secondary consequence of a disruption of the nuclear ex- 
port machinery by G19V Ran. 

The effects of other Ran mutants in our GR-GFP assay 
diverge significantly from those obtained in alternate sys- 
tems. Using an in vitro nuclear transport assay, Ren et al. 
(1995) observed no inhibition of nuclear import by a AC 
Ran mutant, whereas we find that this mutant potently in- 
hibits the dexamethasone-induced nuclear translocation of 
GR-GFP. The AC Ran does not bind efficiently to RanBP1 
and RanBP2, but it does interact in a Ran overlay assay with 
three other proteins, of ~90, 115, and 120 kD (Lounsbury 
et al., 1994, 1996). Wild-type Ran does not interact effi- 
ciently with these proteins in overlay assays except in the 
presence of RanBP1 or an isolated Ran-binding domain. 
We have identified the 90-kD protein as 13-karyopherin 
(also called [3-importin and p97) (Lounsbury et al., 1996). 
This protein is an essential component of the nuclear dock- 
ing complex, and is required for transport of protein cargo 
through the nuclear pore complex (Adam and Adam, 
1994; Radu et al., 1995; Gorlich et al., 1995). The inhibition 
of nuclear transport of GR-GFP by AC Ran may therefore 
be a result of its inappropriate interaction with [3-karyo- 
pherin/importin. The absence of any effect on in vitro import 
may be a consequence of the abundance of 13-karyopherin/ 
importin in the cell extract used for the assay. 

Ren et al. (1994) were also unable to detect any effect of 
the AC mutant of Ran on cell cycle progression in 293/Tag 

cells, although the G19V mutant was inhibitory, arresting 
cells predominantly in the G2 phase of the cell cycle. We 
found that all of the Ran mutants tested were strongly in- 
hibitory to cell growth when expressed in BHK21 cells. 
This difference may reflect the more extended period of 
time over which we were able to observe the BHK21 cells. 
The 293/Tag cells express the SV40 large T antigen and 
can be studied only over a period of about 48 h before the 
replicating plasmid begins to cause nonspecific toxic ef- 
fects. There may be other differences related to the very 
high expression level of the Ran in 293/Tag cells because 
we find that AC Ran is primarily cytosolic (Lounsbury, 
K.M., S.A. Richards, K. Carey, and I.G. Macara, manu- 
script submitted for publication), whereas in the 293frag 
cells it appears to be nuclear (Ren et al., 1994). 

Kornbluth et al. (1994) observed no inhibition of nu- 
clear import of an artificial karyophile into Xenopus oo- 
cyte nuclei by the T24N Ran mutant, whereas we find that 
this mutant potently inhibits GR-GFP nuclear transloca- 
tion. One possible mechanism for inhibition by T24N is 
that the mutant binds to and sequesters the nuclear Ran 
exchange factor, RCC1, and thereby prevents regeneration 
of the GTP-bound state of the endogenous Ran GTPase 
(Dasso et al., 1994). A second possibility is that the T24N 
mutant of Ran binds to and sequesters another essential 
component of the transport machinery, such as NTF2, 
which can associate with Ran in the GDP-bound state 
(Melchior and Gerace, 1995; Lounsbury, K., unpublished 
observations). 

The difference between our results in BHK21 cells and 
those with the Xenopus system may be reconciled if a sig- 
nificant run-down time is required before the disruption of 
RCC1 function can have an impact on nuclear protein im- 
port. For example, a significant fraction of the total endog- 
enous Ran protein in the cell (0.3% of cell protein) may 
normally be GTP-bound and be competent to maintain 
transport, and it may take a long time to completely de- 
plete the pool of GTP:Ran, especially within the large nu- 
cleus of the oocyte. In our BHK21 cell micro-injection as- 
say the T24N Ran will have been present within the cell 
cytosol for only 30 min before addition of dexamethasone, 
but in these small cells 30 min may be sufficient time to re- 
duce the abundance of GTP:Ran below a level required to 
sustain transport. 

The most surprising outcome of these studies of Ran 
mutants in the GR-GFP translocation assay was the lack 
of any inhibitory effect by IA3E. This mutation is in the 
putative effector domain of Ran (Sheffzek et al., 1995), 
and reduces the affinity of the GTPase for RanBP1 and -2 
(Lounsbury, K.M., S.A. Richards, K. Carey, and I.G. Mac- 
ara, manuscript submitted for publication). L43E also is 
not sensitive to RanGAP activity, but undergoes normal 
RCCl-stimulated nucleotide exchange. When expressed 
in BHK21 cells it accumulates almost exclusively at the 
nuclear envelope, and shows a patchy distribution presum- 
ably because of association with the nuclear pore com- 
plexes (Lounsbury, K.M., S.A. Richards, K. Carey, and 
I.G. Macara, manuscript submitted for publication). One 
explanation of these data is that the association of the 
IA3E mutant with the nuclear pores is sufficiently weak 
that it can be displaced by endogenous Ran, which is able 
to mediate nuclear transport. IA3E Ran remains at the 
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pore because it cannot be converted to the GDP-bound 
state by RanGAP to complete the GTP:GDP cycle. 

Despite the lack of any effect of  L43E on nuclear trans- 
port of GR-GFP, this Ran mutant was inhibitory to cell 
growth. Wild-type H A l - R a n  had no such inhibitory effect. 
These observations provide the first evidence that Ran 
may provide an essential cellular function additional to its 
known role in nuclear protein import. The L43E mutant 
will likely provide an important tool in further investiga- 
tions of this function. 

Taken together, the Ran mutant data support a cyclical 
mechanism for Ran function in nuclear transport, similar 
to that proposed by Bourne (1988) for regulating vesicle 
traffic, rather than the switch mechanism of the Ras 
GTPases (e.g., Satoh et al., 1992). In a switch mechanism, 
dominant gain-of-function and loss-of-function mutants of 
the switch have opposite phenotypes when expressed in 
cells. Gain-of-function Ras mutants, that are constitutively 
GTP-bound, are oncogenic in NIH 3T3 cells, while the 
T17N loss-of-function mutant is predominantly GDP bound 
and can inhibit cell growth and transformation. In a cycli- 
cal mechanism, on the other hand, arrest of  the GTPase in 
either the GTP- or GDP-bound states results in the same 
phenotype. This mechanism is exemplified by ARF, a 
GTPase which is involved in vesicle movement.  Both gain- 
and loss-of-function ARF mutants inhibit vesicle traffic 
from the endoplasmic reticulum. The underlying mecha- 
nism of this inhibition differs for the gain- or loss-of-func- 
tion mutants (e.g., Dascher and Balch, 1994), but the end 
result is the same. 

If the Ran GTPase functioned as a switch, we would 
predict that the G19V or T24N mutants would have oppo- 
site effects: one would activate nuclear transport, and the 
other would inhibit. However, we observe inhibition by 
both the activated and inactivated mutants, which sup- 
ports the cyclical model. One caveat to this conclusion is 
that the G19V Ran may inhibit nuclear protein import in- 
directly, as a consequence of a block to m R N A  export. We 
expect assays that can identify individual steps in nuclear 
translocation will distinguish the mechanisms by which 
these mutants exert their inhibitory effects. 
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