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Abstract. In a number of embryonic systems, cen- 
trosomes that have lost their association with the nu- 
clear envelope and spindle maintain their ability to du- 
plicate and induce astral microtubules. To identify 
additional activities of free centrosomes, we monitored 
astral microtubule dynamics by injecting living syncy- 
tial Drosophila embryos with fluorescently labeled tu- 
bulin. Our recordings follow multiple rounds of free 
centrosome duplication and separation during the cor- 
tical divisions. The rate and distance of free sister cen- 
trosome separation corresponds well with the initial 
phase of associated centrosome separation. However, 
the later phase of separation observed for centrosomes 
associated with a spindle (anaphase B) does not occur. 
Free centrosome separation regularly occurs on a plane 
parallel to the plasma membrane. While previous work 
demonstrated that centrosomes influence cytoskeletal 
dynamics, this observation suggests that the cortical cy- 
toskeleton regulates the orientation of centrosome sep- 
aration. Although free centrosomes do not form spindles, 
they display relatively normal cell cycle-dependent 

modulations of their astral microtubules. In addition, 
free centrosome duplication, separation, and modula- 
tion of microtubule dynamics often occur in synchrony 
with neighboring associated centrosomes. These obser- 
vations suggest that free centrosomes respond normally 
to local nuclear division signals. Disruption of the corti- 
cal nuclear divisions with aphidicolin supports this con- 
clusion; large numbers of abnormal nuclei recede into 
the interior while their centrosomes remain on the cor- 
tex. Following individual free centrosomes through 
multiple focal planes for 45 min after the injection of 
aphidicolin reveals that they do not undergo normal 
modulation of their astral dynamics nor do they un- 
dergo multiple rounds of duplication and separation. 
We conclude that in the absence of normally dividing 
cortical nuclei many centrosome activities are disrupted 
and centrosome duplication is extensively delayed. This 
indicates the presence of a feedback mechanism that 
creates a dependency relationship between the cortical 
nuclear cycles and the centrosome cycles. 

T 
HE centrosome plays a fundamental role in the or- 
ganization of eukaryotic cells. This organelle regu- 
lates the number, distribution, and dynamics of mi- 

crotubules within the cell, and orchestrates the generation 
and orientation of the bipolar mitotic spindle. In most 
higher eukaryotes, each centrosome is a complex and 
amorphous mass of material encompassing a pair of mi- 
crotubule-based structures called centrioles (for reviews 
see Kalt and Schliwa, 1993; Kellogg et al., 1994). Recent 
studies have identified -/-tubulin as a key centrosomal pro- 
tein responsible for microtubule nucleation (Oakley et al., 
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1990; Moritz et al., 1995; Zheng et al., 1995). Among cyto- 
plasmic components, the centrosomes are distinct because 
they are precisely duplicated once each division cycle. De- 
spite decades of research on the centrosome, much re- 
mains unknown about its duplication, movement, modula- 
tion of microtubule dynamics, and molecular composition. 

Studies involving the initial embryonic divisions in am- 
phibians, marine invertebrates, and insects have provided 
much of our knowledge about the centrosome. The initial 
divisions in these organisms lack many of the well estab- 
lished cell cycle checkpoints and consequently it has been 
possible to uncouple the nuclear and centrosome cycles 
(Hartwell and Weinert, 1989). For example, centrosome 
duplication continues in sea urchin and starfish embryos 
with arrested nuclear cycles (Nagano et al., 1981; Sluder 
and Lewis, 1987). Enucleated sea urchin embryos are ca- 
pable of undergoing multiple rounds of centrosome dupli- 
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cation and separation (Sluder et al., 1986). These free cen- 
trosomes also undergo normal cyclic modulation of their 
microtubule asters. In addition to demonstrating a lack of 
dependence of the centrosome cycle on the nuclear cycle, 
they also show that centrosome duplication and separation 
in sea urchin embryos does not rely on a physical proxim- 
ity to the nuclear envelope. Analysis of Xenopus and sea 
urchin embryos injected with protein synthesis inhibitors 
demonstrates that centrosome duplication can occur in the 
absence of a detectable cell cycle (Gard et al., 1990; Sluder 
et al., 1990). 

Genetic, cellular, and biochemical studies have demon- 
strated that the Drosophila embryo is also a valuable sys- 
tem for studying the centrosome. The initial nuclear divi- 
sions in Drosophila are rapid, synchronous, and occur 
without accompanying cytokinesis (Rabinowitz, 1941; Son- 
nenblick, 1950; Turner and Mahowald, 1976; Zalokar and 
Erk, 1976; Foe and Alberts, 1983; Stafstrom and Staehelin, 
1984; Minden et al., 1989). During nuclear cycles 9 and 10, 
the majority of the nuclei migrate to the periphery where 
they undergo four more rounds of synchronous divisions 
and cellularize during interphase of nuclear cycle 14. 
These syncytial divisions alternate between M and S with 
no obvious G1 and G2 phases (Foe et al., 1993). 

Analysis of mutations disrupting the initial divisions of 
the Drosophila embryo has provided a number of insights 
concerning centrosome behavior and function. While the 
initial nuclear divisions are disrupted in embryos derived 
from the maternal-effect mutation gnu, centrosome dupli- 
cation continues (Freeman et al., 1986; Freeman and Glover, 
1987). These free centrosomes migrate to the cortex, form 
astral microtubules, and induce cytoskeletal rearrange- 
ments. Free centrosomes have also been detected in the 
maternal-effect mutations asp (Gonzalez et al., 1990) and 
abc (Vessey et al., 1991). Another mutation, dal, disrupts 
centrosome separation during the cortical divisions (Sulli- 
van et al., 1990, 1993a). Analysis of this mutation indicates 
that proper cortical cytoskeletal dynamics depend on reg- 
ular centrosome spacing. In a number of mutations and 
chromosomal rearrangements, the products of abnormal 
nuclear divisions sink into the interior of the embryo while 
their associated centrosomes remain on the surface (Sulli- 
van et al., 1993b). This indicates that the centrosome is 
closely associated with the cortical cytoskeleton and that 
the nucleus may interact with the cortical cytoskeleton via 
the centrosome. 

A number of issues concerning the behavior of free cen- 
trosomes in Drosophila embryos remain unresolved. Al- 
though there is evidence for free centrosome duplication, 
it is not clear whether it is occurring in an unregulated 
fashion or if the centrosomes are still responding to nor- 
mal division signals. It is not known how many cycles of 
free centrosome duplication occur nor whether they main- 
tain their ability to normally separate from one another. 
The extent to which free centrosomes maintain their abil- 
ity to modulate the nucleation of microtubules in a cell cy- 
cle-dependent fashion also has not been thoroughly exam- 
ined. During the cortical divisions, sister centrosomes 
separate so that they lie on a plane parallel to the plasma 
membrane. It is not known whether free centrosomes are 
capable of maintaining this orientation. 

The dependency relationship between the centrosome 

cycle and the nuclear cycle also requires further examina- 
tion. Previous studies examined the response of the nu- 
clear and centrosome cycles in syncytial Drosophila em- 
bryos to aphidicolin, an inhibitor of DNA synthesis (Raft 
and Glover, 1988, 1989). As fixed analysis was used, it was 
not technically feasible to monitor the migration and du- 
plication patterns of individual centrosomes after aphidi- 
colin injection. 

We directly address these issues by examining centro- 
somes, both free and nuclear associated, in living syncytial 
Drosophila embryos. This is accomplished by injecting 
embryos with fluorescently labeled tubulin (Kellogg et al., 
1988) and fluorescently labeled histones (Minden et al., 
1989). Our confocal recordings demonstrate that free cen- 
trosomes maintain a surprising repertoire of activities and 
that these activities occur in synchrony with the normal di- 
vision cycle. In addition, we demonstrate that in aphidicolin- 
treated embryos large numbers of nuclei recede into the 
interior while their centrosomes remain on the cortex. Our 
recordings also demonstrate an extensive delay in the du- 
plication cycle of free centrosomes in aphidicolin-treated 
embryos. This suggests the presence of a feedback mecha- 
nism which establishes a dependency relationship between 
the centrosome and nuclear cycles. These results are dis- 
cussed in the context of previous studies performed in 
Drosophila and other embryonic systems. 

Materials and Methods 

Drosophila Stocks 
All of the experiments relied on the wild-type Oregon-R stock (Lindsley 
and Grell, 1968). The stock was maintained on a standard corn meal/mo- 
lasses media at 25°C. 

Fixation and Immunofluorescence 
Embryos were fixed using formaldehyde by a modification of the Mitchi- 
son and Sedat procedure (1983). This method is described in detail else- 
where (Theurkauf, 1992). Immunofluorescence analysis was performed as 
described by Karr and Alberts (1986). Centrosomes and nuclei were 
stained with the Rb188 anti-centrosomal antibody (Whitfield et al., 1988) 
and propidium iodide (Fogarty et al., 1994), respectively. The microtu- 
bules were stained with an anti-a-tubulin antibody. The embryos were ex- 
tensively rinsed in PBS and mounted in a 50% glycerol, PBS solution con- 
taining 1 mg/ml N-N-1-4-phenylenediamine. 

Microscopy was performed using an inverted microscope (IMT2; 
Olympus Corp., Precision Instrument Division, Lake Success, NY) 
equipped with a laser confocal imaging system (600, Bio-Rad Laborato- 
ries, Hercules, CA). The lenses used included the Olympus S Plan Apo 60, 
Oil and the Olympus D Plan Apo 20, UV, Oil. The nuclear cycle of the 
cortical divisions was determined by using the Bio-Rad imaging software 
to estimate nuclear densities. 

In Vivo Fluorescence Analysis 
The in vivo analysis of nuclear and centrosome behavior was accom- 
plished by microinjecting fluorescently labeled histones and tubulin into 
embryos during the syncytial cortical divisions (Kellogg et al., 1988; Min- 
den et al., 1989). The embryos were prepared for microinjection by hand 
dechorionation and mounting on a coverslip with a thin film of glue (Min- 
den et al., 1989). Observations and time-lapse recordings were made on an 
Olympus IMT2 microscope equipped with a Bio-Rad MRC 600 confocal 
imaging system. 

A 100-txg/ml solution of aphidicolin dissolved in a 0.5% DMSO, 5 mM 
KCI, 0.1 mM sodium phosphate (pH 6.8) solution was used to inhibit 
DNA synthesis. 1-h collections of embryos aged for 30 min were injected 
with either rhodamine-labeled histones or rhodamine-labeled tubulin. 
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Figure 1. Confocal images of a living embryo injected with rhodamine-labeled tubulin. The recording follows an embryo from prophase 
of nuclear cycle 11 to interphase of nuclear cycle 12. The stage and the total elapsed time are as follows (min : s): (A) cycle 11 prophase, 
0:00; (B) late prophase, 2:30; (C) early metaphase, 3:00; (D) metaphase, 4:30; (E) late metaphase, 6:00; (F) anaphase, 6:30; (G) telophase 
7:30; (H) cycle 12 interphase, 9:30. Bar, 5 ~m. 
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Once the nuclei migrated to the cortex, these embryos were injected with 
100 ixg/rrd aphidicolin. The microtubule and nuclear dynamics in these 
embryos were observed for up to 1 h after the injection. 

Fixed Analysis of  Aphidicolin-injected Embryos 
Nuclear cycle 9 embryos, identified by pole bud formation, were allowed 
to develop another 10 rain and injected with 100 Iz, g/ml aphidicolin. These 
embryos, covered with Halocarbon oil were either fixed immediately or 
allowed to develop another 45 min (at 25°C in a moist chamber) before 
formaldehyde fixing. After fixation, the embryos were hand devitellinized 
and double stained for their centrosomes and nuclei. 

Results 

Normal Centrosome Behavior in Syncytial 
Drosophila Embryos 

We followed the microtubule and centrosome dynamics 
during the cortical divisions by injecting embryos with flu- 
orescently labeled tubulin and recording a confocal image 
every 30-60 s. These images extend previous studies of 
Drosophila embryonic microtubule dynamics (Karr and 
Alberts, 1986; Warn and Warn, 1986; Warn et al., 1987; 
Kellogg et al., 1988). The divisions remain synchronous 
and few errors are observed. Fig. 1 follows microtubule 
dynamics from prophase of nuclear cycle 11 to interphase 
of cycle 12. The centrosomes are detected easily by their 
extensive nucleation of microtubules. During prophase, 
the centrosome-induced asters are observed at opposite 
sides of each nucleus (A). The bright background is pro- 
duced by unincorporated fluorescently labeled tubulin dis- 
persed throughout the cytoplasm. The nuclei appear as 
dark spheres because the intact nuclear envelope prevents 
the entry of labeled tubulin. Nuclear envelope breakdown 
during prophase results in an influx of labeled tubulin into 
the nuclear space (B). In this panel, the mitotic wave is 
preceded by a wave of nuclear envelope breakdown. One 
minute later, spindles are observed forming between sister 
centrosomes (C and D). As the spindles mature, the den- 
sity and length of the astral microtubules dramatically in- 
crease (E) and reach a maximum during anaphase (F). 
The nuclear envelope reforms during early telophase ex- 
cluding the labeled tubulin (G). Also during telophase, the 
microtubules reorganize and form distinct midbodies be- 
tween sister nuclei (G). By late telophase, the duplicated 
centrosome pairs have separated and display a flattened 
configuration (G). As the nuclei enter the next interphase, 
the centrosomes no longer lie in the focal plane (H). This 
is a consequence of either nuclear rotation or centrosome 
migration so that the centrosome pairs lie between the nu- 
clear envelope and the plasma membrane. These images 
highlight the tight linkage of the centrosomes to the nu- 
clear envelope. 

Free Centrosome Behavior in Drosophila Embryos 

Previous studies of free centrosomes in Drosophila have 
relied on fixed analysis of embryos in which global defects 
were produced through the use of drugs, UV irradiation, 
or mutations (Freeman et al., 1986; Raft and Glover, 1988; 
Yasuda et al., 1991). To examine the behavior of free cen- 
trosomes in a normal embryo, we have relied on the obser- 
vation that the products of occasional spontaneous nuclear 

division errors recede into the interior of the embryo while 
their centrosomes remain on the cortex (Minden et al., 
1989; Sullivan et al., 1990, 1993b). 

Free centrosomes are readily detected by their associ- 
ated microtubule asters. To demonstrate this, we induced 
large numbers of free centrosomes by heat shocking em- 
bryos. These embryos were formaldehyde fixed and stained 
both for microtubules and centrosomes. We used the well 
characterized anti-centrosome antibody Rb188 (Whitfield 
et al., 1988). Immunofluorescent analysis demonstrates 
that both the free and spindle-associated centrosomes are 
encompassed by distinct astral microtubule arrays (data 
not shown). This is true for all free asters. Thus the asters 
serve as a reliable indicator of centrosome position and ac- 
tivity. 

Rhodamine-labeled tubulin injections provide a means 
of following free centrosome behavior in undisturbed liv- 
ing embryos. As free centrosomes are rare, only 8 of 21 re- 
cordings of syncytial embryos exhibited free centrosomes. 
In total, of 2,038 centrosomes observed, 43 were free (Ta- 
ble I). The images depicted in Fig. 2 follow a free cen- 
trosome in a normal embryo from metaphase of nuclear 
cycle 11 to prophase of nuclear cycle 13. As this embryo 
progresses from metaphase to telophase of nuclear cycle 
11, the asters of both the associated and free centrosomes 
become more extensive (compare A and B). By late telo- 
phase, the centrosomes associated with the reformed nu- 
clear envelope have clearly duplicated (C). The arrow in 
panel C highlights a free centrosome which has also dupli- 
cated. During interphase of nuclear cycle 12, both the as- 
sociated and the free sister centrosomes separate from one 
another (see arrows, D-H).  Upon entering metaphase, di- 
minished astral microtubule arrays are observed for both 
the associated and free centrosomes (H). I-L follow the 
embryo as it progresses through anaphase, telophase and 
into interphase of nuclear cycle 13. These images demon- 
strate that each of the sister products of the original free 
centrosome undergoes another round of duplication and 
separation (see arrows, H-L). Each of these centrosomes 

Table L Summary of the Live Analysis of Free Centrosome 
Behavior during the Cortical Divisions of Normal Drosphila 
Embryos 

Summary of live analysis 
21 tubulin movies (21 separate embryos examined) 
43 of 2,038 centrosomes examined were free 

Duplication of free centrosomes 
34 duplicated 

6 did not 
3 could not determine 

Synchrony of free centrosome separation 
25 duplicated and separated in synchrony with neighboring associated 

centrosomes 
9 separated with >3-min delay 

Plane of free centrosome separation 
26 separated in a plane parallel to the plasma membrane 

2 separated in a plane not parallel to the plasma membrane 
6 could not determine separation plane 

Distance of free centrosome separation 
At nuclear envelope breakdown, free centrosomes separated 80% of the 

distance observed for associated centrosomes (11 centrosome pairs 
followed) 

By late anaphase, the same centrosome pairs separated only 60% of the 
distance observed for associated centrosomes 
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Figure 2. Confocal images of a living Drosophila embryo injected with rhodamine-labeled tubulin. Duplication of a single centrosome- 
induced aster leads to four free asters (see arrows). The stage and total elapsed time are as follows : (A) cycle 11 metaphase, 0:00; (B) 
anaphase, 1:30; (C) telophase, 4:00; (D) cycle 12 interphase, 4:30; (E) early prophase, 7:00; (F) prophase, 8:00; (G) late prophase, 10:00; 
(H) metaphase, 11:30; (/) telophase, 15:30; (J) late telophase, 16:30; (K) cycle 13 interphase, 20:30; (L) prophase, 21:30. Bar, 5 txm. 

separate,  but the distance in this second round of separa- 
tion is significantly less than that observed for normal  cen- 
trosomes. The second round of centrosome duplication 
and separat ion also occurs in synchrony with associated 
centrosomes.  

We observed that  free centrosomes do not always dupli- 
cate and separate.  Of  43 free centrosomes,  34 duplicated 
and separated f rom one another,  6 did not, and for 3 cen- 
t rosomes it was not possible to determine (Table I). In Fig. 
2 D, it is evident that while the nuclear-associated cen- 

Debec et al. Free Centrosomes in Drosophila Embryos 107 



The Journal of Cell Biology, Volume 134, 1996 108 



Table II. Nuclear and Centrosome Density Counts in Normal and Aphidicolin-injected Embryos 

Number of nuclei/ Number of centrosornes/ Centrosomes/ 
Embryo 6,500 um 2 6,500 um 2 nuclei 

Uninjected nuclear 1 13 29 2.2 
cycle 10 embryos 2 15 26 1.7 

3 24 46 1.9 
4 15 35 2.3 
5 30 57 1.9 
6 14 27 1.9 
7 13 22 1.7 

Average 18 35 2.0 

Cycle 10 1 26 44 1.7 
aphidicolin-injected 2 14 28 2.0 
fixed immediate ly  3 20 56 2.8 

4 30 64 2.1 
5 20 63 3.1 
6 20 50 2.5 

Ave rage  22 51 2.3 

Cycle 10 1 - -  37 - -  
aphidicolin-injected 2 - -  48 - -  
f ixed after 45 min 3 - -  79 - -  

4 - -  62 - -  
5 - -  82 - -  
6 - -  55 - -  

Ave rage  61 

Cycle  10 1 128 157 1.2 
buffer-injected 2 114 167 1.5 
fixed after 45 rain 3 145 203 1.4 

4 112 165 1.5 
5 125 178 1.4 
6 86 168 2.0 

Ave rage  118 173 1.5 

Nuclear and cantrosome density counts in uninjected nuclear cycle l0 embryos, embryos fixed immediately after aphidicolin injection at nuclear cycle 10, embryos fixed 45 rain 
after injection of aphidicolin at nuclear cycle I0, and embryos fixed 45 min after the injection of buffer at nuclear cycle 10. 

trosomes and free centrosomes marked by the arrow have 
duplicated, the unmarked neighboring free centrosomes 
did not. The centrosomes that fail to duplicate retain their 
ability to modulate astral microtubule dynamics. In gen- 
eral, when free centrosomes duplicate and separate, they 
do so in synchrony with neighboring associated centro- 
somes. Of the 34 free centrosomes in which this could be 
unambiguously determined, 25 duplicated and separated 
in synchrony with neighboring associated centrosomes. 
The remaining nine centrosomes separated after a greater 
than 3-min delay (Table I). 

Of 34 pairs of separating free centrosomes, 26 pairs sep- 
arated on a plane parallel to the plasma membrane; the 
separating sister centrosomes remained on a single focal 
plane. Two pairs did not separate on a plane parallel to the 
plasma membrane. Of the six remaining pairs, it was not 
possible to determine the plane of separation. The initial 
rate of free and associated centrosome separation is ap- 
proximately equal: 1.5 txm/min (average of 4) and 2.0 I~m/ 
min (average of 4), respectively. However, the separation 
of the free centrosomes stops prematurely. At nuclear en- 
velope breakdown (late prophase) the free centrosomes 
separated on average 80% (11 centrosome pairs followed) 

of the distance observed for associated centrosomes. By 
late anaphase these free centrosomes are separated by 
only 60% (same 11 centrosome pairs followed) of the dis- 
tance observed for the associated centrosomes. The re- 
duced percentage reflects the fact the free centrosomes do 
not undergo the second phase of centrosome separation 
(anaphase B) that occurs for associated centrosomes. 
These results are summarized in Table I. 

Fixed Analysis of  Centrosome Behavior in 
Aphidicolin-injected Embryos 

Fixed analysis was performed by injecting embryos with 
aphidicolin at nuclear cycle 10. The initiation of pole cell 
formation enabled us to identify nuclear cycle 9 embryos. 
10 min after these embryos were identified, they were in- 
jected with a 100-p~g/ml aphidicolin solution and either 
fixed immediately or fixed 45 min after the injection. 
These embryos were hand devitellinized and double 
stained with the DNA stain propidium iodide and the anti- 
centrosomal antibody Rb188. With the nuclei and cen- 
trosomes depicted in green and red, respectively, Fig. 3 
presents merged images of these double-stained embryos. 

Figure 3. Merged images of nuclei (green) and centrosomes (red) in normal cycle 10 embryos (A), and embryos fixed immediately (B) 
or 45 rain (C) after injection with aphidicolin at nuclear cycle 10. D depicts an embryo fixed 45 min after injection of buffer at nuclear cy- 
cle 10. Bar, 10 txm. 
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Figure 4. Confocal images of a living Drosophila embryo injected with rhodamine-labeled histone followed by a second injection of 100 
}xg/ml aphidicolin. A (0:00) and B (4:41) represent images just before and after injection of the aphidicolin. C-H, with total elapsed time 
of 5:35, 8:35, 12:20, 16:50, 25:18, and 33:35, respectively, follow the embryo as it progresses through the next anaphase. A and B: Bar, 5 
tzm; C-H: Bar, 10 p,m. 

A depicts an uninjected nuclear cycle 10 embryo. B and C 
depict embryos injected with aphidicolin at nuclear cycle 
10 and fixed immediately and after 45 min, respectively. D 
depicts an embryo fixed 45 min after injection with buffer 
at nuclear cycle 10. Fixing immediately after injection of 
aphidicolin (B) demonstrates that incubating for 10 min 
after pole bud formation is a reliable means of injecting 
cycle 10 embryos. Seven uninjected nuclear cycle 10 em- 
bryos yield an average of 18 nuclei/6,500 p,m 2, while six 
embryos fixed immediately after injection yield an average 
of 22 nuclei/6,500 p,m 2 (Table II). The nuclear density in 
embryos fixed 45 min after injection of buffer were, as ex- 
pected, significantly increased to an average of 118 nuclei/ 
6,500 lxm z (D and Table II). However the nuclear density 
of embryos fixed 45 min after injection of aphidicolin ap- 
peared lower than that found in normal cycle 10 embryos 
(C). Precise density counts were not feasible, because the 
size, shape, and spacing of the nuclei were irregular. In ad- 
dition, the nuclei were no longer distributed in a mono- 
layer. These observations suggested that the aphidicolin- 
treated nuclei eventually recede into the interior of the 
embryo (see below). 

The average centrosome densities of embryos fixed im- 
mediately and 45 min after aphidicolin injection at nuclear 
cycle 10 are 51 centrosomes/6,500 p,m 2 and 61 centrosomes/ 
6,500 }xm 2, respectively (B and C, Table II). This increase 
is probably the result of occasional splitting of sister cen- 
trosomes, but it is clear that the centrosomes are not un- 
dergoing multiple rounds of duplication in the aphidicolin- 
treated embryos. The centrosome density in embryos fixed 
45 min after buffer injection at nuclear cycle 10 is dramati- 
cally increased (173 centrosomes/6,500 p~m 2) (D, Table II). 
This value demonstrates that the injection and incubation 
techniques do not disrupt centrosome duplication. 

Live Analysis of Centrosome Behavior in 
Aphidicolin-injected Embryos 

We also followed nuclear and centrosome behavior in liv- 
ing embryos injected with aphidicolin. Injection of fluores- 
cently labeled histones enabled us to follow the nuclear di- 
visions (Minden et al., 1989). 

Fig. 4 A depicts a histone injected embryo in anaphase 
of nuclear cycle 10. Immediately after this image was re- 
corded, the embryo was then injected with 100 ~g/ml aphid- 
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Figure 5. Confocal images of a living Drosophila embryo injected with rhodamine-labeled tubulin followed by a second injection of 100 
p,g/ml aphidicolin. A-F are representative images at 5:00, 11:15, 27:20, 39:21, 44:51, and 57:22 after aphidicolin injection, respectively. 
Bar, 10 ixm. 

icolin. B depicts the embryo in interphase of nuclear cycle 
11 directly after injection (4 min 41 s elapsed between the 
images recorded on A and B). Lower power images dem- 
onstrate that the embryo progresses into metaphase nor- 
mally (C and D), but the initiation of anaphase is dis- 
rupted (E). Many of the failed and abnormal anaphase 
products recede into the interior of the embryo (F-H). Be- 
cause so many nuclei are lost from the cortex, nuclear den- 
sity counts are not a reliable indicator of the cortical nu- 
clear cycle. 

Double injections of syncytial embryos with rhodamine- 
labeled tubulin and aphidicolin enabled us to follow in real 
time centrosome behavior in the absence of DNA replica- 
tion. Fig. 5 A depicts a nuclear cycle 10 embryo 5 min after 
injection of the aphidicolin. 28 centrosome-induced asters 
are visible on opposite poles of the nuclei. Over the next 
30 min, the centrosomes lose their association with their nu- 
clei, drop a few microns, and then return to the surface 
(B-E). Almost an hour after the aphidicolin injection, 35 
centrosome-induced asters are visible (F). Examination of 
a series of focal planes indicates that all the asters reside 
on a single plane parallel to the cortex. An equivalent 
analysis on another aphidicolin-injected embryo followed 
for 29 min produced only a slight increase in centrosome 
number (from 40 to 50). These results are in accord with 
the fixed data. 

We also used the fluorescently labeled tubulin to contin- 
uously follow individual centrosomes in three dimensions 
in aphidicolin-injected embryos. Fig. 6 A depicts an em- 
bryo ~ 2  min after a double injection of fluorescently la- 
beled tubulin and 100 ixg/ml aphidicolin. At 7 and 8 min 
postinjection most of the centrosomes have split or dupli- 
cated (B and C). The arrows in C-H follow two pairs of 
centrosomes through 49 min postinjection of aphidicolin. 
These centrosomes do not undergo additional rounds of 
splitting or duplication. Table III  summarizes the data 

from a series of recordings in which individual free cen- 
trosomes were followed. For the occasional free cen- 
trosomes found in control embryos, N60% (12/20) under- 
went two rounds of duplication (or splitting). In the 
aphidicolin-treated embryos, none (0/44) underwent two 
rounds of duplication (or splitting). These results indicate 
that multiple rounds of free centrosome duplication are 
extensively delayed in aphidicolin-treated embryos. 

Discussion 

Previous work demonstrated that in the syncytial Dro- 
sophila embryo, centrosomes unassociated with a nucleus 
maintain a number of activities including the induction of 
pole cell formation and cytoskeletal rearrangements (Free- 
man et al., 1986; Raft  and Glover, 1988; Yasuda et al., 
1991). We have extended these studies by examining the 
behavior of free centrosomes in living embryos. Injection 
of fluorescently labeled tubulin highlights the microtu- 
bule-based asters surrounding each centrosome. We have 
also taken advantage of the observation that the products 
of an abnormal cortical nuclear division sink into the inte- 
rior of the embryo while their centrosomes remain on the 
cortex (Sullivan et al., 1993b). Thus we were able to follow 
the behavior of a few free centrosomes in otherwise nor- 
mally developing syncytial embryos. 

Through live analysis of astral microtubule dynamics, 
our work provides the first direct demonstration of free 
centrosome duplication in Drosophila. In a number of in- 
stances, we were able to follow a single aster through two 
rounds of division to yield four asters. This observation 
may be the result of either two complete rounds of centri- 
ole duplication or one round of centriole duplication fol- 
lowed by a splitting of mother-daughter centrioles (Sluder 
and Rieder, 1985). We could no longer follow the progeny 
of a single aster after it had divided to produce four asters 
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Table IlL Free Centrosome Duplication in Aphidicolin- and 
Control-injected Embryos 

Embryos 
1 3 
2 0 

3 1 
4 0 

5 0 
ToMs 4 

Control injected 

1\ 1\ 1\ 
• • • • • • 

1\ 1 \ / \  
0 0 1 
1 0 3 

1 0 2 

2 0 0 

0 1 5 
4 1 II 

Aphidicolin injected 

i / \  / \  / \  
• " " ix " A ix 

• • • • • • 

Embryos 

1 0 10 0 0 

2 0 9 0 0 
3 0 10 0 0 
4 3 10 0 0 
5 I I 0 0 

Totals 4 40 0 0 

Individual free centrosomes were identified and continuously followed in control and 
in aphidicolin-injected embryos. Those free centrosomes that separated were followed 
for at least another 20 rain in control-injected embryos and another 30 rain in aphidi- 
colin-injected embryos. Each centrosome was classified into one of the division cate- 
gories depicted. While none of the free centrosomes underwent multiple rounds of du- 
plication in the aphidicolin-treated embryos, ,'-,60% of the free centrosomes underwent 
multiple rounds of duplication in the control embryos. 

and therefore do not know whether the free centrosomes 
undergo another round of duplication. 

6 of the 43 free centrosomes observed did not duplicate. 
Analysis of centrosome duplication in sea urchins provides 
an explanation for this variability in free centrosome du- 
plication. Slowing down the sea urchin embryonic division 
cycle with mercaptoethanol results in a tetrapolar mitotic 
spindle with a single centriole at each pole (Sluder and Re- 
ider, 1985). This leads to four cells each with a single cen- 
trosome bearing a single centriole. Centrosome duplica- 
tion does not occur until a daughter centriole is created. In 
Drosophila, the free centrosomes that duplicate may con- 
sist of two centrioles and those that do not may consist of 
only a single centriole. Whether a free centrosome consists 
of one or two centrioles may depend on when in the divi- 
sion cycle it disassociates from the nucleus (Calliani and 
Riparbelli, 1992). Alternatively, some free centrosomes 
may not duplicate because they are unable to respond to 
division signals generated within the embryo. 

During interphase and prophase in the cortical divisions 

of the Drosophila embryo, sister centrosomes migrate in a 
precise manner along the envelope of each nucleus to es- 
tablish the poles of the mitotic spindle. The mechanisms 
generating the force and controlling the orientation of the 
separating centrosomes are not known. Our recordings of 
free centrosomes demonstrate that the separation does not 
depend on the presence of a nnclear envelope. The rate and 
distance of f ree  centrosome separation approximates the 
initial interphase and prophase separation observed for as- 
sociated centrosomes. This is in accord with other studies 
suggesting that separation of the sister centrosomes may 
depend on cytoskeletal elements other than microtabules 
(Catlaini and Riparbelti, 1990; Waters et al., 1993). 

The free centrosomes rarely exhibit the second, higher 
rate of separation observed during anaphase B spindle 
elongation. These results indicate that centrosomes with- 
out a spindle are not competent to undergo a a a l a ~  B 
separation. Overlapping interzone microtubules and forces 
intrinsic to each aster both contribute to anaphase B sepa- 
ration (Nislow et al., 1992; Aist et al., 1993; Waters et at., 
1993). Our results indicate that the integrity of the spindle 
is essential to anaphase B centrosome separation. 

Previous work demonstrated that centrosomes influence 
cortical cytoskeletal dynamics (Raft and Glover, 198~, Sul- 
livan et al., 1990; Yasuda et al., 1991). Our studies suggest 
that the converse is also true; the cortical cytoskeleton in- 
fluences the behavior of the centrosomes. We find that the 
separation of free centrosomes usually occurs in a plane 
parallel to the plasma membrane. This suggests that the 
orientation of centrosome separation is at least partially 
determined by the cortical cytoskeleton. In addition, the 
observation that when abnormal nuclei retreat into the in- 
terior of the embryo their centrosomes remain on the sur- 
face suggests that the centrosomes are intimately associ- 
ated with the cortical cytoskeleton (Sullivan et al., 1990, 
1993b). Callaini and Riparbelli (1992) demonstrated that 
disruption of microfilaments in the syncytial Drosophila 
embryo prevents prophase separation of sister centro- 
somes. Studies in other organisms also demonstrate that 
centrosome positioning and migration rely on an intact ac- 
tin cytoskeleton (Euteneuer and Schliwa, 1985; Schatten 
et al., 1988; Buendia et al., 1990; Palmer et al., 1992). In S. 
cerevisiae, proper spindle pole body positioning and mi- 
gration rely on interactions between the actin cytoskeleton 
and astral microtubules (Palmer et al., 1992). Although no 
proteins have been identified that mediate interactions be- 
tween the centrosomes and the cytoskeleton, likely candi- 
dates exist among the many Drosophila actin- and tubulin- 
binding proteins that localize to the cortex (Kellogg et al., 
1989; Miller et al., 1989). 

In addition to duplication, free centrosomes maintain 
their ability to modulate microtubule dynamics. Fig. 2 
demonstrates that the aster morphology of the free cen- 
trosome undergoes nuclear cycle-dependent variations 
equivalent to those observed in associated centrosomes. 
For instance, during anaphase the length of the microtu- 
bules increases dramatically both in the free and associ- 
ated centrosomes. This suggests that the regulation of as- 
ter morphology is independent of the association of the 
centrosome with the nuclear envelope. However, the free 
centrosomes never form a metaphase spindle, indicating 
that the formation of this structure requires chromatin. 
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Figure 6. Individual centrosomes are followed through multiple focal planes in embryos doubly injected with 100 ~g/ml aphidicolin and 
rhodamine-labeled tubulin. A - H  depict the embryo 2:00, 7:00, 8:00, 14:00, 22:30, 29:45, 41:42, and 48:55 after the injection of aphidicolin, 
respectively. At 7 min postinjection, all of the free centrosomes separate (B). Arrows in C - H  follow two sets of free centrosomes for 
about 49 min postinjection. Bar, 5 Ixm. 
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This observation is in accord with previous studies in Xe- 
nopus demonstrating that during mitosis, the centrosome 
acts as a mitotic organizing center only in the proximity of 
nuclei or chromatin (Karsenti et al., 1984). 

Free centrosomes that do not duplicate nevertheless ex- 
hibit normal astral microtubule dynamics. Therefore, the 
cycle of astral microtubule dynamics is independent of the 
centrosome duplication cycle. Free centrosomes usually 
duplicate and separate in synchrony with neighboring nu- 
clear-associated centrosomes. In addition, the modulation 
of microtubule dynamics in free centrosomes occurs syn- 
chronously with that of normal centrosomes. Free cen- 
trosomes appear capable of receiving and responding ap- 
propriately to the embryonic division signals. This 
conclusion is in accord with studies demonstrating that key 
cell cycle regulatory proteins directly modulate the phos- 
phorylation of centrosomal proteins (Kuriyama, 1989; 
Messinger and Albertini, 1991; Ohta et al., 1993; Rose et 
al., 1993). In the Drosophila embryo, as well as cell cul- 
ture, cyclin B localizes to the centrosome, also suggesting 
that it is interacting directly with this organelle (Bailly et 
al., 1992; Debec and Montmory, 1992; Maldonado-Codina 
and Glover, 1992). 

Aphidicolin, an inhibitor of DNA synthesis, was used to 
determine whether the centrosome cycle depends on a 
proper nuclear cycle. The live recordings demonstrate that 
after one round of centrosome duplication or splitting in 
aphidicolin-treated embryos, subsequent rounds are ex- 
tensively delayed. This is most dramatically illustrated in 
the aphidicolin-treated embryo shown in Fig. 6. The ma- 
jority of free centrosomes split, but they do not undergo a 
second round of division during the 49 min in which they 
were observed. That is, aphidicolin significantly delays the 
centrosome cycle. This conclusion is confirmed by fixed 
analysis of centrosome behavior in aphidicolin-injected em- 
bryos. 

Previous studies indicated that multiple rounds of centro- 
some duplication occur in the absence of DNA replication 
(Raft and Glover, 1988). These results are not incompati- 
ble with our findings. Raft and Glover, using fixed analy- 
sis, examined embryos 45 and 90 min after injection. In 
our live analysis, it was not possible to follow aphidicolin 
injected embryos for greater than 50 min because of dete- 
riorating image quality. Free centrosomes in aphidicolin- 
treated embryos may be duplicating at such a dramatically 
reduced rate that additional rounds of duplication may not 
be observed until well after our 50-min time point. In fact, 
when the receding of abnormal nuclei from the cortex is 
taken into account, results from the 45-min time point in 
the Raft and Glover analysis are in accord with our results 
of a single round of centrosome splitting. 

A maternal effect mutation has been identified in which 
division stops at nuclear cycle 12. In addition, incorpora- 
tion of labeled histones specifically does not occur once 
the embryos reach nuclear cycle 12. The majority of nuclei 
recede into the interior while their centrosomes remain on 
the cortex. Live analysis demonstrates that these cen- 
trosomes do not undergo multiple rounds of duplication 
(Theurkauf, W., personal communication). 

The Drosophila maternal-effect mutations gnu, pan-gu, 
and plutonium disrupt the initial embryonic divisions (Free- 
man et al., 1986; Shamanski and Orr-Weaver, 1991). In 

embryos derived from these mutations, the DNA contin- 
ues to replicate, but nuclear division does not occur and 
they arrest with a few large polyploid nuclei. In spite of nu- 
clear division failure, in each of these mutations the cen- 
trosomes continue duplicating. In light of our findings that 
disruption of the later cortical divisions with aphidicolin 
greatly reduces the rate of centrosome duplication, it 
would be interesting to determine the rate of centrosome 
duplication in these mutant embryos. Studies by Dasso 
and Newport (1990) demonstrate that as nuclear density 
increases during the initial divisions of Xenopus embryos, 
dependency relationships are added to the division cycle. 
It may be that in the Drosophila embryo, centrosome du- 
plication becomes dependent on proper nuclear division 
only during the later syncytial cycles. Alternatively, cen- 
trosome duplication may be strictly dependent on a proper 
S-phase rather than a proper nuclear cycle. 

Many cell cycle dependency relationships are relaxed 
during the initial divisions in Xenopus. Mitosis is not de- 
pendent on complete DNA replication or undamaged DNA 
and the initiation of anaphase is not dependent on proper 
spindle assembly (Hara et al., 1980; Kimmelman et al., 
1987). In addition, centrosome duplication occurs in the 
absence of protein synthesis (Gard et al., 1990). In con- 
trast, the initial syncytial divisions of Drosophila maintain 
a number of dependency relationships; disrupting the spin- 
dle or chromosome structure delays initiation of anaphase 
(Zalokar and Erk, 1976; Sullivan et al., 1993b). It is likely 
that feedback mechanisms operating during the syncytial 
divisions are responsible for these dependency relation- 
ships. The studies presented here demonstrate another de- 
pendency relationship that is also likely to be a conse- 
quence of feedback controls operating during the cortical 
syncytial divisions: that of centrosome duplication on 
proper DNA synthesis. In contrast to other embryonic sys- 
tems, the early Drosophila embryo may rely heavily on 
feedback mechanisms to maintain the integrity of the syn- 
cytial divisions. 

The Rb188 anti-centrosomal antibody was a generous gift of W. Whitfield. 
We thank W. Theurkauf and D.R. Kellogg for their critical reading of the 
manuscript. We are grateful to W. Theurkauf for kindly sharing his un- 
published results. We also thank Pamela Wesley for helping with the in- 
jections. 

This work was supported by grants to W. Sullivan from the National In- 
stitutes of Health (R29 GM46409-01), the American Cancer Society 
(JFRA-366), and the March of Dimes (5-FY92-1186). 

Received for publication 7 March 1996 and in revised form 8 April 1996. 

References 

Aist, J.R., H. Liang, and M.W. Berns. 1993. Astral and spindle forces in PtK2 
cells during anaphase B. A laser microbeam study. J. Cell ScL 104:1207-1216. 

Bailly, E., J. Pines, T. Hunter, and M. Bomens. 1992. Cytoplasmic accumulation 
of cyclin B1 in human cells: association with a detergent resistant compart- 
ment and the centrosome. J. Cell Sci. 101:529-545. 

Buendia, B., M. Bre, G. Griffths, and E. Karsenti. 1990. Cytoskeletal control of 
centrioles movement during the establishment of polarity in Madin-Darby 
canine kidney cells. Z Cell Biol. 110:1123-1135. 

CaUaini, G., and M.G. RiparbeUi. 1990. Centriole and centrosome cycle in the 
early Drosophila embryo. J. Cell ScL 97:539-543. 

Callaini, G., and M.G. Riparbelli. 1992. Involvement of microtubules and mi- 
crofilaments in centrosome dynamics during the syncytial mitosis of the 
early Drosophila embryo. Exp. Cell Res. 201:241-244. 

Dasso, M., and J.W. Newport. 1990. Completion of DNA replication is moni- 
tored by a feedback system that controls the initiation of mitosis in vitro: 
studies in Xenopus. Cell. 61:811~823. 

The Journal of Cell Biology, Volume 134, 1996 114 



Debec, A., and C. Montmory. 1992. Cyclin B is associated with centrosomes in 
Drosophila mitotic ceils. Biol. Cell (Paris). 75:121-126. 

Euteneuer, U., and M. Schliwa. 1985. Evidence for an involvement of actin in 
the positioning and motility of centrosomes. J. Cell Biol. 101:96-103. 

Foe, V.E., and B.M. Alberts. 1983. Studies of nuclear and cytoplasmic behavior 
during the five mitotic cycles that precede gastrulation in Drosophila em- 
bryogenesis. J. Cell Sci. 61:31-70. 

Foe, V.E., G.M. Odell, and B.A. Edgar. 1993. Mitosis and morphogenesis in the 
Drosophila embryo: point and counterpoint. In The Development of Dro- 
sophila. M. Bate and A.M. Arias, editors. Cold Spring Harbor Laboratory. 
Cold Spring Harbor, NY. 149-300. 

Fogarty, P., R.F. Kalpin, and W. Sullivan. 1994. The Drosophila maternal-effect 
mutation grapes causes a metaphase arrest at nuclear cycle 13. Development 
(Cam&). 120:2131-2142. 

Freeman, M., and D.M. Glover. 1987. The gnu mutation of Drosophila causes 
inappropriate DNA synthesis in unfertilized and fertilized eggs. Genes & 
Dev. 1: 924-930. 

Freeman, M., C. Nusslein -Volhard, and D. M. Glover. 1986. The dissociation 
of nuclear and centrosomal division in gnu, a mutation causing giant nuclei 
in Drosophila. Cell. 46:457-468. 

Gard, D.L., S. Hafezi, T. Zhang, and S.S. Doxsey. 1990. Centrosome duplica- 
tion continues in cycloheximide-treated Xenopus blastulae in the absence of 
a detectable cell cycle. J. Cell Biol. 110:2033-2042. 

Gonzalez, C., R.D.C. Saunders, J. Casal, I. Molina, M. Carmena, P. Ripoll, and 
D. Glover. 1990. Mutations at the asp locus of Drosophila lead to multiple 
free centrosomes in syncytial embryos, but restrict centrosome duplication 
in larval neuroblasts. J. Cell Sci. 96:605-616. 

Hara, K., P. Tydeman, and M. Kirsehner. 1980. A cytoplasmic clock with the 
same period as the division cycle in Xenopus eggs. Proc. Natl. Aead. Sci. 
USA. 77:462-466. 

Hartwell, L.H., and T.A. Weinert. 1989. Checkpoints: controls that ensure the 
order of cell cycle events. Science (Wash. DC). 246:629-634. 

Kalt, A., and M. Schliwa. 1993. Molecular components of the centrosome. 
Trends Cell Biol. 3:118-128. 

Karr, T.L., and B.M. Alberts. 1986. Organization of the cytoskeleton in early 
Drosophila embryos. J. Cell Biol. 102:1494-1509. 

Karsenti, E., J. Newport, R. Hubble, and M. Kirsehner. 1984. Interconversion 
of metaphase and interphase microtubule arrays as studied by the injection 
of centrosomes and nuclei into Xenopus eggs. J. Cell Biol. 98:1730-1745. 

Kellogg, D.R., T.J. Mitchison, and B.M. Alberts. 1988. Behavior of microtu- 
bules and actin filaments in living Drosophila embryos. Development 
(Camb.). 103:675-686. 

Kellogg, D.R., C.M. Fields, and B.M. Alberts. 1989. Identification of microtu- 
bule-associated proteins in the centrosome, spindle, and kinetochore of the 
early Drosophila embryo. J. Cell Biol. 109:2977-2991. 

Kellogg, D.R., M. Moritz, and B.M. Alberts. 1994. The centrosome and cellular 
organization. Annu. Rev. Biochem. 63:639-674. 

Kimmelman, D., M. Kirschner, and T. Scherson. 1987. The events of the mid- 
blastula transition in Xenopus are regulated by changes in the cell cycle. Cell. 
48:399-417. 

Kuriyama, R. 1989. 225-Kilodalton phosphoprotein associated with mitotic cen- 
trosomes in sea urchin eggs. Cell MotiL Cytoskeleton. 12:90-103. 

Lindsley, D.L., and E H. Grell. 1968. Genetic variations of Drosophila melano- 
gaster. Carnegie Inst. Washington. Publ. 627. 

Maldonado-Codina, G., and D.M. Glover. 1992. Cyclins A and B associate with 
chromatin and the polar regions of spindles, respectively, and do not un- 
dergo complete degradation at anaphase in syncytial Drosophila embryos. J. 
Cell Biol. 116:967-976. 

Messinger, S.M., and D.F. Albertini. 1991. Centrosome and microtubule dy- 
namics during meiotic progression in the mouse oocyte. J. Cell Sci. 100:289-298. 

Miller, K., C.M. Field, and B.M. Alberts. 1989. Actin binding proteins from 
Drosophila embryos: a complex network of interacting proteins detected by 
F-actin affinity chromatography. J. Cell Biol. 109:2963-2975. 

Minden, J.S., D.A. Agard, J.W. Sedat, and B.M. Alberts. 1989. Direct cell lin- 
eage analysis in Drosophila melanogaster by time lapse three dimensional 
optical microscopy of living embryos. J. Cell Biol. 109:505-516. 

Mitchison, T.J., and J.W. Sedat. 1983. Localization of antigenic determinants in 
whole Drosophila embryos. Dev. Biol. 99:261-264. 

Moritz, M., M.B. Braunfeld, J.W. Sedat, B. Alberts, and D.A. Agard. 1995. Mi- 
crotubule nucleation by ~/-tubulin-containing rings in the centrosome. Na- 
ture (Lond.). 378:6384540. 

Nagano, H.A., S. Hira, K. Okana, and S. Ikegami. 1981. A chromosomal cleav- 
age of fertilized starfish eggs in the presence of aphidicolin. Dev. Biol. 85: 
409-415. 

Nislow, C., V. Lombillo, R. Kuriyama, and J.R. Mclntosh. 1992. A plus-end di- 
rected motor enzyme that moves antiparallel microtubules in vitro localizes 
to the interzone of mitotic spindles. Nature (Lond.). 359:543-547. 

Oakley, B.R., C.E. Oakely, Y. Yoon, and M.K. Jung. 1990. "/-tubulin is a com- 
ponent of the spindle pole body that is essential for microtubule function in 

Aspergillas nidulans. Cell. 61:1289-1301. 
Ohta, K., N. Shiina, E. Okumura, S. Hisanaga, T. Kishimoto, S. Endo, Y. Go- 

toh, E. Nishida, and H. Sakai. 1993. Microtubule nucleating activity of cen- 
trosomes in cell-free extracts from Xenopus eggs: involvement of phosphor- 
ylation and accumulation of pericentriolar material. J. Cell Sci. 104:125-137. 

Palmer, R.E., D.S. Sullivan, T. Hukkaker, and D. Koshland. 1992. Role of astral 
microtubules and actin in spindle orientation and migration in the budding 
yeast Saccharomyces cerevisiae. J. Cell Biol. 119:583-593. 

Rabinowitz, M. 1941. Studies on the cytology and early embryology of the egg 
of Drosophila melanogaster. J. Morphol. 69:1-49. 

Raft, J.W., and D.M. Glover. 1988. Nuclear and cytoplasmic mitotic cycles con- 
tinue in Drosophila embryos in which DNA synthesis is inhibited with 
aphidicolin. J. Cell Biol. 107:2009-2019. 

Raft, J.W., and D.M. Glover. 1989. Centrosomes, not nuclei, initiate pole cell 
formation in Drosophila embryos. Cell. 57:611-619. 

Rose, M.D., S. Biggins, and L.L. Satterwhite. 1993. Unraveling the tangled web 
at the microtubule-organizing center. Curr. Opin. Cell Biol. 5:105-115. 

Schatten, H., M. Walter, H. Biessmann, and G. Schatten. 1988. Microtubules 
are required for centrosome expansion and positioning while microfilaments 
are required for centrosome separation in sea urchin eggs during fertilization 
and mitosis. Cell Motil. Cytoskeleton. 11:248-259. 

Shamanski, F.L., and T.L. Orr-Weaver. 1991. The Drosophila plutonium and 
pan gu genes regulate entry into S phase at fertilization. Cell. 66:1289-1300. 

Sluder, G., and C.L. Rieder. 1985. Centriole number and the reproductive ca- 
pacity of spindle poles. J. Cell Biol. 100:887-896. 

Sluder, G., F.J. Miller, and C. Rieder. 1986. The reproduction of centrosomes: 
nuclear versus cytoplasmic controls. Z Cell Biol. 103:1873-1881. 

Sluder, G., and K. Lewis. 1987. Relationship between nuclear DNA synthesis 
and centrosome reproduction in sea urchin eggs. J. Exp. ZooL 244:89-100. 

Sluder, G., F.J. Miller, R. Cole, and C.L. Rieder. 1990. Protein synthesis and the 
cell cycle: centrosome reproduction in sea urchin eggs is not under transla- 
tional control. J. Cell Biol. 110:2025-2032. 

Sonnenblick, B.P. 1950. The early embryology of Drosophila melanogaster In 
The Biology of Drosophila. M. Demerec, editor. John Wiley and Sons, New 
York. Reprinted 1965, New York and London: Hafner. 62-167. 

Stafstrom, J.P., and L.A. Staehelin. 1984. Dynamics of the nuclear envelope and 
pore complexes during mitosis in the Drosophila embryo. Eur. Z Cell Biol. 
34:179-189. 

Sullivan, W., J.M. Minden, and B.M. Alberts. 1990. daughterless-abo-like, a 
Drosophila maternal-effect mutation that exhibits abnormal centrosome 
separation during the late blastoderm divisions. Development (Camb.). 110: 
311-323. 

Sullivan, W., P. Fogarty, and W. Theurkauf. 1993a. Mutations affecting the cy- 
toskeletal organization of syncytial Drosophila embryos. Development 
(Camb.). 118:1245-1254. 

Sullivan, W., D.R. Daily, P. Fogarty, K. Yook, and S. Pimpinelli. 1993b. Delays 
in anaphase initiation occur in individual nuclei of the syncytial Drosophila 
embryo. Mol. Biol. Cell 4:885496. 

Theurkauf, W. 1992. Behavior of structurally divergent u-tubulin isotypes dur- 
ing Drosophila embryogenesis: evidence for post-translational regulation of 
isotype abundance. Dev. Biol. 154:204-217. 

Turner, R.R., and A.P. Mahowald. 1976. Scanning electron microscopy of 
Drosophila melanogaster embryogenesis. I. The structure of the egg enve- 
lope and the formation of the cellular blastoderm. Dev. Biol. 50:95-108. 

Vessey, K., R. Ludwiczak, A. Briot, and E. Underwood. 1991. abnormal chro- 
matin (abc), a maternal-effect locus in Drosophila melanogaster. .L Cell Sci. 
98:233-243. 

Warn, R.M., and A. Warn. 1986. Microtubule arrays present during the syncy- 
tial and cellular blastoderm stages of the early Drosophila embryo. Exp. Cell 
Res. 163:201-210. 

Warn, R.M., L. Flegg, and A. Warn. 1987. An investigation of microtubule or- 
ganization and function in living Drosophila embryos by injection of a fluo- 
rescently labeled antibody against tyrosinated ~t-tubulin. J. Cell Biol. 105: 
1721-1730. 

Waters, J.C., R.W. Cole, and C.L. Rieder. 1993. The force-producing mecha- 
nism for centrosome separation during spindle formation in vertebrates is in- 
trinsic to each aster. J. Cell Biol. 122:361-372. 

Whitfield W.G.F., S.E. Milar, H. Saumweber, M. Frasch, and D.M. Glover. 
1988. Cloning of a gene encoding an antigen associated with the centrosome 
in Drosophila. J. Cell Sci. 89:467-480. 

Yasuda, G.K., J. Baker, and G. Schubiger. 1991. Independent roles of cen- 
trosomes and DNA in organizing the Drosophila cytoskeleton. Development 
(Camb.). 111:379-391. 

Zalokar, M., and I. Erk. 1976. Division and migration of nuclei during early em- 
bryogenesis of Drosophila melanogaster. Journal de Microscopie et de Biolo- 
gie Cellulaire. 25:97-106. 

Zheng, Y., M. Wong, B. Alberts, and T. Mitchison. 1995. Nucleation of micro- 
tubule assembly by a ~,-tubulin-containing ring complex. Nature (Lond.). 
378:578-583. 

Debec et al. Free Centrosomes in Drosophila Embryos 115 


