THE DEGREE OF COMPENSATORY RENAL HYPERTROPHY FOLLOWING UNILATERAL NEPHRECTOMY*

I. THE INFLUENCE OF AGE

BY E. M. MACKAY, M.D., L. L. MACKAY, PH.D., AND T. ADDIS, M.D.

(From the Hospital of The Rockefeller Institute for Medical Research, New York, and the Department of Medicine of Stanford University Medical School, San Francisco)

(Received for publication, April 12, 1932)

The gross enlargement of the remaining kidney which occurs after unilateral nephrectomy is called a compensatory hypertrophy.¹ Compensatory hypertrophy of the kidney is a relative term and designates the increase in size of a single kidney over that found when both kidneys are present. It is measured by the increase in the weight of the remaining kidney of an animal from which one kidney has been removed over and above the weight of one kidney of a control animal of the same age and sex maintained under the same conditions and subjected to an operation in which one kidney is exposed but not removed.

By the expression "degree" of compensatory hypertrophy we mean the maximum amount of enlargement which follows unilateral nephrectomy. Our work was done on the albino rat and in this animal the remaining kidney has reached its maximum degree of compensatory hypertrophy 40 days after the removal of the other kidney and the degree of compensatory hypertrophy thereafter remains constant. All the measurements in this paper were made 40 days after operation. But it is essential that some proof that compensatory hypertrophy is

* This investigation was aided by a grant from the Josiah Macy, Jr., Foundation.

¹ This enlargement of the remaining kidney is due at least in part to a true hypertrophy of the parenchymal cells of the kidney, but in using the expression compensatory hypertrophy there is no intention to prejudge the question as to the possibility of a hyperplasia of the parenchymal as well as of the vascular and supporting tissue cells.

255

256 RENAL HYPERTROPHY AFTER NEPHRECTOMY. I

complete in 40 days be given now because until that point has been established our conclusions as to the relation between age and compensatory hypertrophy cannot be accepted. Without it the possibility would remain that the decrease in the degree of compensatory hypertrophy with advancing age might be only apparent and due to a slowing of the rate of increase in the weight of the remaining kidney in the older rats and not to any lack of ability to attain in the end to as great a degree of increase as is observed in the younger animals. And the necessity of dealing first with this point is the more stringent

FIG. 1

since Smith and Moise (1) have been led to a different conclusion. They find that compensatory hypertrophy is a process which continues for at least 100 days after nephrectomy and their curve of the rate of compensatory hypertrophy never reaches any clear and definite maximum. However it happens that during the past 8 years we have collected for other purposes than those which concern this paper a large number of observations on the rate of compensatory hypertrophy of the kidney in rats of both sexes and of all ages. The result has been an adequate demonstration that when 40 days have elapsed after the removal of a kidney the remaining kidney has reached its

maximum degree of enlargement. Our results fall into two groups in accordance with differences in diet, in the ages selected for study, in the place where the experiments were carried out, and in the strain of albino rat which was used. We have selected from these two groups all observations in which all ages and both males and females were equally represented and in this way have constructed two graphs which summarize the findings on over 2000 rats. The ordinates represent the percentage increase in the weight of the remaining kidney over the average weight for one kidney of the controls. The difference

FIG. 2

in the height of the two curves arises from the fact that in the first group (Fig. 1) the study was extended to rats of greater age than in the second group (Fig. 2). It should be noted also that in other experiments, which could not be incorporated in these average curves because both sexes were not represented, observations have been continued to as long as 90 days after operation and that in these instances also the general result indicates that at all ages compensatory hypertrophy is complete in 40 days.

Methods

The general methods used have already been described (2). Male albino rats were divided into control and experimental groups and one kidney was exposed or

ized	Kidney weight Body surface			289	288	285	282	281	280	273	273	271	271	269	268	268	267	266	262	259	258	258	254	252	251	249	247	243
phrectom	Kidney weight		mg.	1066	1044	942	991	929	1002	912	971	834	1031	876	895	886	912	870	772	862	858	846	847	866	946	913	845	601
Nej	Body weight	ys old	8 m .	185	171	157	178	158	177	160	176	142	194	154	160	157	165	155	132	159	159	156	159	167	191	183	166	130
	Kidney weight Body surface	30 da;		206	201	200	196	195	192	190	189	188	188	187	186	185	184	184	183	182	181	179	176	176	173	170	167	166
Controls	Kidney weight		mg.	675	733	663	653	692	676	695	625	657	639	663	642	691	616	679	624	721	670	583	614	584	572	567	583	569
	Body weight		gm.	155	182	158	159	174	173	183	157	171	164	176	169	188	160	186	165	206	186	154	170	158	158	159	171	166
ized	Kidney weight Body surface			353	343	332	331	301	300	300	297	297	290	288	287	286	285	284	284	282	274	273	270	254	÷			
phrectom	Kidney weight		mg.	764	854	804	928	972	846	844	769	820	769	818	981	835	759	735	736	742	750	784	741	727				
Ne	Body weight	rs old	8116.	83	103	8	122	152	124	123	109	120	113	125	117	130	114	109	109	112	119	127	119	126				
	Kidney weight Body surface	15 day		220	208	207	207	206	205	193	192	192	191	185	182	179	178	178	177	174	171	166	164					
Controls	Kidney weight		.844	541	570	500	589	638	644	518	542	621	507	430	514	433	392	388	541	452	504	441	413					
	Body weight		gm.	101	119	98	125	143	146	115	124	152	113	92	124	66	85	1 8	141	109	132	113	105					
ized	Kidney weight Body surface			335	324	319	302	299	295	293	290	288	286	285	284	263	261											
phrectom	Kidney weight		.814	676	832	577	752	544	667	731	525	584	569	571	574	538	490											
Ne	Body weight	s old	<i>8m</i> .	76	117	2	111	65	80	111	4	11	74	75	76	11	68			•			÷					
	Kidney weight Body surface	5 day		225	210	208	200	186	186	184	183	181	180	178	178	178	177	174	173	171	169	167	163	160	155			
Controls	Kidney weight		mg.	410	447	387	503	387	372	393	547	373	347	395	388	400	338	405	331	366	392	354	332	290	351			
	Body weight		gm.	65	81	67	105	62	75	82	135	78	11	86	8	88	20	92	70	82	92	81	11	45	80			

TABLE I

1	248	241	240	239	238	234	234	232	231	231	229	229	225	224	223	222	219	218	215	212	211	210	209	202	
	1401	1274	1312	1444	1371	1247	1259	1232	1222	1266	1414	1280	1187	1220	1318	1211	1226	1214	1202	1141	1125	1120	1215	1086	
ys old	351	318	334	389	361	321	327	320	318	335	401	345	317	332	376	332	347	343	346	327	321	322	367	326	
180 da	193	187	182	182	179	179	179	179	175	174	174	173	172	172	170	168	165	165	164	164	160	160	159	149	
	1238	1041	1050	1001	1052	1025	1079	1001	1067	987	987	1005	1000	1038	939	1064	858	930	910	883	872	1001	822	905	
_	426	342	361	337	373	358	386	345	395	354	352	365	366	388	340	416	310	349	341	325	333	409	308	392	
	287	265	265	260	260	255	248	248	248	245	245	244	241	238	237	234	232	231	228	227	229	219	214	192	191
	1425	1337	1199	1221	1177	1289	1080	1080	1058	1133	1157	1107	1055	1160	1157	1162	1033	1065	1179	1038	1129	1003	1085	878	171
rs old	289	296	252	266	253	298	238	238	230	261	269	253	240	281	282	290	246	259	306	256	299	258	298	257	212
90 day	212	206	204	203	195	194	185	185	184	182	177	177	176	176	176	175	173	173	172	172	172	169	169	163	162
	266	895	877	1037	905	894	814	779	852	922	917	874	849	875	829	748	687	850	807	797	762	805	796	649	262
	267	237	233	301	261	259	242	316	261	298	308	288	278	290	268	231	397	285	267	262	243	273	269	208	285
	282	270	263	262	260	254	253	251	250	249	249	248	248	246	245	244	237	237	237	237	232	228	225	222	198
	965	1045	1079	1081	1018	1059	1126	1016	972	965	943	1032	973	929	945	871	865	875	917	796	848	664	861	734	726
ys old	165	199	217	218	203	223	245	213	201	199	192	222	203	191	198	176	182	186	199	215	182	172	195	157	184
60 da;	211	210	194	193	187	186	185	184	182	182	181	180	179	179	179	179	179	178	177	175	172	167	166	161	
	872	836	785	717	744	860	750	761	724	762	808	683	752	694	729	748	882	782	735	697	715	805	749	670	
	220	209	213	188	209	259	214	220	208	224	246	194	227	200	215	225	286	241	221	209	221	276	252	222	

bac	Kidney weight Body surface			236	231	228	226	226	220	215	214	212	212	211	211	208	206	204	202	202	201	200	197	196	194	189				
phrectom	Kidney weight		mg.	1396	1387	1184	1426	1362	1312	1328	1045	1364	1433	1344	1255	1272	1464	1158	1444	1132	1135	1094	1173	1163	1314	1104				
Nej	Body weight	ays old	gm.	376	383	309	413	386	381	403	282	425	460	419	378	395	496	354	500	348	352	335	380	379	459	368				
	Kidney weight Body surface	540 di		207	203	190	186	177	173	172	172	171	171	169	168	168	168	167	166	164	160	160	159	156	155	152				
Controls	Kidney weight		m 8.	1233	1321	1092	982	1222	1192	1287	1067	1041	1059	1087	1176	1036	1183	1058	988	1054	1161	985	1057	1132	667	932				
	Body weight		gm.	380	452	361	316	472	472	536	403	392	403	426	483	400	488	418	380	427	511	399	449	511	425	397				
zed	Kidney weight Body surface			247	242	241	238	225	225	222	220	218	218	218	216	216	215	214	209	202	192	188								
phrectom	Kidney weight		mg.	1280	1431	1274	1332	1386	1385	1415	1306	1594	1231	994	1255	1192	1268	1047	1017	1174	1192	1079								
Nej	Body weight	ys old	gm.	309	376	318	345	399	401	419	377	516	352	255	366	339	374	284	282	365	406	359								
	Kidney weight Body surface	360 da		207	202	199	195	194	194	193	184	180	177	177	176	175	173	172	170	166	161	161	158	156	149					
Controls	Kidney weight		mg.	1139	1114	1255	1136	1061	1011	1216	944	1040	1051	1145	1152	1055	969	981	970	859	995	913	882	938	925					
	Body weight		£m.	338	339	415	367	335	312	414	303	364	377	429	439	388	347	354	354	307	401	353	343	386	406					
zed	Kidney weight Body surface			234	233	232	231	227	226	226	226	222	221	220	220	219	219	219	218	218	217	215	214	212	211	210	204	203	191	190
ohrectomi	Kidney weight		mg.	1394	1158	1299	1388	1263	1348	1385	1217	1288	1239	1236	1304	1226	1180	1226	1250	1178	1260	1153	1362	1458	1075	1123	1128	1008	1070	1244
Nel	Body weight	tys old	<i>8m</i> .	379	289	345	384	343	381	396	327	366	346	347	378	347	326	346	359	329	365	325	418	471	300	323	339	290	346	438
	Kidney weight Body surface	$270 \mathrm{d}_{\mathrm{f}}$		190	179	179	179	172	172	172	170	170	169	168	168	165	163	163	160	157	157	157	157	156	156	155	153	148	146	146
Controls	Kidney weight		<i>m</i> 8.	1143	1069	1027	873	982	1014	949	1050	1115	1019	1071	938	988	930	1009	874	1122	834	902	1006	966	854	1092	809	810	957	939
	Body weight		£111.	385	382	359	282	357	377	338	403	441	388	422	344	383	354	402	334	433	320	359	424	402	336	487	371	335	438	428

TABLE I-Concluded

260

RENAL HYPERTROPHY AFTER NEPHRECTOMY. I

removed at 5, 15, 30, 50, 60, 90, 180, 270, 540, and 720 days of age. In the groups in which operations were performed at 5 and 15 days of age, it was necessary to clip the incisor teeth of the mother in order to prevent her from eating the young rats after the operation. All other groups received from the first the casein-starchlard diet described as the experimental male diet (2). Each rat was anesthetized with ether 40 days after operation, exsanguinated, the kidney stripped of its capsule, and cut with a razor into two parts which were pressed between filter paper before weighing.

			Contr	ol gro	up ave	rages		Nep	hrect	omy	grou	p ave	rages	Mg. 100 bod	r per m. ace	hyper-	
Age at operation	Age at death	No. rats	Initial body weight	Gross body weight at death	Corrected body weight	Body surface	Kidney weight	No. rats	Initial body weight	Gross body weight at death	Corrected body weight	Body surface	Kidney weight	Control group	Nephrectomy group	Difference	Compensatory renal trophy
day	days		gm.	gm.	gm.	sq. cm.	mg.		gm.	gm.	gm.	sq. cm.	mg.				per cent
5	45	22		89	82	214	387	14	_	84	79	206	617	181	299	118	65.2
15	55	20	25	125	116	269	509	21	26	125	145	271	798	188	296	108	57.5
30	70	25	42	179	170	347	644	26	42	173	164	340	903	185	266	81	43.7
60	100	24	130	235	225	419	759	25	126	206	198	385	944	182	245	63	34.6
90	130	25	166	272	265	468	851	25	169	272	265	467	1118	181	239	58	32.0
180	220	24	290	366	361	575	990	24	281	346	341	554	1249	172	225	53	30.9
270	310	27	322	384	381	596	976	27	324	361	356	569	1239	164	218	54	32.9
360	400	22	318	372	367	581	1035	19	325	365	360	573	1255	178	219	41	23.1
540	580	23	407	437	407	620	1100	23	389	398	390	606	1270	171	210	39	22.8

TABLE II

RESULTS

Table I gives the results. The kidney weight is expressed in miligrams per 100 sq. cm. of body size, since it has been shown that under uniform conditions this value is approximately constant at all ages (3). In calculating the body surface the formula of Carman and Mitchell (4) was used although more recent investigations (5) suggest that the constant should be smaller. However the magnitude of the constant has no effect on our relative figures. The kidney weights tabulated for the control groups are the average of the weights of both kidneys. The degree of compensatory hypertrophy is expressed as the percentage increase in weight of the single kidney over the average

weight of both kidneys of the control. In Table II the average results for each age are given. This table and the graphic representation of the individual observations given in Fig. 3, show how the degree of compensatory hypertrophy decreases, rapidly from 5 to 60 days of age, but thereafter very slowly as age advances.

DISCUSSION

Young rats eat a greater amount of food in relation to their size than older rats. With a constant diet such as was given to all but

		(Control g	roup				Nepl	hrectomiz	æd group		•
Age at opera-	Inta per sq. per c	ke dm. lay	*Ki p	dney wei er sq. dm	ght	Inta per sq per o	ike . dm. day	*K P	dney wei er sq. dm	ght	Degree pensato hyper	of com- ry renal trophy
tion	**Food	Pro- tein	Calcu- lated due to protein intake	As ob- served	Cor- rected for protein intake	**Food	Pro- tein	Calcu- lated due to protein intake	As ob- served	Cor- rected for protein intake	As ob- served	Cor- rected for protein intake
days	gm.	gm.	mg.	mg.	mg.	gm.	gm.	mg.	mg.	mg.	per cent	per cent
30	3.41	0.61	33	185	152	3.30	0.60	66	266	200	43.8	31.5
60	2.41	0.43	23	182	159	2.43	0.44	46	245	199	34.6	26.9
90	2.41	0.43	23	181	158	2.50	0.45	50	239	189	32.0	19.6
180	2.07	0.37	20	172	152	2.11	0.38	42	225	183	30.8	20.4
270	1.59	0.29	16	164	148	1.70	0.31	34	218	ʻ 184	32.9	24.3
360	2.11	0.38	21	178	157	2.16	0.39	42	219	177	23.0	12.7
540	1.61	0.29	16	171	155	1.71	0.31	34	210	176	22.8	13.5

TABLE	III
-------	-----

* One-half the weight of the two kidneys.

** Average of last 10 days of experiment.

the first two groups young rats get proportionally more protein than the older rats. A definite relation has been shown to exist between the amount of protein eaten and the weight of kidney (6). Assuming that the protein-kidney weight formula is applicable to a single kidney it is possible from our food intake data to calculate what would have been the weight of the remaining kidney as well as of the average of the control kidney if the protein intake had been constant at all ages. The results of these calculations are given in Table III. They show that the essential features of the relationship are retained in spite of such corrections and that the decrease in compensatory hypertrophy as age advances cannot be ascribed to the concomitant changes in protein consumption.

The concentration of water in body tissues decreases with age. Lowrey (7) has determined the water concentration in the kidneys of rats of varying age, and from his data a curve has been constructed which in Fig. 4 has been superimposed on a curve of compensatory hypertrophy derived from our data in Table I.

It is interesting that there should be such a close correspondence between the degree of compensatory hypertrophy and the water concentration of the kidney at the time of nephrectomy. The agreement favors the view that the changes we observe are a special instance of the general decrease in growth capacity in the body as it grows old and that the design of any experiments made in the attempt

to elucidate the mechanism underlying these changes should be based on the general results of the study of senescence.

CONCLUSION

Compensatory hypertrophy of the kidney in albino rats becomes less as age advances. There is a rapid decrease from 5 days to 60 days of age and then a slow diminution throughout adult life.

REFERENCES

- 1. Smith, A. H., and Moise, T. S., J. Exp. Med., 1927, 45, 263.
- 2. MacKay, L. L., and MacKay, E. M., Am. J. Physiol., 1927, 83, 179.
- 3. MacKay, L. L., and MacKay, E. M., Am. J. Physiol., 1927, 83, 191.
- 4. Carman, G. G., and Mitchell, H. H., Am. J. Physiol., 1926, 76, 380.
- 5. Lee, M. O., Am. J. Physiol., 1929, 89, 24.
- 6. MacKay, E. M., and MacKay, L. L., J. Nutrition, 1931, 3, 375.
- 7. Lowrey, L. G., Anat. Rec., 1913, 7, 143.