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Abstract. Our understanding of lympho-hematopoietic 
microenvironments is incomplete, and a new cloning 
strategy was developed to identify molecules that bind 
to B lineage lymphocyte precursors. A cell sorting pro- 
cedure was used for initial enrichment of cDNAs from 
stromal cell mRNA that contained signal sequences 
and were therefore likely to encode transmembrane or 
secreted proteins. A second step involved expression of 
the library as soluble Ig fusion proteins. Finally, pools 
representing these proteins were screened for the abil- 
ity to recognize pre-B cells. This approach resulted in 
the cloning of biglycan, syndecan 4, collagen type I, 
clusterin, matrix glycoprotein scl, osteonectin, and one 
unknown molecule (designated SIM). The full-length 
cDNA of SIM revealed that it is a type I transmem- 
brane protein, and its intraceUular domain has weak 

homology with myosin heavy chain and related pro- 
teins. Staining of established cell lines and freshly iso- 
lated hematopoietic cells with the Ig fusion proteins re- 
vealed distinct patterns of reactivity and differential 
dependence on divalent cations. Biglycan-, scl-, and 
SIM-Ig fusion proteins selectively increased interleu- 
kin 7-dependent proliferation of pre-B cells. Overex- 
pression of the entire SIM protein affected the mor- 
phology of 293T cells, while expression of just the 
extracellular portion was without effect. Thus, a series 
of stromal cell surface molecules has been identified 
that interact with blood cell precursors. Three of them 
promoted the survival and/or proliferation of pre-B 
cells in culture, and all merit further study in relation to 
lympho-hematopoiesis. 

LOOD cell formation is highly dependent on complex 
interactions between stromal and hematopoietic 
cells (23). Multiple cell types transiently interact 

within a confined space in bone marrow to deliver and to 
receive critical signals for proliferation and differentiation. 
In addition, the movement of cells within, and egress from, 
this microenvironment is carefully linked to their matura- 
tion (1). It is important to identify cell surface molecules 
that mediate these interactions. Information already avail- 
able suggests that several major categories of proteins are 
involved. 

The extracellular matrix in bone marrow is not merely 
an inert framework; it also mediates specialized functions 
(33, 62). For example, it can bind many growth factors and 
cell surface glycoproteins. Characterization of substances 
made by stromal cells revealed that the matrix includes 
collagens, laminin, fibronectin, and a variety of proteogly- 
can species. Laminin is a major protein in basal lamina 
that can bind heparan sulfate, type IV collagen, and also 
cell surface receptor proteins. Fibronectin promotes mi- 
gration and adhesion of many cells. Proteoglycans can at- 
tach to cell surfaces where they facilitate cell-matrix inter- 
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actions. Hyaluronan forms viscous and hydrated gels, and 
in several systems, facilitates cell-cell adhesion and cell 
migration. 

The large integrin superfamily of adhesion molecules in- 
cludes many potential ligands for matrix molecules (15). 
Particular integrins on lympho-hematopoietic progenitors 
and stromal cells play an important role in hematopoiesis 
(23). Pre-B cells could be displaced from the adherent 
layer of long-term bone marrow cultures by addition of 
antibodies to a4 or (vascular cell adhesion molecule 1 
(VCAM-1), and these reagents completely blocked lym- 
phopoiesis in long-term bone marrow cultures (43, 44). 
While ligation of integrins can deliver signals for survival, 
growth, and differentiation, interactions between very late 
antigen (VLA) a 5 and fibronectin cause apoptosis in cer- 
tain hematopoietic cell lines (58). 

Multiple isoforms of CD44 constitute another family of 
cell adhesion molecules, and one of their ligands is hyalu- 
ronan (32). Antibodies to CD44 completely blocked the 
production of lymphoid and myeloid cells in long-term 
bone marrow cultures (42). Although most blood cells ex- 
press CD44, only subpopulations actually use it to recog- 

1. Abbreviat ions used in this paper. IL, interleukin; PE, phycoerythrin; 
RT, reverse transcriptase; VLA, very late antigen. 
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nize hyaluronan, and this function is controlled in part by 
glycosylation of CD44 (18, 30). Interactions between 
CD44 and hyaluronan are important in extracellular ma- 
trix formation and for cell migration (26, 62). 

Regulatory cytokines in the bone marrow microenviron- 
ment represent a final category and are essential for repli- 
cation and differentiation of blood cell precursors (22, 33, 62). 
These factors are typically made in extremely small quan- 
tities, and some of them, such as interleukin (IL) 7 (IL7), 
IL3, and granulocyte-macrophage colony stimulating fac- 
tor (G/M-CSF), are capable of attachment to the extracel- 
lular matrix. Certain other cytokines, such as macrophage 
colony stimulating factor and stem cell factor, are synthe- 
sized as transmembrane, as well as soluble, forms. 

A number of experimental approaches have been used 
to implicate matrix molecules, cell adhesion molecules, 
and cytokines in blood cell formation, and there are ad- 
vantages and limitations to each (23). While mAbs have 
been extensively and effectively exploited, highly con- 
served molecules may not be immunogenic. Furthermore, 
it can be difficult to prepare antibodies that block, and 
thus define, important functions. An alternative approach 
is suggested by the fact that a signal sequence is present 
during biosynthesis of most extracellular proteins, includ- 
ing type I transmembrane proteins and cytokines. Signal 
sequence trap methods exploit this fact to clone genes for 
such proteins (55, 59). 

We established a new cloning strategy for identifying ei- 
ther cell surface or soluble molecules with the ability to 
recognize hematopoietic cells. A previously described sig- 
nal sequence trap method (59) was modified and used for 
initial enrichment of cDNAs encoding transmembrane 
and secreted proteins. Pools from this enriched library 
were then expressed as soluble Ig fusion proteins, which 
were subsequently screened for binding to pre-B cells. 
This method allowed us to identify six extracellular matrix 
components and one previously unknown type I cell sur- 
face molecule. Furthermore, initial experiments suggest 
that some of these proteins might function to regulate 
blood cell formation. 

Materials and Methods 

Cells 
BCB8, BCB9, and BCB10 pre-B cell clones were established from nonad- 
herent cells of Whitlock-Witte-type long-term cultures that had been pre- 
pared from BALB/c bone marrow cells. These lymphocytes were main- 
tained in McCoy's 5A medium (GIBCO BRL, Gaithersburg, MD) 
supplemented with 5% FCS (GIBCO BRL) and 5 x 10 -5 M 2-mercapto- 
ethanol in the presence of 1 ng/ml IL7 (R&D Systems, Minneapolis, MN) 
and 10 ng/ml stem cell factor (Amgen, Thousand Oaks, CA). Cloned OP42 
stromal cells were established using adherent spleen cells from osteope- 
trotic OP/OP B6C3fe mice (56). They lack the capacity to synthesize mac- 
rophage colony stimulating factor (M-CSF) and efficiently support the 
growth of B lymphocyte precursors when exogenous IL7 is added. These 
cells were maintained in DME supplemented with 10% FCS and 5 × 10 -s 
M 2-mercaptoethanol. Lymphoma cell lines (707_/3, WEHI231, AKR1, 
EL4), a B cell hybridoma (BM2), an erythroleukemia cell line (GM86), 
myelo-macrophage cell lines (WEHI3, P388D1), stromal cell lines (BMS2, 
ST2), fibroblast cell lines (NIH3T3, L), a melanoma cell line (B16F10), 
and a neuroblastoma cell line (N2A) were maintained as previously de- 
scribed (43). COS, an SV-40--transformed African green monkey kidney 
cell line, and 293T, a human renal carcinoma cell line transfected with 
large T antigen, were maintained in DME supplemented with 10% FCS. 

Plasmids 
To make NotI and Xhol sites, two oligonucleotides, 5'-CTCTAGATCT- 
GCGGCCGCTGACTAACTGACCTCGAGG and 5'-GATCCCTCG- 
AGGTCAGTFAGTCAGCGGCCGCAGATCTAGAGGTAG, were an- 
nealed and ligated into KpnI and BamHI sites of pBluescript KS to yield 
pBSKNotI/XhoI. To make the HPCA epitope tag sequence, two oligonu- 
cleotides, 5'-TCGAGAGAAGATCAGGTAGATCCGCGGTTAATCG- 
ATGGTAAGATI 'GAAGGAAGGG and 5'-AATTCCCTTCCI'TCA- 
ATCTTACCATCGATrAACCGCGGATCTACCTGATCITCTC, were 
annealed and ligated into XhoI and EcoRl sites of pBluescript KS (HPC4/ 
pBSK) (50). A plasmid containing the transmembrane domain of tissue 
factor (pJH93; donated by Dr. J.H. Morrissey, Oklahoma Medical Re- 
search Foundation, Oklahoma City, OK) was digested with EcoRI and 
BamHI before ligation into HPC4/pBSK (HPC4-TF/pBSK). HPC4-TF/ 
pBSK was used as a template for PCR by two primers, 5'- CGCGGATC- 
CGGAAGATCAGGTAGATCCGCGG and 5'-CGCAGATCTAAGC- 
TTACTTGTGTAGAGA. This PCR product was digested with BamHI 
and Bglll and ligated into the BamHI site of pBSKNotl/Xhol (HPC4-TF/ 
pBSKNotI/XhoI). The pEFBOS vector (45) (a kind gift from Dr. S. Na- 
gata, Osaka Bioscience Institute, Osaka, Japan) was modified by site-di- 
rected mutagenesis to remove the XhoI site at 3524, yielding pEFBOSX. 
This plasmid was then used as a recipient for the insert sequence of HPC4- 
TF/pBSKNotl/XhoI by using an Xbal site (HPC4-TF/pEFBOSX). A 
cDNA of CH2 and CH3 domains of human IgG1 was digested at BamHI 
and BgllI sites of the CD8-IgG1 vector (2) (generously provided by Dr. A. 
Aruffo, Bristol-Meyers Squibb) and ligated into a BamHI site of pB- 
SKNotI/XhoI (Ig/pBSKNotI/XhoI). The insert sequence of Ig/pBSKNotI/ 
XhoI was cut and ligated into the pEFBOSX vector by using an XbaI site 
(Ig/pEFBOSX). All constructs were confirmed by sequencing. The HPC4- 
TF/pEFBOSX vector was used for the signal sequence trap method. The 
Ig/pEFBOSX vector was used for producing Ig fusion proteins. 

Stromal Cell cDNA Library 
A cDNA library was made by converting poly (A) ÷ RNA (5 p,g) of OP42 
stromal cells to cDNA with the use of random primers and SuperScript ® 
reverse transcriptase (GIBCO BRL). A dC tail was then added to the cDNAs 
at the 3' end with terminal deoxynucleotidyl transferase (GIBCO BRL). 
The second strands were synthesized by priming with 5' GGTACCGCG- 
GCCGCTGACTAACTGAC-(dG)17, which contained a NotI linker and 
oligo dG. After sonication, DNA fragments >250 bp were isolated by 
electrophoresis in a 1% agarose gel. After blunting, the XhoI adaptors 5'- 
CCGCCTCGAGGATATCAAGCITGTAC and 3'-GGCGGAGCTCCT- 
ATAGTTCGAACATGGAG were ligated. The fragments were then am- 
plified by PCR with two primers, 5'-GGTACCGCGGCCGCTGACTAA- 
CTGACG and 5'-GAGGTACAAGCTTGATATCCTCGAGGCGG. 15 
cycles of PCR reaction (94"C for 1 min, 55°C for 2 min, and 72°C for 3 
min) were done with a thermal cycler (Perkin-Elmer/Cetus, Norwalk, 
CT). Amplified DNA fragments were digested with NotI and XhoI and li- 
gated into NotI and XhoI sites of the HPC4-TF/pEFBOSX vector. 

Enrichment of cDNAs Carrying Signal Sequences 
A positive control CD44 (5') fragment including a signal sequence was ob- 
tained by NotI and XhoI digestion of PCR samples of the pMCD44/ 
TCFMo plasmid (31) template with two primers, 5'-GGGGCGGCCG- 
CACGCCATGGACAAG'IqT and 5'-CGCCTCGAGTC'TGGAATCT- 
GAGGTCTC. A negative control BCL2 (5') fragment that does not have 
a signal sequence was obtained by NotI and XhoI digestion of PCR sam- 
ples of the pKSBcl2 plasmid template with two primers, 5'-GGGGCGG- 
CCGCACTCGGGACTTGAAGTGCCATI'GG and 5'-GGGCTCGAG- 
GGAGACTGCCTGGCAGCCATCTCC. Both fragments were ligated 
into NotI and XhoI sites of the HPC4-TF/pEFBOSX vector. 

The cDNA library contained in the HPC4-TF/pEFBOSX vector was 
transfected to Escherichia coli, and plasmid DNAs from all (~3 × 105) 
colonies were prepared. Pooled plasmid DNAs (20 ~g) were then trans- 
fected into 5 × 106 COS cells by electroporation (250 V, 500 ~F) using a 
gene pulser (Bio Rad Laboratories, Hercules, CA). The COS cells were 
stained with the HPC4 antibody and fluorescein-conjugated goat anti- 
mouse Ig 2 d after transfection, and cells that expressed the HPC4 epitope 
tag on their surface were collected by cell sorting. The plasmid DNAs 
were recovered from sorted cells by Hirt's method (14). For enrichment of 
cDNAs carrying signal sequences, this process was repeated three times. 

The Journal of Cell Biology, Volume 134, 1996 772 



Cloning Based on Binding of Expressed Proteins to 
Hematopoietic Cells 
Plasmids from the signal sequence-enriched library were digested with 
Notl and XhoI, and then DNA fragments were isolated by gel electro- 
phoresis and ligated into NotI and XhoI sites of Ig/pEFBOSX vector. Af- 
ter transformation of E. coli, 900 individual colonies were picked, and 
pools containing 10 colonies each were prepared. Plasmid DNAs from 
each pool were transfected into 293T cells with a calcium phosphate 
method. 4 d after the transfection, supernatants were harvested from each 
sample. BCB10 cells were then stained with these supernatants and fluo- 
rescein-conjugated goat ant i -human IgG (Southern Biotechnology Asso- 
ciates, Birmingham, AL). After identification of a positive pool, each clone 
of that pool was rescreened. The nucleotide sequence of each cloned in- 
sert was determined by using a Sequenase version 2.0 DNA sequencing 
kit (United States Biochemical Corp., Cleveland, OH). Nucleofide data- 
base searching was then performed with FASTA and BLAST from the 
GCG computer program (Genetics Computer Group, Madison, WI). 

Cloning of Full-Length 4-9 cDNA 
To perform PCR, sense and antisense primers, 5 ' -GGTGTCTACAG- 
CAGGCGCATI 'GTTG and 5 ' -GGTCITCCCITAGGAACTCATCAC,  
were designed from the 5' portion eDNA insert sequence of 4-9. As BMS2 
stromal cells also express this gene, a eDNA library was made in the pEF- 
BOS vector from m R N A  of BMS2 cells using oligo dT and a TimeSaver 
cDNA synthesis kit (Pharmacia, Uppsala, Sweden). Suspensions of pools 
containing several thousand colonies were subjected to PCR reactions 
with the above two primers. After 35 cycles of PCR reaction (94°C for 1 
rain, 55°C for 2 min, and 72°C for 3 min), PCR samples were separated in 
1.5% agarose gels and screened with a specific amplified band (327 bp). A 
positive pool was divided into progressively smaller pools and rescreened 
until a single clone was isolated. The insert of a single clone was subcloned 
into pBluescript, and the nucleotide sequence was determined using an 
automated DNA sequencer (Applied Biosystems, Foster City, CA). 

Flow Cytometry Analysis 
Antibody incubations and washing steps were perfomed at room tempera- 
ture in HBSS (GIBCO BRL) containing 1% BSA (Sigma Chemical Co., 
St. Louis, MO) and 0.1% sodium azide, or in 10 mM Tris-HC1 saline con- 
taining 1% bovine albumin, 0.1% sodium azide, and 5 mM MnCI 2. Cells 
were analyzed with a FACScan ® flow eytometer (Becton Dickinson & 
Co., Mountain View, CA). Potential binding to Fc-,/II and Fe,/III receptors 
was blocked in some experiments by addition of the 2AG2 mAb (61). As 
another means of minimizing possible recognition of Fc receptors, a mu- 
tated CH2 + CH3 cassette of human IgG1 (37), obtained from Dr. Peter 
Linsley (Bristol-Myers Squibb), was used for expression of soluble Ig fu- 
sion proteins in some experiments. Supernatants of cultures of 293T cells 
transfected with the Ig/pEFBOSX vector, as well as soluble CD44-Ig, 
CD73-Ig, and CD7-Ig fusion proteins, were used as negative controls. 
Antibodies used in this study were as follows: phycoerythrin (PE)-conju- 
gated anti-mouse CD45RA from Pharrningen (San Diego, CA); FITC- 
conjugated anti-mouse Mac1 from Boehringer Mannheim Biochemicals 
(Indianapolis, IN); PE-conjugated anti-mouse IgM and FITC- or PE-con- 
jugated goat F(ab')2 ant i-human IgG (mouse adsorbed); and FITC-conju- 
gated goat ant i -human IgG from Southern Biotechnology Associates. 

Reverse Transcriptase (RT)-PCR 
Total RNAs were isolated by the method of Chomzynski and Sacchi (5). 
Total RNA (5 p~g) was reverse transcribed to cDNA in a total reaction 
volume of 20 ~l comprised of Moloney leukemia virus reverse tran- 
scriptase (Promega, Madison, WI), oligo dT (0.5 p~g), 0.1 M DTT, 10 mM 
each dNTP, and 1× RT buffer. The RT mixes were incubated at 39°C for 
2 h followed by 10 min at 90°C. To perform PCR reactions, 2 p~l of the 
above RT mixtures were added to PCR buffer containing MgC12 (1.5 raM), 
Taq polymerase (1 U; Promega), dNTP (2 mM each), and relevant sense 
and antisense primers to a total volume of 100 Ixl. PCR reaction mixtures 
were amplified by using 30 cycles under the following conditions: 94°C for 
I min, 55°C for 2 min, and 72°C for 3 min in a thermal cycler. PCR samples 
(15 p.l) were electrophoresed in 1.5% agarose gels containing 0.5 ixg/ml 
ethidium bromide. Products were visualized under UV illumination. The 
oligonucleotide primers used for these reactions were as follows: 

Biglycan 

Syndecan 4 

Collagen I 

Clusterin 

Osteonectin 

scl 

4-9 

I~-Actin 

Sense :TACCTFCAGTGCCATGTGTCCT 
Ant isense :CTGGTTCAAAGCTGTTCTCC 
Sense:CCGCTGCTGCTGCTGCTCCTCGGA 
Ant isense :GCA'ITCTCAGGGATCTG GTTATCC 
Sense:GTC'ITACI~GGGAACYVI'G CTGCTC 
Antisense:GCCAACGCTTCCATCACTGCCI~CG 
Sense :AGCTCCAAGAACTGTCCACTCAAG 
Ant i sense :GACATGAGGCTGCGGACCAAGCGG 
S e n s e : A G A C T G A A G T I ' G C T G A G G A G A T A G  
Ant i sense :AGAGGGAATTCGGTCAGCTCGGAA 
Sense :CTTCAAGCTACCAAGGCTCTGGAT 
Ant isense :CCTGCTCTGTTGACTGTI 'CATGAG 
Sense :GGTGTCTACAGCAGGCGCATFGT]?G 
Ant i sense :GGTCTTCCCTFAGGAACTCATCAC 
Sense :CCTAAGGCCAACCGTGAAAAG 
Antisense:TCTI~CATGGTGCTAGGAGCCA 

Northern Blot Analysis 
A blot containing 2 ~g of poly(A) + RNAs from adult mouse tissues was 
acquired from Clontech (Palo Alto, CA). The 4-9- and I~-actin-containing 
eDNA fragments were labeled with [a-32p]dCTP using a random primed 
DNA labeling kit (Boehringer Mannheim Biochemicals) and hybridized 
to the membrane overnight at 42°C. Blots were then washed and autora- 
diographed. 

Colony-forming Cell Assay 
For the enrichment of B lymphocyte lineage cells, bone marrow cells from 
6-8-wk-old BALB/c mice were incubated in mAb 14.8 (CD45RA, a pan B 
lineage marker) coated petri dishes for 40 rain at 4°C as in our previous 
studies (40). After nonbinding cells were washed off, bound cells were re- 
covered by pipetting. Whole bone marrow cells or the lymphocyte- 
enriched cells were suspended in 1 ml of assay medium, and the semisolid 
agar colony assay for B lymphocyte precursors (CFU-IL7) was performed 
with 1 ng recombinant mouse IL7. The granulocyte-macrophage progeni- 
tor assay (CFU-c) was similarly performed with 25 ILl of 10-fold concen- 
trated WEHI3 conditioned medium. All colony assays were perfomed in 
35-mm dishes and incubated at 37°C, 5% CO2. Numbers of colonies were 
counted on day 6. The fusion proteins used in titration experiments (see 
Fig. 6) were purified on protein A-bearing affinity columns (Pierce 
Chemical Co., Rockford, IL). 

Results 

Successful Enrichment of cDNAs Containing 
Signal Sequences 
Signal sequence trap procedures previously have been 
used to identify cDNAs for extracellular or transmem- 
brane proteins (59), and we now demonstrate that a 
cDNA library can be enriched on this basis. The HPC4- 
TF/pEFBOSX vector was constructed with NotI and XhoI 
cloning sites positioned between a human EF-let promoter 
and coding sequences for the HPC4 epitope tag and the 
transmembrane domain of tissue factor (Fig. 1 A). When 
inserts with signal sequences were cloned in-frame with 
the correct orientation, fusion proteins were expressed on 
mammalian cells and detected by an antibody to the HPC4 
epitope tag. In contrast, when inserts lacked signal se- 
quences or were cloned out-of-frame, the fusion proteins 
remained intracellular. The effectiveness of this system 
was evaluated with a 5' cDNA fragment of CD44 contain- 
ing a signal sequence as a positive control. The HPC4 
epitope tag appeared on the surface of 293T cells trans- 
fected with CD44-HPC4-TF/pEFBOSX (Fig. 1 B). A 5' 
cDNA fragment of BCL2 that lacked a signal sequence 
was used as a negative control, and transfection with 
BCL2-HPC4-TF/pEFBOSX did not direct an epitope- 
tagged protein to the cell surface. 
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Figure 1. Enrichment of cDNAs containing signal sequences by 
repeated cycles of transfection and cell sorting. (A) The HPC4- 
TF/pEFBOSX vector was used for enrichment of cDNAs carry- 
ing signal sequences. (B) Negative control (BCL2-HPC4-TF/ 
pEFBOSX), positive control (CD44-HPC4-TF/pEFBOSX), and 
cDNA-containing plasmids from different stages of the enrich- 
ment (library before and after sorting three times) were trans- 
fected into 293T cells using a Ca ++ phosphate method. The trans- 
fected cells were then stained with an antibody to the HPC4 
epitope tag. Shaded histograms depict staining obtained with the 
HPC4 mAb, and open histograms represent results obtained with 
the second antibody alone. 

This vector was used to prepare a cDNA library from 
the OP42 stromal cell clone, and the average size of the in- 
serts was 400 bp (range 250--600 bp). We transfected the li- 
brary into COS cells and recovered plasmids from HPC4- 
positive cells that had been isolated by cell sorting. This 
procedure was repeated three times. The effectiveness of 
enrichment was monitored by flow cytometry and is illus- 
trated in Fig. 1 B. Transfectants prepared from the repeat- 
edly sorted library showed much higher expression of the 
HPC4 epitope tag than transfectants made with the origi- 
nal stromal cell cDNA library. Therefore, we successfully 
designed a system for enrichment of cDNA fragments that 
include sequences for signal peptides. 

Isolation of  Clones Whose Ig Fusion Proteins Recognize 
a Pre-B Cell Line 

cDNAs that have been enriched for signal sequences 
would correspond to a host of proteins, and a second step 

Figure 2. Recognition of a pre-B cell line, BCB10, by Ig fusion 
proteins. (A) The Ig/pEFBOSX vector was used to produce Ig fu- 
sion proteins. Each cloned plasmid and a control plasmid (CD44- 
Ig/pEFBOSX) were transfected into 293T cells. (B) BCB10 cells 
were then stained with supernatants from each transfected sam- 
ple, followed by FITC-goat anti-human IgG (shaded histograms). 
HBSS containing 1% BSA and 0.1% azide was used as washing 
buffer. Control staining obtained with the second antibody alone 
is also shown (open histograms). 

was used to identify ones that may interact with pre-B 
cells. We designed the Ig/pEFBOSX vector, which directs 
production of soluble Ig fusion proteins. This vector had 
NotI and XhoI cloning sites, between the EF-lot promoter 
and coding sequences of the CH2 and CH3 domains of hu- 
man IgG1 (Fig. 2 A). Thus, cDNAs with the correct read- 
ing frame in the signal sequence-enriched library (Fig. 1 A) 
would also be able to express an Ig fusion protein when 
subcloned into the Ig/pEFBOSX vector (Fig. 2 A). As a 
positive control, a construct was prepared with a cDNA 
containing the extracellular domain and signal sequence of 
CD44 in Ig/pEFBOSX, and 2 Ixg of this plasmid was trans- 
fected to 293T cells in 24-well plates. Supernatants from 
the transfectants were harvested on day 5 and found to 
contain N10 Ixg/ml of CD44-Ig fusion protein (data not 
shown). The sensitivity of detection of particular clones 
was then tested by serial dilution experiments in which 
mixtures were made of the CD44-Ig/pEFBOSX and Ig/ 
pEFBOSX plasmids. Supernatants containing CD44-Ig 
were recognized by the ability to bind to the hyaluronan- 
bearing BMS2 stromal cell clone. This revealed that one 
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Table L A Summary of cDNA Clones Isolated with this Strategy 

Number of Signal Insert 
Molecule clones sequence Extracellular cDNA 

bp 
Biglycan 5 + Yes 432 
Syndecan 4 2 + Yes 306 
Collagen type 1 2 + Yes 384 
Clusterin 1 + Yes 264 
Osteonectin 3 + Yes 372 
Matrix glycoprotein scl 3 + Yes 387 
4-9 (unknown) 1 + Yes 347 
Saposin 1 + No ND 

positive clone could be identified when it was diluted in a 
pool with 10 negative clones. 

We picked 900 individual colonies from the signal se- 
quence-enriched library in the Ig/pEFBOSX vector and 
made pools that each represented 10 colonies. Flow cy- 
tometry was then used to identify pools that contained 
plasmids capable of expressing fusion proteins that recog- 
nized BCB10 cells (Fig. 2 B). This pre-B cell line was used 
because it can be grown in the presence of IL7 plus stem 
cell factor, and also because it has a very low level of Fc re- 
ceptor expression. A total of 18 individual clones whose Ig 
fusion proteins had this property were isolated and se- 
quenced. All inserts contained 5' terminal cDNA se- 
quences, and their lengths varied from 264 to 432 bp (Ta- 
ble I). One encoded a known intracellular protein, saposin, 
and was not considered further for that reason (60). How- 
ever, this protein is heavily glycosylated and also has a hy- 
drophobic domain at the amino terminus, which presum- 
ably accounted for its selection with our method. One, 4-9, 
represented a previously unknown molecule. The others 
corresponded to previously described components of the 
extracellular matrix (biglycan, syndecan 4, collagen type I, 
clusterin, osteonectin, and matrix glycoprotein scl) (9, 38, 
47, 49). Each of these are known to have signal sequences 
and to be either secreted or expressed on the surface of 
ceils. A murine homologue of matrix glycoprotein scl had 
not been previously cloned, and the sequence identified 
here had 80.6% identity to that described for the rat (16). 
Similarly, this represents the first isolation of murine syn- 
decan 4, which has 91.5% identity to the rat homologue 
(19). Therefore, this cloning strategy did indeed select for 
cDNAs with signal sequences, and stromal cell molecules 
that are potentially relevant for interactions with pre-B 
cells were identified. 

Isolation of  the 4-9 cDNA Coding Region and Primary 
Structure of  the Predicted Protein 

The entire coding region of the 4-9 cDNA was isolated to 
permit more thorough homology searches and structural 
predictions. This was done with sense and antisense prim- 
ers designed from the original 5' cDNA sequence of 4-9, 
which were used to screen a stromal cell library by PCR 
(Materials and Methods). The originally isolated fragment 
of 4-9 was completely identical to the sequence between 
133 and 479 of the full-length cDNA (Fig. 3; EMBL/Gen- 
Bank/DDBJ accession number U47323). The latter 3,192- 
bp cDNA contains an open reading frame of 2,055 bp, 
which is flanked by 5'- and 3'-untranslated regions of 193 

1 

31  

6 1  

91  

1 2 1  

1 5 1  

1 8 1  

2 1 1  

2 4 1  

2 7 1  

3 0 1  

3 3 1  

3 6 1  

3 9 1  

4 2 1  

4 5 1  

4 8 1  

5 1 1  

5 4 1  

5 7 1  

6 0 1  

6 3 1  

6 6 1  
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Figure 3. Amino acid sequence of full-length 4-9. A potential sig- 
nal peptide is marked (box), but the actual cleavage site is un- 
known. The protein encoded by the original cDNA (underlined 
with dashes) and a possible transmembrane domain (underlined.) 
Potential N-glycosylation sites (circles) and a possible enzymatic 
cleavage site (asterisks). This sequence data is available from 
EMBL/GenBank/DDBJ under accession number U47323. 

and 944 bp. The hydrophobicity profile of the deduced 
685-amino acid protein predicts a possible NH2-terminal 
signal peptide. This hydrophobic region precedes a possi- 
ble signal cleavage site between Ser-22 and Leu-23, as pre- 
dicted by the method of Heijne (12). A second hydropho- 
bic stretch of 22 amino acids is located between positions 
213 and 234, and could correspond to a transmembrane 
domain (8). The protein possesses a dibasic sequence be- 
fore this segment, which could serve as a proteolytic cleav- 
age site for release from the cell surface. There is also a 
single cysteine residue in the putative transmembrane do- 
main that may allow interaction with other membrane 
proteins, and there are two potential sites for N-glycosyla- 
tion at positions 131 and 171. 

A computer search revealed that segments of the 4-9 se- 
quence had been cloned before as part of genome projects, 
but this was not instructive as to its function. One previous 
isolation was from a human brain cDNA library (WashU- 
Merck EST Project, unpublished data; computation per- 
formed using the BLAST network service). Another rep- 
resented only the 3'-untranslated region of 4-9 and was 
isolated from a murine teratocarcinoma cell cDNA library 
(46). The predicted extracellular portion of this protein 
had no significant homology to any other proteins. How- 
ever, there was weak similarity between the intracellular 
portion of 4-9 and human myosin heavy chain (18.7% 
identity in a 198-amino acid overlap), human restin 
(15.2% identity in a 329-amino acid overlap), Drosophila 
melanogaster paramyosin (13.8% identity in a 441-amino 
acid overlap), and human centromeric protein E (14.4% 
identity in a 416-amino acid overlap). A predicted coiled- 
coil structure is a common feature of all of these proteins. 
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Figure 4. Expression of stro- 
mal cell products in various 
cells and tissues. (A) Total 
RNAs were isolated from the 
indicated cell lines and sub- 
jected to RT-PCR. The am- 
plified products were electro- 
phoresed through a 1% 
agarose gel containing ethid- 
ium bromide. Sequences for 
the oligonucleotide primers 
used for these reactions are 
given in Materials and Meth- 
ods. (B) eoly(A) ÷ RNAs (2 
Ixg per lane) were from the 
indicated tissues, and the re- 
sulting blot was hybridized 
overnight to a probe contain- 
ing the entire 4-9 cDNA se- 
quence. (Lower panel) Con- 
trol for equal loading where 
the same blot was probed 
with 13-actin. 

Expression of  Stromal Cell Products in Various Tissues 

Our cloning strategy should not necessarily select for 
genes that are expressed in a stromal cell-restricted fash- 
ion, and, indeed, this was not the case. Reverse tran- 
scriptase-PCR was used to survey expression by a panel of 
cell lines (Fig. 4 A), and the specificity of these reactions 
was confirmed by sequencing of the PCR products (data 
not shown). This analysis revealed that two of the genes 
we cloned (syndecan 4, 4-9) were expressed by many cell 
types, which included lymphomas and myeloid tumors, but 
not a mastocytoma (P815). Transcripts for the 4-9, but not 
syndecan 4 gene, were also detectable in an erythroleuke- 
mia cell line (GM86). Clusterin and osteonectin were each 
expressed by stromal cells and some lympho-hematopoi- 

etic cells. A more restricted pattern was observed with bi- 
glycan, collagen type I, and matrix scl, as transcripts were 
only detectable in stromal cells and fibroblasts. Northern 
blot analysis confirmed that the previously unknown 4-9 
gene is expressed in many tissues, but that there was some 
heterogeneity in transcript size (Fig. 4 B). The most prom- 
inent band was ~4.5 kb, but shorter and longer exposures 
consistently revealed minor species that were larger (9.5 
and 5 kb) and smaller (3.7 kb). 

Distribution of  Ligands for Soluble Stromal 
Cell-derived Fusion Proteins 

Experiments were then performed to evaluate interactions 
of stromal cell-derived fusion proteins with various types 
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Table II. Recognition Specificity of Expressed lg Fusion Proteins as Evaluated by Staining of Established Cell Lines 

Ig fusion proteins 

Cell type Cell line Biglycan 4-9 Syndecan 4 Coll. 1 Clusterin Scl Osteonectin 

P r e B  B C B 1 0  + +  + + +  + +  + - + 

P re  B B C B 8  + -+ + + + - -+ - 

P re  B B C B 9  + + + + + + + + ± + 

B L y m p h o m a  W E H I 2 3 1  + + - + + . . . .  

B H y b r i d o m a  B M 2  - - ± . . . .  

T L y m p h o m a  E I A  . . . . . . .  

T L y m p h o m a  A K R 1  . . . . . . .  

M y e l o i d  W E H I 3  - ± ± + + -+ ± 

E r y t h r o l e u k e m i a  G M 8 6  + + + + - - - + 

S t r o m a l  O P 4 2  + - + . . . .  

S t r o m a l  B M S 2  + - ± . . . .  

F i b r o b l a s t  L C e l l s  + - ± . . . .  

N e u r o b l a s t o m a  N 2 A  + - 4- . . . .  

M e l a n o m a  B 16F  10 + - + . . . .  

+ + ,  >90%;  + ,  >50%;  -+, >10%;  and - ,  < 1 0 %  of cens staining. 

of lympho-hematopoietic cells. Two steps were taken to 
minimize the possibility of recognition via Fc receptors. 
All of the soluble proteins were made with a human IgG1 
cassette that had been mutated to diminish Fc-mediated 
binding (37) (see Materials and Methods), and in some ex- 
periments, cells were pretreated with an mAb (2.4G2) to 
Fc receptors. The latter treatment had no influence on fu- 
sion protein staining of BCB10 cells, but did slightly re- 
duce the background recognition of CD11b + myeloid cells 
(data not shown). An example of recognition of the 
BCB10 pre-B cell clone is illustrated in Fig. 2 B, where a 
CD44-Ig fusion protein is included as a negative control. 
Similar levels of background staining were observed when 
human CD73-Ig or CD7-Ig were used as control proteins 
(data not shown). The intensity of staining was consis- 
tently strongest with biglycan and syndecan 4 fusion pro- 
teins. Recognition of two other B lineage lymphocyte pre- 
cursor clones (BCB8 and BCB9) was similar to that 
observed with BCB10, and two of the fusion proteins gave 
low, but significant, staining when tested on an immature 
B lymphoma (WEHI231; Table II). In contrast, none of 
the fusion proteins recognized either of two T lymphomas 
(AKR1 and EIA). Biglycan and syndecan 4 fusion pro- 
teins weakly stained a number of cell types, but recogni- 
tion was very limited with the other fusion proteins. 

Conditions for Recognition of  Normal 
Lympho-hematopoietic Cells 

Divalent cations facilitated recognition of BCB10 cells by 
fusion proteins prepared with 4-9, biglycan, collagen type I, 
clusterin, matrix glycoprotein scl, and osteonectin, as 
staining was completely blocked by addition of EDTA 
(Fig. 5 A; data not shown). This treatment also slightly di- 
minished staining with the syndecan 4-Ig fusion protein 
(data not shown). It has been shown that Mn ++ substan- 
tially increases the ability of integrins to recognize ligands 
(39). We found that recognition of pre-B cells with 4-9 and 
osteonectin also increased with this treatment (Fig. 5 A; 
data not shown). Antibodies to et4 (PS/2), et5 (MFRS), et6 
(GoH3), OtL (FD441.8 and M17/4.2), 131(KMI6 and 9EG7), 

or [32 (M18/2) did not block the binding of 4-9-Ig to 
BCB10 cells (data not shown). Moreover, 4-9-Ig did not 
recognize BAF3 cells even in the presence of Mn ++, al- 
though this line expresses VLA4, VLA5, VLA6, and 
CD11a (data not shown). Thus, the counter-receptor/ 
ligand for 4-9 on BCB10 cells was not readily attributed to 
any of these integrins. Addition of heparin significantly 
blocked staining by the 4-9 fusion protein, a finding that 
could also be instructive about its counter-receptor. 

All of the above studies used lympho-hematopoietic tu- 
mors and cultured cell lines. Therefore, we used two-color 
flow cytometry to evaluate the ability of the 4-9-Ig fusion 
protein to interact with freshly isolated bone marrow cells 
(Fig. 5 B). This protein bound to 51% of marrow cells, and 
68% of the positive cells also expressed the B lineage 
marker CD45R. Only weak staining was observed with 
~8% of bone marrow-nucleated cells using the control 
CD44-Ig fusion protein, and these did not represent B lin- 
eage cells. The ability of lymphocyte precursors to interact 
with 4-9 appeared to increase with differentiation, and 
78% of cells that had acquired sIgM (B cells) were stained 
by this fusion protein. Similarly, 88% of mature B cells in 
the spleen were recognized (data not shown). While the 
4-9 fusion protein recognized lymphocytes and their pre- 
cursors in marrow, it was not lineage specific, as 9-36% of 
myeloid cells (assessed with Ly-6C/GR1 or CD11b/Mac-1, 
respectively) and 55% of erythroid cells (TER119 ÷) were 
stained. In addition, 20% of splenic T cells were recog- 
nized (data not shown). These analyses were performed in 
the presence of Mn ++, and, as with cell lines, failure to add 
this divalent cation resulted in much weaker staining. 
These findings suggest that a counter-receptor/ligand for 
the 4-9 stromal cell product is present on normal hemato- 
poietic cells and may increase in density with B lympho- 
cyte differentiation. 

Influence of  Stromal Cell Products on B Cell Precursors 

Production of B lineage lymphocytes is dependent on IL7, 
and numbers of IL7-responsive precursors can be enumer- 
ated with a semisolid agar cloning assay (29). This was 
used in a preliminary evaluation of possible functions for 
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Figure 5. The 4-9-Ig fusion protein recognizes normal cells, and 
the binding requires divalent cations. (A) BCB10 cells were 
stained with the 4-9-Ig fusion protein (right) in the presence of 
Hank's solution (1.3 mM Ca ++, 0.9 mM Mg÷+), Hanks with 
EDTA (5 mM), Tris buffer with Mn +÷ (5 mM), Tris buffer with 
both Mn +÷ and chondroitin sulfate (C.S., 5 ixg/ml), or Tris buffer 
with both Mn ÷ ÷ and heparin (5 I.~g/ml). Background staining with 
the second antibody alone is also shown (right; Negative Control), 
along with staining obtained with a control CD44-Ig fusion pro- 
tein (left). (B) Two-color analysis of bone marrow included mark- 
ers of B lineage lymphoid cells (CD45R and surface IgM) and 
myeloid cells (Macl/CDllb). Quadrants are indicated to show 
levels of background staining (obtained with irrelevant isotype- 
matched antibody or second antibody alone controls). Staining 
and washing were done in the presence of 5 mM MnC12. 

the molecules we identified. Soluble Ig fusion proteins 
representing CD44, syndecan 4, osteonectin, or collagen 
type I had no significant effect on lymphocyte prolifera- 
tion when added to these cultures (Fig. 6; data not shown). 
However,  the cloning efficiency was increased upon addi- 
tion of biglycan-, scl-, or 4-9-containing fusion proteins. 
This ranged from 23-76% elevation in six individual ex- 
periments, and was similar for the original version of 4-9 
and a fusion protein that contained the entire extracellular 
sequence. None of the proteins elicited colony formation 
when added to semisolid agar cultures in the absence of 
IL7 (data not shown). As little as 2 tzg of  the 4-9-Ig fusion 
protein influenced clonal proliferation of B cell precursors 
(P  = 0.0015; Fig. 6). Similar dose responsiveness was dem- 
onstrated with biglycan and scl, but 10 times this amount 

Figure 6. Dose-dependent augmentation of B cell precursor ex- 
pansion by Ig fusion proteins. Biglycan-Ig, 4-9-Ig, scl-Ig, and 
CD44-Ig proteins were purified on protein A columns and added 
to CFU-IL7 colony assays at the indicated concentrations. Re- 
suits represent mean numbers of colonies per 105 cultured cells --_ 
SEM (n = 3). Statistically significant differences from control 
(CD44-Ig) values are indicated by one (P ~< 0.05) or two (P ~< 
0.01) asterisks. 

of the control CD44- Ig  fusion protein had no significant 
effect. Myeloid progenitors (CFU-c) that responded to 
colony stimulating factor were not significantly influenced 
by any of  the Ig fusion proteins (data not shown). There- 
fore, some of the stromal cell-derived products promote 
expansion of IL7-responsive lymphocyte precursors. 

Morphological Changes Resulting from Overexpression 
of the 4-9 Protein 

No remarkable changes were observed in the growth or 
appearance of  293T cells transfected with the originally 
isolated 4-9 c D N A  (14% of the total sequence plus the 
epitope tag and transmembrane domain of  tissue factor). 
This was also true when the entire extracellular portion 
was overexpressed with the tissue factor t ransmembrane 
domain (data not shown). However,  cells expressing the 
full-length sequence assumed a rounded morphology and 
detached from the dish within 2 d of transfection (Fig. 7). 
Since the change occurred before confluence was reached, 
it did not result from overgrowth of contact-inhibited cells. 
While numbers of cells recovered 3-4 d after transfection 
with this plasmid were slightly reduced, there was no effect 
on cell viability. This result suggests that the native 4-9 
protein may have roles in adhesion and/or cell shape that 
require the transmembrane and/or cytoplasmic domains. 

Discussion 

We have described a new cloning strategy and its use to 
identify a series of stromal cell genes whose products in- 
teract with pre-B cells. An  enrichment procedure was de- 
vised for cDNAs  that encode type I t ransmembrane or 
secreted proteins with signal peptides. A second step in- 
volved expression of the resulting library as soluble Ig fu- 
sion proteins and screening for ones that recognized lym- 
phocytes. While there are advantages and limitations to 
any approach, this one was successfully used to identify 
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Figure 7. Rounding and detachment of 293T cells after overex- 
pression of the full-length cDNA of 4-9. Phase-contrast micro- 
graphs are shown of 293T cells transfected with pEFBOS (control 
plasmid) (A) or the full-length native 4-9/pEFBOS (B). Bar, 50 ixm. 

several components of the bone marrow microenviron- 
ment that may prove to be important in regulation of 
blood cell formation. 

Honjo and colleagues reported that it was possible to se- 
lectively clone cDNAs corresponding to secreted or trans- 
membrane molecules (59). As in their method, we incor- 
porated an epitope sequence in the expression vector. 
However, we then expressed the resulting library in COS 
cells and used an mAb to the epitope tag with cell sorting 
to enrich for cDNAs that included signal sequences. We 
used COS cells and electroporation at this stage with the 
aim of obtaining relatively low copy numbers in the trans- 
fected cells. There are two indications that this enrichment 
step was successful. Transfection of the same amount of 
plasmid DNA yielded progressively higher expression of 
the epitope tag after the three cycles of sorting (Fig. 1 B). 
Secondly, clones of interest were relatively abundant in 
the enriched library, as 1.8% of the clones yielded an Ig fu- 
sion protein that recognized pre-B cells. In preliminary ex- 
periments, we determined that a pool size of no more than 
10 clones per pool was required to detect binding of a 
CD44-Ig control protein to a hyaluronan-bearing cell. 
Therefore, we doubt that it would have been feasible to 
search for relevant molecules expressed as Ig fusion pro- 
teins without prior enrichment of the library for cDNAs 
that encode signal sequences. 

Our objective in screening Ig fusion proteins expressed 
by the stromal cell library was to identify important mole- 
cules that might have been overlooked by other experi- 
mental approaches. For example, highly conserved cell in- 
teraction molecules might not be immunogenic, making 
it difficult to produce mAbs against them. Also, screens 
based on cell adhesion could require relatively high avidity 
binding or cooperation between multiple molecules. Our 
procedure yields sequences for individual molecules with 
potentially interesting recognition properties, and the nec- 
essary threshold of binding affinity could be lower than with 
other methods. It produces soluble cell interaction mole- 
cules with defined recognition specificity that can be used 
in functional and other assays. The binding can also pro- 
vide useful information about the nature of the counter- 
receptor (e.g., requirement for divalent cations, blocking 
by heparin) and its representation in various tissues. Fur- 
thermore, this method is readily adaptable to detect other 
kinds of cell interaction molecules. For example, we could 
screen the same enriched library for proteins that specifi- 
cally recognize hematopoietic stem cells. In principal, any 
pair of interacting cells could be used to derive cDNA li- 
braries and for screening in either direction. We selected 
stromal cells for library preparation rather than lympho- 
cytes because staining of the latter was more efficiently 
evaluated by flow cytometry. 

A relatively small insert size (~400 bp) was used to 
avoid the possibility that transmembrane domains would 
be cloned 5' of the epitope tag. Therefore, we would not 
have identified proteins whose entire length is required for 
function, and it is notable that no cytokine genes were 
cloned. We subsequently obtained full-length (or entire 
extracellular portions) cDNA sequences for three of the 
clones (4-9, syndecan 4, and osteonectin). When expressed 
as Ig fusion proteins, they recognized pre-B cells as well as 
the original ones, which only contained partial sequences. 
Therefore, we may have preferentially identified proteins 
whose amino-terminal portions were sufficient for binding 
to pre-B cells. Similarly, this method would not isolate mole- 
cules that only function as part of complexes. Transfec- 
tants were prepared that initially contained plasmids rep- 
resenting ~10 clones, and this would produce a number of 
heterodimeric Ig fusion proteins. These might have lower 
affinity than homodimers, and detection of relatively abun- 
dant proteins could be favored. On the other hand, the en- 
richment achieved with the first step of our approach 
should at least partially diminish this as a problem. As an- 
other possible limitation, posttranslational modifications 
of molecules expressed in 293T cells might differ from 
those typical of stromal cells. We would not have identi- 
fied proteins whose recognition specificity was influenced 
in this way. 

All but one of the stromal cell products we identified 
have been previously studied, and there are indications 
that some of these molecules may participate in lympho- 
hemopoiesis. For example, an inhibitor of collagen synthe- 
sis diminished production of hematopoietic cells in long-term 
bone marrow cultures (64). Multiple collagen types can be 
made by bone marrow stromal cells, and precursors of my- 
eloid and erythroid cells have been shown to adhere to 
collagen type I (27, 62). There are four known types of 
syndecan, and they are known to be expressed in a tissue- 
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and differentiation-specific fashion (20). Syndecan 1 is 
present on pre-B cells, down-regulated as they mature, 
and reacquired at the plasma cell stage (53). This molecule 
has been shown to mediate adhesion of plasmacytoma 
cells to collagen type I (54), but we do not yet know if it is 
involved in pre-B cell recognition of stromal cell-derived 
collagen. Overexpresssion of syndecans 1 and 4 in B lym- 
phoid cells can trigger aggregation, suggesting again that 
these molecules may be involved in cell recognition (57). 
Osteonectin has also been implicated in cell adhesion. 
While osteonectin can mediate the aggregation of plate- 
lets, it can be antiadhesive in other circumstances (28). Os- 
teonectin is detectable in a granular pattern on adherent 
cells in long-term bone marrow cultures (34). 

Biglycan was previously isolated from the thymus and 
shown to function as a macrophage colony-stimulating 
factor (17). Only 91 of the amino-terminal residues of bi- 
glycan (N25% of the molecule) were present in our Ig fu- 
sion protein, and this did not stimulate growth of myeloid 
progenitors in culture. However, the same material signifi- 
cantly enhanced the cloning of IL7-responsive precursors 
in semisolid agar. The same was true of Ig fusion proteins 
containing segments of matrix glycoprotein scl or the 4-9 
clone. Further study will be required to determine if en- 
gagement of ligands on pre-B cells by these stromal cell 
molecules delivers costimulatory signals for survival and 
differentiation. Alternatively, they might block reception 
of negative signals that could be present in the FCS or 
made by neighboring ceils. In this context, it is interesting 
that 4-9 is actually expressed by pre-B cells and could me- 
diate interaction between cells in the same lineage. 

Syndecan and biglycan are known to be heparan- or 
chrondroitin/dermatan-sulfated proteoglycans. These modi- 
fications may contribute to cell-cell recognition and could 
also confer on these molecules the ability to immobilize 
growth and differentiation factors. Heparin has been 
shown to block cell adhesion mediated by syndecan (57). 
Similarly, we found that staining of pre-B cells by our 4-9-Ig, 
syndecan 4-Ig, and biglycan-Ig fusion proteins was sub- 
stantially inhibited by addition of heparin (Fig. 5 A; un- 
published observations). Glycosaminoglycan recognition 
is a feature of certain other cell adhesion molecules, such 
as N-cell adhesion molecule (N-CAM) and CD31 (6, 7). 
Furthermore, this modification is essential for responsive- 
ness of cells to basic FGF (48). Heparan-sulfated proteins 
can influence the differentiation of hematopoietic cells 
(36), and this may be in part attributed to their ability to 
immobilize growth factors such as granulocyte-macro- 
phage colony stimulating factor (G/M-CSF), IL-3, basic 
FGF, IL7, and interferon-y (3, 11, 21, 35, 51). All three 
members of the decorin family, including biglycan, are 
known to bind TGF-I3, but glycosylation is not necessary 
(13). Osteonectin is not a proteoglycan, but it has been 
shown to immobilize PGDF (28). It will be important to 
determine if the stromal cell--derived molecules we iso- 
lated bind growth and differentiation factors, as this would 
suggest another role in the bone marrow microenviron- 
ment. 

At least 16 names have been used to describe the mole- 
cule known as clusterin, and a similarly large number of 
functions have been ascribed to it (52). It is an abundant 
and widely distributed protein that is especially rich in tis- 

sues undergoing remodeling and where apoptosis is high, 
but not directly involved in that process (10). Clusterin has 
a heparin-binding domain and has been shown to cause 
aggregation of Sertoli cells (for review see 52). The ability 
of clusterin to bind Ig is of particular interest (63). Matur- 
ing pre-B cells make a primitive Ig-receptor complex con- 
sisting of ~ heavy chains with "surrogate" light chains 
(Vpre-B and hs), and gene targeting revealed this is essen- 
tial for normal lymphocyte formation (41, 25). It has been 
speculated that the Ig complex recognizes some ligand on 
stromal cells (41), and clusterin would seem to be a candi- 
date. 

Our findings suggest that 4-9 is a type I transmembrane 
protein with a functional signal peptide. There is a stretch 
of 22 hydrophobic residues that might serve as a trans- 
membrane anchor, but this remains to be verified. There is 
a potential enzyme cleavage site (RH) near this area, sug- 
gesting that portions of the molecule might be released as 
a soluble protein. Another stretch of residues (TRHNHL) 
in the same region conform to a heparin-binding consen- 
sus motif (XBBXBX), where B represents a basic residue 
and X a hydropathic residue (4). The presumed intracellu- 
lar portion of 4- 9 has weak sequence homology to myosin 
heavy chain and related proteins that have a coiled-coil 
structure. 

Northern blot and PCR analyses revealed that the gene 
is expressed in a number of tissues and in most cell lines. 
While we have shown that 4-9 can influence the survival 
and/or proliferation of B cell precursors, it also recognized 
most mature splenic B cells and a subpopulation of T cells, 
provided that Mn +÷ was present in the medium. There- 
fore, the biological function may not be restricted to mar- 
row, and it will be important to learn if it has a role in im- 
mune responses. Additional work must also be done to 
identify the ligand recognized by 4-9. Staining of pre-B 
cells with the Ig fusion protein was divalent cation--depen- 
dent and markedly enhanced by Mn +÷. It is interesting 
that the specificity, as well as the affinity, of integrins is in- 
fluenced by divalent cations (24, 39). One could speculate 
that while 4-9 expression is relatively broad, its function 
may be locally controlled in this fashion. However, our 
preliminary experiments did not positively identify an in- 
tegrin (VLA4, VLA5, VLA6, or CDl la )  as the ligand for 
4-9 on pre-B cells. Cadherins, selectins, and other divalent 
cation-dependent recognition molecules must also be con- 
sidered. 

Expression of extracellular portions of 4-9 in 293T cells 
as either membrane-anchored or secreted forms had no 
noticeable influence on morphology or cell growth. How- 
ever, considerable rounding and detachment of the cells 
resulted from expression of the full-length molecule. 
Therefore, normal functions of the native protein in stro- 
mal ceils may depend on both intracellular and extracellu- 
lar domains. This dramatic change in morphology of cells 
that overexpress 4-9 suggests that it may help to orient 
stromal cells within tissues. It will be important to learn if 
4-9 associates with cytoskeletal or other components of 
the cell, and we provisionally designate it SIM (stromal in- 
teraction molecule). 

A first application of this new cloning strategy led to the 
identification of seven extracellular proteins that merit 
further study as components of lympho-hematopoietic mi- 
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croenvironments. Ig fusion proteins containing only por- 
tions of three such stromal products augmented the re- 
sponsiveness of pre-B cells to IL7. Native versions of these 
molecules may be found to participate in adhesive interac- 
tions, deliver critical signals, or immobilize and present 
growth factors to maturing blood cells. 

We thank Drs. C. Esmon, J. Morrissey, A. Aruffo, P. Linsley, R. Sander- 
son, S. Nagata, and T. Hirano for generous gifts of plasmids, antibodies, 
and advice. Others who have made helpful comments on the manuscript 
include Drs. L Thompson, L. Borghesi, C. Webb, K. Moore, and J. Gimble. 

This work was supported in part by grant AI-33085 from the National 
Institutes of Health. 

Received for publication 1 March 1996 and in revised form 28 May 1996. 

J~eferences 

1. Allen, T.D., and N.G. Testa. 1991. Cellular interactions in erythroblastic is- 
lands in long-term bone marrow cultures, as studied by time-lapse video. 
Blood Cells. 17:2943. 

2. Aruffo, A., L Stamenkovic, M. Metnick, C.B. Underhill, and B. Seed. 1990. 
CD44 is the principal cell surface receptor for hyaluronate. Cell, 61:1303- 
1313. 

3. Brunner, G., C.N. Metz, H. Nguyen, J. Gabrilove, S.R. Patel, M.A. Davitz, 
D.B. Rifkin, and E.L. Wilson. 1994. An endogenous glycosylphosphati- 
dylinositol-specific phospholipase D releases basic fibroblast growth fac- 
tor-heparan sulfate proteoglycan complexes from human bone marrow 
cultures. Blood. 83:2115-2125. 

4. Cardin, A.D., and H.J.R. Weintraub. 1989. Molecular modeling of protein- 
glycosaminoglycan interactions. Arteriosclerosis. 9:21-32. 

5. Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isola- 
tion by acid guanidinium thiocyanate-phenol-chloroform extraction. 
Anal. Biockem. 162:156-159. 

6. Cole, G.J., A. Loewy, and L. Glaser. 1986. Neuronal cell-cell adhesion de- 
pends on interactions of N-CAM with heparin-like molecules. Nature 
(Lond. ). 320:445447. 

7. DeLisser, H.M., H.C, Yan, P,J. Newman, W.A. Muller, C.A. Buck, and 
S.M. Albelda. 1993. Platelet/endothelial cell adhesion molecule-1 
(CD31)-mediated cellular aggregation involves cell surface glycosami- 
noglycans. J. Biol. Chem. 268:16037-16046. 

8. Eisenberg, D., E. Schwarz, M. Komaromy, and R. Wall. 1984. Analysis of 
membrane and surface protein sequences with the hydrophobic moment 
plot. J. Mol. Biol. 179:125-142. 

9. French, L.E., A. Chonn, D. Ducrest, B, Baumann, D. Belin, A. Wohlwend, 
J.Z. Kiss, A.-P. Sappino, J. Tschopp, and J.A. Schifferli. 1993. Murine 
clusterin: molecular cloning and mRNA localization of a gene associated 
with epithelial differentiation processes during embryogenesis. J. Cell 
Biol. 122:1119-1130. 

10. French, L.E., A.P. Sappino, J. Tschopp, and J.A. Schifferli. 1994, Clusterin 
gene expression in the rat thymus is not modulated by dexamethasone 
treatment. Immunology. 82:328-331. 

11. Gordon, M.Y., G.P. Riley, S.M. Watt, and M.F. Greaves. 1987. Compart- 
mentalization of a haematopoietic growth factor (GM-CSF) by gly- 
cosaminoglycans in the bone marrow microenvironment. Nature (Lond.). 
326:403405. 

12. Heijne, G.V. 1986. A new method for predicting signal sequence cleavage 
sites. Nucleic Acids Res. 14:46834690. 

13. Hildebrand, A., M. Romarfs, L.M. Rasmussen, D. Heineg~trd, D.R. Tward- 
zik, W.A. Border, and E. Ruoslahti. 1994. Interaction of the small inter- 
stitial proteoglycans biglycan, decorin and fibromodulin with transform- 
ing growth factor I~. Biochem. J. 302:527-534. 

14. Hirt, B. 1967. Selective extraction of polyoma DNA from infected mouse 
cell cultures. J. Mol. Biol. 26:365-369. 

15, Hynes, R.O. 1992. Integrins: versatility, modulation, and signaling in cell 
adhesion. Cell, 69:11-25. 

16. Johnston, I.G., T. Paladino, J.W. Gurd, and I.R. Brown. 1990. Molecular 
cloning of SCI: a putative brain extracellular matrix glycoprotein show- 
ing partial similarity to osteonectin/BM40/SPARC. Neuron. 2:165-176. 

17. Kamo, I., A. Kikuchi, I. Nonaka, E. Yamada, and J. Kondo. 1993. Hae- 
mopoietic activity associated with biglycan-like proteoglycan. Biochem. 
Biophys. Res. Commun. 195:1119-1126. 

18. Katoh, S., Z. Zheng, K. Oritani, T. Shimozato, and P.W. Kincade. 1995. 
Glycosylation of CD44 negatively regulates its recognition of hyaluro- 
nan. J. Exp. Med. 182:419-429. 

19. Kijima, T., N.W. Shworak, and R.D. Rosenberg. 1992. Molecular cloning 
and expression of two distinct cDNA-encoding heparan sulfate pro- 
teoglycan core proteins from a rat endothelial cell line, J. Biol. Chem. 
267:4870--4877. 

20. Kim, C.W., O.A. Goldberger, R.L. Gano, and M. Bernfield. 1994. Mem- 
bers of the syndecan family of heparan sulfate proteoglycans are ex- 

pressed in distinct cell-, tissue-, and development-specific patterns. Mol. 
Biol. 5:797--805, 

21. Kimura, K., H. Matsubara, S. Sogoh, Y. Kita, T. Sakata, Y. Nishitani, S. 
Watanabe, T. Hamaoka, and H. Fujiwara. 1991. Role of glycosaminogly- 
cans in the regulation of T cell proliferation induced by thymic stroma- 
derived T cell growth factor. J. Immunol, 146:2618--2624. 

22. Kincade, P.W. 1991. Molecular interactions between stromal cells and B 
lymphocyte precursors. Semin. Immunol. 3:379-390. 

23. Kincade, P.W. 1993. Cell adhesion mechanisms utilized for lymphohe- 
mopoiesis. In Lymphocyte Adhesion Molecules. Y. Shimizu, editor. R.G. 
Landes, Austin, TX. 249-279. 

24. Kirchhofer, D., J. Grzesiak, and M.D. Pierschbacher. 1991. Calcium as a 
potential physiological regulator of integrin-mediated cell adhesion. J. 
Biol, Chem. 266:44714477. 

25. Kitamura, D., A. Kudo, S. Schaal, W. Muller, F. Melchers, and K. Rajew- 
sky. 1992. A critical role of lambda 5 protein in B cell development. Cell. 69: 
823-831. 

26. Knudson, W., E. Bartnik, and C.B. Knudson. 1993. Assembly of periceUu- 
lar matrices by COS-7 cells transfected with CD44 lymphocyte-homing 
receptor genes. Proc. Natl. Acad. Sci. USA. 90:40034007. 

27, Koenigsmann, M., J.D. Griffin, J. DiCarlo, and S.A. Cannistra. 1992. Mye- 
loid and erythroid progenitor cells from normal bone marrow adhere to 
collagen type I. Blood. 79:657~65. 

28. Lane, T.F., and E.H. Sage. 1994. The biology of SPARC, a protein that 
modulates cell-matrix interactions. FASEB (Fed. Am. Soc. Exp. Biol.) J. 
8:163-173. 

29. Lee, G., A.E. Namen, S. Gillis, LR. Ellingsworth, and P.W. Kincade. 1989. 
Normal B cell precursors responsive to recombinant murine IL-7 and in- 
hibition of IL-7 activity by transforming growth factor-13. J. Immunol. 
142:3875-3883. 

30. Lesley, J., N. English, A. Perschl, J. Gregoroff, and R. Hyman. 1995. Vari- 
ant cell lines selected for alterations in the function of the hyaluronan re 
ceptor CD44 show differences in glycosylation. Z Exp. Med. 182:431437. 

31. Lesley, J., Q. He, K. Miyake, A. Hamann, R. Hyman, and P.W. Kincade. 
1992. Requirements for hyaluronic acid binding by CD44: a role for the 
cytoplasmic domain and activation by antibody. J. Exp. Med. 175:257- 
266. 

32. Lesley, J., R. Hyman, and P.W. Kincade. 1993. CD44 and its interaction 
with the extracellular matrix. Adv. lmmunol. 54:271-335. 

33. Long, M.W. 1992. Blood cell cytoadhesion molecules. Exp. Hematol. 20: 
288-301. 

34. Long, M.W., J.L. Williams, and K.G. Mann. 1990. Expression of human 
bone-related proteins in the hematopoietic microenvironment. J. Clin. 
Invest. 86:1387-1395. 

35. Lortat-Jaeob, H., and J. Grimaud. 1991. Interferon-gamma C-terminal 
function: new working hypothesis. Heparan sulfate and heparin, new tar- 
gets for IFN-gamma, protect, relax the cytokine and regulate its activity. 
Cell. Mot, Biol. (Oxf  ). 37:253-260. 

36. Luikart, S.D., P.M. Kenney, and T.R. Oegema. 1995. Human bone marrow 
heparan sulfate induces leukemia cell differentiation. Connect. Tissue 
Res. 31:99-107. 

37. Lund, J., G. Winter, P.T. Jones, J.D. Pound, T. Tanaka, M.R. Walker, P.J. 
Artymiuk, Y. Arata, D.R. Burton, R. Jefferis et al. 1991, Human Fc 
gamma RI and Fc gamma RII interact with distinct but overlapping sites 
on human IgG. J. Immunol. 147:2657-2662. 

38. Mason, l.J., A. Taylor, J.G. Williams, H. Sage, and B.L.M. Hogan. 1986. 
Evidence from molecular cloning that SPARC, a major product of mouse 
embryo parietal endoderm, is related to an endothelial cell 'culture 
shock' glycoprotein of M 43,000. EMBO (Eur. MoL Biol. Organ.) Z 5: 
1465-1472. 

39. Masumoto, A,, and M.E. Hemler. 1993. Multiple activation states of VLA- 
4. Mechanistic differences between adhesion to CS1/fibronectin and to 
vascular cell adhesion molecule-1. J. Biol. Chem. 268:228-234. 

40. Medina, K.L., G. Smithson, and P.W. Kincade. 1993. Suppression of B lym- 
phopoeisis during normal pregnancy. J. Exp. Med. 178:1507-1515. 

41. Melchers, F., D. Haasner, U. Grawunder, C. Kalberer, H. Karasuyama, T. 
Winkler, and A.G. Rolink. 1994. Roles of lgH and L chains and of surro- 
gate H and L chains in the development of cells of the B lymphocyte lin- 
eage. Annu. Rev. lmmunol. 12:209-225. 

42. Miyake, K., K. Medina, S.-I. Hayashi, S. Ono, T. Hamaoka, and P.W. Kin- 
cade. 1990. Monoclonal antibodies to Pgp-1/CD44 block lympho- 
hemopoiesis in long-term bone marrow cultures. ,L Exp. Med. 171:477- 
488. 

43. Miyake, K., K. Medina, K. Ishihara, M. Kimoto, R. Auerbach, and P.W. 
Kincade. 1991. A VCAM-Iike adhesion molecule on routine bone mar- 
row stromal cells mediates binding of lymphocyte precursors in culture. 9'. 
Cell Biol. 114:557-565. 

44. Miyake, K, LL. Weissman, J.S. Greenberger, and P.W. Kincade. 1991. Evi- 
dence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. 
Med. 173:599~07. 

45. Mizushima, S., and S. Nagata. 1990. pEF-BOS, a powerful mammalian ex- 
pression vector, Nucleic Acids Res. 18:5322. 

46. Nishiguchi, S., T. Joh, K. Horie, Z. Zou, T. Yasunaga, and K. Shimada. 
1994. A survey of genes expressed in undifferentiated mouse embryonal 
carcinoma F9 cells: characterization of low-abundance mRNAs. Z Bio- 

Oritani and Kincade Stromal Cell Interaction Molecules 781 



chem. (Tokyo). 116:128-139. 
47. Phillips, C.L., L.W. Lever, S.R. Pinnell, L.D. Quarles, and R.J. Wenstrup. 

1991. Construction of a full-length murine pro alpha 2(1) collagen cDNA 
by the polymerase chain reaction. J. Invest. Dermatol. 97:980-984. 

48. Rapraeger, A.C., A. Krufka, and B.B. Olwin. 1991. Requirement of hepa- 
ran sulfate for bFGF-mediated fibroblast growth and myoblast differenti- 
ation. Science (Wash. DC). 252:1705-1708. 

49. Ran, W., W. Just, U. Vetter, and W. Vogel. 1994. A dinucleotide repeat in 
the mouse biglycan gene (EST) on the X chromosome. Mamn~ Genome. 5: 
395-396. 

50. Rezaie, A.R., M.M. Fiore, P.F. Neuenschwander, C.T. Esmon, and J.H. 
Morrissey. 1992. Expression and purification of a soluble tissue factor fu- 
sion protein with an epitope for an unusual calcium-dependent antibody. 
Protein Expr. Purif. 3:453-460. 

51. Roberts, R., J. Gallagher, E. Spooncer, T.D. Allen, F. Bloomfield, and T. 
M. Dexter. 1988. Heparan sulphate bound growth factors: a mechanism 
for stromal cell mediated haemopoiesis. Nature (Lond.). 332:376--378. 

52. Rosenberg, M.E., J. Dvergsten, and R, Correa-Rotter. 1993. Clusterin: an 
enigmatic protein recruited by diverse stimuli. J. Lab. Clin. Med. 121: 
205-214. 

53. Sanderson, R.D., P. Lalor, and M. Bernfield. 1989. B lymphocytes express 
and lose syndecan at specific stages of differentiation. Cell Regul. 1:27- 
35. 

54. Sanderson, R.D., T.B. Sneed, L.A. Young, G.L. Sullivan, and A.D. Lander. 
1992. Adhesion of B lymphoid (MPC-11) cells to type I collagen is medi- 
ated by the integral membrane proteoglycan, syndecan. Z ImmunoL 148: 
3902-3911. 

55. Skarnes, W.C., J.E. Moss, S.M. Hurtley, and R.S.P. Beddington. 1995. Cap- 
turing genes encoding membrane and secreted proteins important for 
mouse development. Proc. Natl. Acad. Sci. USA. 92:6592-6596. 

56. Smithson, G., K. Medina, I. Ponting, and P.W. Kincade. 1995. Estrogen 

suppresses stromal cell-dependent lymphopoiesis in culture. J. lmmunol. 
155:3409-3417. 

57. Stanley, M.J., B.F. Liebersbach, W. Liu, D.J. Anhalt, and R,D. Sanderson. 
1995. Heparan sulfate-mediated cell aggregation. Syndecans-1 and -4  
mediate intercellular adhesion following their transfection into human B 
lymphoid cells. J. Biol. Chem. 270:5077-5083. 

58. Sugahara, H., Y. Kanakura, T. Furitsu, K. Ishihara, K. Oritani, H. Ikeda, H. 
Kitayama, J. Ishikawa, K. Hashimoto, Y. Kanayama, et al. 1994. Induc- 
tion of programmed cell death in human hematopoietic cell lines by fi- 
bronectin via its interaction with very late antigen 5. J. Exp. Med. 179: 
1757-1766. 

59. Tashiro, K., H. Tada, R. Heilker, M. Shirozu, T. Nakano, and T. Honjo. 
1993. Signal sequence trap: a cloning strategy for secreted proteins and 
type I membrane proteins. Science (Wash. DC). 261:600-603. 

60. Tsuda, M., T. Sakiyama, H. Endo, and T. Kitagawa. 1992. The primary 
structure of mouse saposin. Biochem. Biophys. Res. Commun. 184:1266- 
1272. 

61. Unkeless, J.C. 1979. Characterization of a monoclonal antibody directed 
against mouse macrophage and lymphocyte Fc receptors. Z Exp. Med. 
150:580-596. 

62. Verfailtie, C., R. Hurley, R. Bhatia, and J.B. McCarthy. 1994. Role of bone 
marrow matrix in normal and abnormal hematopoiesis. Crit. Rev. Oncol.- 
Hematol. 16:201-224. 

63. Wilson, M.R., and S.B. Easterbrook-Smith. 1992. Clusterin binds by a mul- 
tivalent mechanism to the Fc and Fab regions of IgG. Biochim. Biophys. 
Acta. 1159:319-326. 

64. Zuckerman, K.S., R.K. Rhodes, D.D. Goodrum, V.R. Patel, B. Sparks, J. 
Wells, M.S. Wiche, and L.A. Mayo. 1985. Inhibition of collagen deposi- 
tion in the extracellular matrix prevents the establishment of a stroma 
supportive of hematopoiesis in long-term murine bone marrow cultures. 
J. Clin. Invest. 75:970-975. 

The Journal of Cell Biology, Volume 134, 1996 782 


