# SUPPLEMENTARY INFORMATION

### THE STABILITY AND ROBUSTNESS OF METABOLIC STATES: IDENTIFYING STABILIZING SITES IN METABOLIC NETWORKS

Sergio Grimbs, Joachim Selbig, Sascha Bulik, Hermann-Georg Holzhütter, Ralf Steuer

## **Modelling details**

#### Parameter intervals and allosteric regulation

In total, 10 different target sites of allosteric regulation are included into the model. They are listed in the upper part of Table I together with their intervals the sampling under different preconditions ( $\mathbf{C}_{reg}$  and  $\mathbf{C}_{noreg}$ ). All nonzero saturation parameters  $\theta_S^{\mu}$ , that are not mentioned explicitly in Table I, lie within the interval of [0, 1] if the metabolite S is a substrate and [-1,0] if S is a product of the reaction  $\nu(S)$ , respectively.

| with regul               | with regulation $(\mathbf{C}_{reg})$ |                |               |  |  |  |  |  |  |
|--------------------------|--------------------------------------|----------------|---------------|--|--|--|--|--|--|
| saturation parameter     | regulation                           | interval       | interval      |  |  |  |  |  |  |
| $\theta_{Fru16P2}^{PK}$  | activation                           | $[0\ldots 4]$  | 0             |  |  |  |  |  |  |
| $	heta^{HK}_{23P2Gri}$   | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $	heta^{G6PD}_{23P2Gri}$ | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $	heta^{6PGD}_{23P2Gri}$ | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $	heta^{6PGD}_{ATP}$     | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $	heta^{PFK}_{AMP}$      | activation                           | $[0 \dots 4]$  | 0             |  |  |  |  |  |  |
| $	heta^{PFK}_{ATP}$      | inhibition                           | $[-4\ldots 1]$ | $[0 \dots 1]$ |  |  |  |  |  |  |
| $\theta_{ATP}^{PK}$      | inhibition                           | $[-4\dots 0]$  | $[-1\dots 0]$ |  |  |  |  |  |  |
| $	heta^{PFK}_{23P2Gri}$  | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $	heta^{G6PD}_{ATP}$     | inhibition                           | $[-1\dots 0]$  | 0             |  |  |  |  |  |  |
| $\theta^{AK}_{ADP}$      |                                      | [              | 02]           |  |  |  |  |  |  |
| $	heta^{GSSGR}_{GSH}$    |                                      | -20]           |               |  |  |  |  |  |  |

**Table I:** All saturation parameters associated with allosteric regulation as well as all non-standard intervals for saturation parameters are shown here.

#### Matrix of saturation parameters

The matrix  $\theta$ , which contains all saturation parameters, is shown in Table II. For clarity, the saturation parameters are denoted as t(1) to t(44) in case of substrate activation and p(1) to p(43) in case of product inhibition. The parameters describing the allosteric regulation are abbreviated as r(1) to r(10). In total, there are 97 saturation parameters.

| Glcin  | Glc6P  | Fru6P  | Fru16P2 | GraP            | DHAP    | 13P2Gri | 23P2Gri | 3PGri        | 2PGri   | PEP          | 6PGlcA       | Rul5P   | Xul5P        | Rib5P   | Sed7P   | E4P     | ATP          | AMP          | NAD     | NADP         | GSH    | Pyr         | Lac      | Р                 | PRPP         | ADP     | GSSG    | NADH    | NADPH        |          |
|--------|--------|--------|---------|-----------------|---------|---------|---------|--------------|---------|--------------|--------------|---------|--------------|---------|---------|---------|--------------|--------------|---------|--------------|--------|-------------|----------|-------------------|--------------|---------|---------|---------|--------------|----------|
| -p(1)  | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | GlcT +   |
| 1-p(1) | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | GlcT -   |
| t(1)   | -p(2)  | 0      | 0       | 0               | 0       | 0       | -r(2)   | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | t(24)        | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | -p(39)  | 0       | 0       | 0            | HK +     |
| t(1)-1 | 1-p(2) | 0      | 0       | 0               | 0       | 0       | -r(2)   | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | t(24)-1      | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 1-p(39) | 0       | 0       | 0            | HK -     |
| 0      | t(2)   | -p(3)  | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | GPI +    |
| 0      | t(2)-1 | 1-p(3) | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | GPI -    |
| 0      | 0      | t(4)   | -p(6)   | 0               | 0       | 0       | -r(9)   | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 1-r(7)       | r(6)         | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | -p(40)  | 0       | 0       | 0            | PFK +    |
| 0      | 0      | t(4)-1 | 1-p(6)  | 0               | 0       | 0       | -r(9)   | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | -r(7)        | r(6)         | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 1-p(40) | 0       | 0       | 0            | PFK -    |
| 0      | 0      | 0      | t(5)    | -p(7)           | -p(11)  | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | ALD +    |
| 0      | 0      | 0      | t(5)-1  | 1-p(7)          | 1-p(11) | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | ALD -    |
| 0      | 0      | 0      | 0       | -p(8)           | t(8)    | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | TPI +    |
| 0      | 0      | 0      | 0       | 1-n(8)          | t(8)-1  | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | 0            | TPI -    |
| 0      | 0      | 0      | 0       | t(6)            | 0       | -p(12)  | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | t(28)   | 0            | 0      | 0           | 0        | t(36)             | 0            | 0       | 0       | -p(41)  | 0            | GAPD +   |
| Ő      | Ő      | Ő      | Ő       | t(6)-1          | Ő       | 1-n(12) | Ő       | Ő            | Ő       | ő            | ő            | ő       | Ő            | Ő       | ő       | ő       | ő            | Ő            | t(28)-1 | Ő            | ő      | Ő           | ő        | t(36)-1           | Ő            | ő       | ő       | 1-n(41) | Ő            | GAPD -   |
| Ő      | Ő      | Ő      | Ő       | 0               | Ő       | t(9)    | Ő       | -n(14)       | Ő       | ő            | ő            | ő       | Ő            | Ő       | ő       | ő       | -n(25)       | Ő            | 0       | Ő            | ő      | Ő           | ő        | 0                 | Ő            | t(38)   | ő       | 0       | Ő            | PGK +    |
| 0      | 0      | Ő      | Ő       | Ő               | Ő       | t(9)=1  | 0       | $1_{-n}(14)$ | Ő       | ő            | 0            | Ő       | ő            | ő       | 0       | 0       | 1-n(25)      | ő            | Ő       | 0            | ő      | 0           | Ő        | 0                 | Ő            | t(38)=1 | ő       | Ő       | Ő            | PGK -    |
| ő      | ő      | 0      | ő       | ő               | ő       | t(10)   | -n(13)  | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | 0       | ő       | 0       | ő            | DPGM +   |
| ő      | ő      | 0      | ő       | ő               | ő       | t(10)=1 | 1=n(13) | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | DPGM -   |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | t(11)   | -n(15)       | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | -n(38)            | ő            | Ő       | ő       | 0       | ő            | DPGase + |
| ő      | ő      | Ő      | ő       | ő               | ő       | ő       | t(11)-1 | 1-p(15)      | ő       | ő            | ŏ            | 0       | ő            | ő       | ŏ       | ŏ       | ő            | ŏ            | ő       | ő            | Ő      | ő           | Ő        | 1-n(38)           | ŏ            | ő       | ŏ       | 0       | ő            | DPGase - |
| Ő      | Ő      | Ő      | Ő       | ő               | Ő       | Ő       | 0       | t(12)        | -n(16)  | ő            | Ő            | Ő       | Ő            | Ő       | ő       | Ő       | ő            | ő            | Ő       | Ő            | ő      | Ő           | ő        | 0                 | Ő            | ő       | ő       | Ő       | Ő            | PGM +    |
| Ő      | Ő      | Ő      | Ő       | ő               | Ő       | Ő       | Ő       | t(12)-1      | 1-n(16) | ő            | Ő            | Ő       | Ő            | Ő       | ő       | Ő       | ő            | ő            | Ő       | Ő            | ő      | Ő           | ő        | Ő                 | Ő            | ő       | ő       | Ő       | Ő            | PGM -    |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | t(13)   | -n(17)       | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | EN +     |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | t(13)=1 | $1_{-n}(17)$ | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | EN -     |
| ő      | ő      | 0      | r(1)    | ő               | ő       | 0       | ő       | 0            | 0       | t(14)        | ő            | 0       | ő            | ő       | ő       | ő       | -r(8)        | ő            | ő       | 0            | Ő      | =n(33)      | 0        | ő                 | ő            | t(39)   | ő       | Ő       | ő            | PK +     |
| ő      | ő      | 0      | r(1)    | Ő               | ő       | 0       | 0       | Ő            | 0       | t(14)=1      | 0            | 0       | ő            | ő       | ő       | ő       | 1_r(8)       | ő            | ő       | 0            | ő      | 1=n(33)     | ő        | 0                 | ő            | t(39)=1 | ő       | 0       | Ő            | PK -     |
| ő      | ő      | 0      | 0       | Ő               | ő       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | =n(29)  | 0            | ő      | t(32)       | =n(34)   | 0                 | ő            | 0       | ő       | t(42)   | ő            | LDH +    |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | 1_n(29) | n Ö          | Ő      | t(32)=1     | 1=n(34)  | ő                 | ő            | Ő       | ő       | t(42)=1 | ő            | LDH -    |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | 0       | -n(30)       | Ő      | t(33)       | =n(35)   | ő                 | ő            | Ő       | ő       | 0       | t(43)        | LDHP +   |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 1=n(30)      | Ő      | t(33)=1     | 1_n(35)  | ő                 | ő            | Ő       | ő       | 0       | t(43)=1      | LDHP -   |
| 0      | ő      | ő      | ő       | ő               | ő       | ő       | ő       | ő            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | t(25)        | ő            | ő       | 0            | ő      | 0           | 0        | ő                 | ő            | 0       | ő       | 0       | 0            | ATPase   |
| 0      | ő      | ő      | ő       | ő               | ő       | ő       | ő       | ő            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | -n(27)       | -n(28)       | ő       | 0            | ő      | ő           | 0        | ő                 | ő            | t(40)   | ő       | 0       | ő            | AK +     |
| 0      | ő      | ő      | ő       | ő               | ő       | ő       | ő       | ő            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | $1_{-p(27)}$ | $1_{-n}(28)$ | ő       | 0            | ő      | ő           | 0        | ő                 | ő            | t(40)-2 | ő       | 0       | ő            | AK -     |
| 0      | t(3)   | 0      | 0       | 0               | 0       | 0       | -r(3)   | 0            | 0       | 0            | -n(18)       | 0       | 0            | 0       | 0       | 0       | -r(10)       | 1-p(20)      | 0       | t(29)        | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | -n(42)       | G6PD +   |
| 0      | t(3)-1 | 0      | 0       | 0               | 0       | 0       | -r(3)   | 0            | 0       | ő            | $1_{-p(18)}$ | 0       | 0            | 0       | 0       | 0       | -r(10)       | 0            | 0       | $t(29)_{-1}$ | 0      | 0           | 0        | 0                 | 0            | 0       | 0       | 0       | $1_{-p(42)}$ | G6PD -   |
| 0      | 0      | 0      | 0       | ő               | 0       | 0       | -r(3)   | 0            | 0       | ő            | t(15)        | =n(19)  | ő            | ő       | ő       | 0       | -r(10)       | ő            | ő       | t(20) = 1    | 0      | 0           | 0        | 0                 | ő            | 0       | ő       | 0       | =n(43)       | 6PGD +   |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | -r(4)   | Ő            | 0       | ő            | t(15)-1      | 1=n(19) | ő            | ő       | ő       | ő       | -r(5)        | ő            | ő       | t(30)=1      | ő      | ő           | ő        | 0                 | ő            | ő       | ő       | 0       | $1_{=n}(43)$ | 6PGD -   |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | 0       | 0            | 0       | ő            | 0            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | =n(31)       | -n(32) | ő           | 0        | 0                 | ő            | Ő       | t(41)   | 0       | t(44)        | GSSGR +  |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 1=n(31) (    | P(32)  | Ň           | 0        | ő                 | ő            | Ő       | t(41)=1 | 0       | t(44)=1      | GSSGR -  |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | ő            | ő       | ő       | ő       | 0            | ő            | ő       | 0            | t(31)  | 0           | 0        | ő                 | ő            | Ő       | 0       | 0       | 0            | GSHox    |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | t(16)   | =n(20)       | ő       | ő       | ő       | 0            | ő            | ő       | 0            | 0      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | FP +     |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | t(16)=1 | $1_{-n}(20)$ | ő       | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | EP -     |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | t(17)   | 0            | -n(21)  | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | KI +     |
| ő      | ő      | 0      | ő       | ő               | ő       | 0       | ő       | 0            | 0       | ő            | ő            | t(17)=1 | ő            | 1-n(21) | ő       | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | KI-      |
| ő      | ő      | 0      | ő       | -n(9)           | ő       | 0       | ő       | 0            | 0       | ő            | ő            | 0       | t(18)        | t(20)   | -n(22)  | ő       | 0            | ő            | ő       | 0            | Ő      | ő           | 0        | ő                 | ő            | Ő       | ő       | 0       | ő            | TK1 +    |
| 0      | 0      | 0      | 0       | -p(2)<br>1_n(0) | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | t(18)-1      | t(20)-1 | 1=n(22) | 0       | 0            | ő            | ő       | 0            | ő      | 0           | 0        | 0                 | ő            | ő       | ő       | 0       | ő            | TK1 -    |
| 0      | 0      | -n(4)  | 0       | t(7)            | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | t(22)   | -n(23)  | 0            | ő            | ő       | 0            | ő      | 0           | 0        | 0                 | ő            | ő       | ő       | 0       | ő            | TA +     |
| 0      | 0      | 1_n(d) | 0       | t(7)=1          | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | ő            | 0       | t(22)-1 | 1_n(23) | 0            | ő            | ő       | 0            | ő      | 0           | 0        | 0                 | ő            | ő       | ő       | 0       | ő            | TA -     |
| 0      | 0      | ·-p(+) | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | ő            | t(21)   | 0       | -P(23)  | t(26)        | -t(27)       | ő       | 0            | ő      | 0           | 0        | 0                 | =n(37)       | ő       | ő       | 0       | ő            | PRPPS +  |
| 0      | 0      | 0      | 0       | ő               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | ő            | t(21)-1 | ő       | 0       | t(26)=1      | $1_{-t}(27)$ | ő       | 0            | ő      | 0           | 0        | 0                 | $1_{-n}(37)$ | ő       | ő       | 0       | ő            | PRPPS -  |
| 0      | 0      | -n(5)  | 0       | -n(10)          | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | t(19)        | 0       | ő       | t(23)   | 0            | 0            | ő       | 0            | ő      | 0           | 0        | 0                 | . P(37)      | 0       | ő       | 0       | ő            | TK2 +    |
| 0      | 0      | 1_n(5) | 0       | 1_n(10)         | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | $t(19)_{-1}$ | 0       | ő       | t(23)-1 | 0            | ő            | ő       | 0            | ő      | 0           | 0        | 0                 | ő            | ő       | ő       | 0       | ő            | TK2      |
| 0      | 0      | 1-p(3) | 0       | 1-p(10)         | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | -n(36)            | 0            | 0       | 0       | 0       | 0            | PT +     |
| 0      | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | -p(30)<br>1-p(36) | 0            | 0       | 0       | 0       | 0            | PT -     |
| 0      | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | t(35)    | 1-p(50)           | 0            | 0       | 0       | 0       | 0            | LacT +   |
| 0      | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | t(35), 1 | 0                 | 0            | 0       | 0       | 0       | 0            | LacT -   |
| 0      | 0      | 0      | 0       | ő               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | ő            | ő       | 0            | 0      | t(34)       | 0        | 0                 | 0            | 0       | ő       | 0       | 0            | PvrT +   |
| 0      | 0      | 0      | 0       | ő               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | ő            | 0       | ő       | 0       | 0            | ő            | ő       | 0            | ő      | $t(34)_{r}$ | 0        | 0                 | ő            | ő       | ő       | 0       | ő            | PyrT -   |
| 0      | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | 0       | 0            | 0      | 0           | 0        | 0                 | t(37)        | 0       | 0       | 0       | 0            | PRPPT    |
| v      | 0      | 0      | 0       | 0               | 0       | 0       | 0       | 0            | 0       | 0            | 0            | 0       | 0            | 0       | 0       | 0       | 0            | 0            | U       | 0            | 0      | 0           | 0        | 0                 | (37)         | 0       | 0       | 0       | 0            | INTI     |

**Table II:** Matrix  $\theta$  of saturation parameters. The saturation parameters are denoted as t (substrate activation), p (product inhibition) and r (allosteric regulation). '+' and '-' indicate forward and backward in the case of a reversible reaction.

## **Steady state concentrations**

| metabolite | concentration $S_1^0$ | concentration $S_2^0$ |
|------------|-----------------------|-----------------------|
| Glcin      | 4.569                 | 4.3982                |
| Glc6P      | 0.0405                | 0.0032                |
| Fru6P      | 0.0157                | 0.0011                |
| Fru16P2    | 0.0097                | 0.0018                |
| GraP       | 0.0061                | 0.0019                |
| DHAP       | 0.149                 | 0.0483                |
| 13P2G      | 0.0005                | 0.0001                |
| 23P2G      | 2.6222                | 0.8914                |
| 3PG        | 0.0656                | 0.1663                |
| 2PG        | 0.0084                | 0.0223                |
| PEP        | 0.0109                | 0.0321                |
| 6PG        | 0.0255                | 0.0018                |
| Ru5P       | 0.0048                | 0.0024                |
| X5P        | 0.0129                | 0.0063                |
| R5P        | 0.0141                | 0.007                 |
| S7P        | 0.016                 | 0.0005                |
| E4P        | 0.0064                | 0.0005                |
| ATP        | 1.606                 | 0.5363                |
| AMP        | 0.0731                | 0.8153                |
| NAD        | 0.0654                | 0.0654                |
| NADP       | 0.002                 | 0.0088                |
| GSH        | 3.1136                | 3.1136                |
| Pyr        | 0.084                 | 0.084                 |
| Lac        | 1.6803                | 1.6805                |
| Р          | 0.9992                | 1.0045                |
| PRPP       | 1                     | 1                     |
| ADP        | 0.3209                | 0.6484                |
| GSSG       | 0.0002                | 0.002                 |
| NADH       | 0.0002                | 0.002                 |
| NADPH      | 0.05                  | 0.0432                |

**Table III:** Metabolic concentrations (in mMol) at steady states  $S_1^0$  (normal conditions;  $k_{ATPase} = 1.68h^{-1}$ ) and  $S_2^0$  (increased energy demand;  $k_{ATPase} = 10h^{-1}$ ).

#### Fluxes at different steady states

The net fluxes at steady state  $S_1^0$  (normal condition;  $k_{ATPase} = 1.68h^{-1}$ ) and at  $S_2^0$  (increased energy demand;  $k_{ATPase} = 10h^{-1}$ ) are shown in Table IV. The net flux for a reversible reaction is calculated as the difference between the forward and the backward flux.

| reaction | net flux under $S_1^0$                        | net flux under $S_2^0$                        |
|----------|-----------------------------------------------|-----------------------------------------------|
|          | $\left[\frac{\mathrm{m}M}{\mathrm{h}}\right]$ | $\left[\frac{\mathrm{m}M}{\mathrm{h}}\right]$ |
| GlcT     | 1.5062                                        | 2.1275                                        |
| HK       | 1.5062                                        | 2.1354                                        |
| GPI      | 1.4096                                        | 2.0900                                        |
| PFK      | 1.4567                                        | 2.2911                                        |
| ALD      | 1.4568                                        | 2.3314                                        |
| TPI      | 1.4568                                        | 2.3524                                        |
| GAPD     | 2.9371                                        | 4.7681                                        |
| PGK      | 2.4696                                        | 4.6493                                        |
| DPGM     | 0.4677                                        | 0.1397                                        |
| DPGase   | 0.4668                                        | 0.1587                                        |
| PGM      | 2.9371                                        | 4.8196                                        |
| EN       | 2.9371                                        | 4.8310                                        |
| PK       | 2.9371                                        | 4.8420                                        |
| LDH      | 2.9372                                        | 4.7679                                        |
| LDHP     | 0.1000                                        | 0.0933                                        |
| ATPase   | 2.3947                                        | 5.1008                                        |
| AK       | -0.0267                                       | 0.0039                                        |
| G6PD     | 0.0967                                        | 0.0783                                        |
| 6PGD     | 0.0967                                        | 0.1058                                        |
| GSSGR    | 0.0934                                        | 0.0929                                        |
| GSHox    | 0.0934                                        | 0.0934                                        |
| EP       | 0.0471                                        | 0.1082                                        |
| KI       | 0.0496                                        | 0.0223                                        |
| TK1      | 0.0236                                        | 0.0343                                        |
| TA       | 0.0236                                        | 0.0698                                        |
| PRPPS    | 0.0261                                        | 0.0126                                        |
| TK2      | 0.0236                                        | 0.0987                                        |
| PT       | 0.0781                                        | -0.4493                                       |
| LacT     | 3.0372                                        | 4.8612                                        |
| PyrT     | -0.1001                                       | -0.0192                                       |
| PRPPT    | 0.0261                                        | 0.0261                                        |

Table IV: Net fluxes at different steady states.

#### **Stoichiometry**

The stoichiometry of the considered metabolic network is shown in Table V. All reversible reactions are split into a forward (+) and a backward (-) reaction.

Mass conservation of any metabolite will lead to linear dependencies of the concentrations. This results in a rank deficiency of N. Because the reverse also holds, mass conservation can be detected by calculating the rank of N. The rank of N shows a deficiency of 4. This is in accordance with mass conservation constraints for following pools of metabolites : AMP/ADP/ATP, GSH/GSSG, NAD/NADH and NADP/NADPH. The null space reveals 33 independent fluxes at steady state, 28 of them representing cycling fluxes.

| Glct | ΗK      | GPI 1  | PFK  | ALD  | TPI GA  | APDH | I PGF | C DPO | GΜ | DPGa | se PG | ЪМ   | EN   | PK   | LDF  | ΗL | DH(P) | ATPase | AK   | G6 | PD | 6PG  | DG   | SSGR | GSHox | EP   | KI   | TK   | TA   | PRPF   | ?S T       | K2 P  | t Lac       | i Pyrt P | RPPT | met.    |
|------|---------|--------|------|------|---------|------|-------|-------|----|------|-------|------|------|------|------|----|-------|--------|------|----|----|------|------|------|-------|------|------|------|------|--------|------------|-------|-------------|----------|------|---------|
| + -  | + -     | +      | + -  | + -  | + - +   | -    | + -   | +     | -  | + -  | +     |      | + -  | + -  | + -  | +  | -     |        | + -  | +  | -  | + -  | +    | -    |       | + -  | + -  | + -  | + -  | + -    | +          | - + · | - + -       | + -      |      |         |
| 1 -1 | -1 1    | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) 0 0       | 0 0      | 0    | Glcin   |
| 0 0  | 1 -1    | -1 1 ( | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | -1 | 1  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | Glc6P   |
| 0 0  | $0 \ 0$ | 1 -1 - | 11   | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 1 -  | 10 0   | 1          | -100  | ) 0 0       | 0 0      | 0    | Fru6P   |
| 0 0  | $0 \ 0$ | 0 0    | 1 -1 | -11  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | Fru16P2 |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 1 -1 | 1 -1 -1 | 1    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 1 -1 | -1 1 | 0 0    | 1          | -100  | ) 0 0       | 0 0      | 0    | GraP    |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 1 -1 | -1 1 0  | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | DHAP    |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 1   | -1   | -1 1  | -1    | 1  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) 0 0       | 0 0      | 0    | 13P2Gri |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 1     | -1 | -1 1 | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | 23P2Gri |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 1 -1  | 0     | 0  | 1 -1 | -1    | 1 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | 3PGri   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 1     | -1 - | 1 1  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | 2PGri   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0    | 1 -1 | -1 1 | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | ) 0        | 000   | ) 0 0       | 0 0      | 0    | PEP     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 1  | -1 | -1 1 | 0    | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | 6PGlcA  |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 1 -  | 1 0  | 0    | 0     | -1 1 | -1 1 | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | Ru15P   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 1 -1 | 0 0  | -1 1 | 0 0  | 0 0    | 1 -1       | 100   | ) 0 0       | 0 0      | 0    | Xul5P   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 1 -1 | -1 1 | 0 0  | ) -1 1 | 0          | 000   | ) 0 0       | 0 0      | 0    | Rib5P   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 1 -1 | -1 1 | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | Sed7P   |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 1 -  | 10 0   | 1 -1       | 100   | ) 0 0       | 0 0      | 0    | E4P     |
| 0 0  | -1 1    | 0 0 -  | 11   | 0 0  | 0 0 0   | 0    | 1 -1  | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 1 -1 | 0 0  | 0  | 0     | -1     | 1 -1 | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 1 -1 1 | 0          | 000   | ) 0 0       | 0 0      | 0    | ATP     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 1 -1 | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | ) 1 -1 | 0          | 000   | ) 0 0       | 0 0      | 0    | AMP     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 -1  | 1    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 1 -1 | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) 0 0       | 0 0      | 0    | NAD     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 1  | -1    | 0      | 0 0  | -1 | 1  | -1 1 | 1    | -1   | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) 0 0       | 0 0      | 0    | NADP    |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) 2  | -2   | -2    | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | <i>i</i> 0 | 000   | ) 0 0       | 0 0      | 0    | GSH     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 1 -1 | -1 1 | -1 | 1     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) 0 0       | -11      | 0    | Pyr     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 1 -1 | 1  | -1    | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | ) -1 1      | 0 0      | 0    | Lac     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 -1  | 1    | 0 0   | 0     | 0  | 1 -1 | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 1      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 01-   | $1 \ 0 \ 0$ | 0 0      | 0    | Pi      |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | ) 1 -1 | 0          | 000   | ) 0 0       | 0 0      | -1   | PRPP    |
| 0 0  | 1 -1    | 0 0    | 1 -1 | 0 0  | 0 0 0   | 0    | -1 1  | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | -1 1 | 0 0  | 0  | 0     | 1      | -2 2 | 0  | 0  | 0 0  | ) () | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | 0 0 0       | 0 0      | 0    | ADP     |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | ) -1 | 1    | 1     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | 000         | 0 0      | 0    | GSSG    |
| 0 0  | $0 \ 0$ | 0 0    | 0 0  | 0 0  | 0 0 1   | -1   | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | -1 1 | 0  | 0     | 0      | 0 0  | 0  | 0  | 0 0  | 0 (  | 0    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0 (        | 000   | ) 0 0       | 0 0      | 0    | NADH    |
| 0 0  | $0 \ 0$ | 0 0 0  | 0 0  | 0 0  | 0 0 0   | 0    | 0 0   | 0     | 0  | 0 0  | 0     | 0 (  | 0 0  | 0 0  | 0 0  | -1 | 1     | 0      | 0 0  | 1  | -1 | 1 -  | 1 -1 | 1    | 0     | 0 0  | 0 0  | 0 0  | 0 0  | 0 0    | 0          | 000   | 000         | 0 0      | 0    | NADPH   |

Table V: Stoichiometry of energy and redox metabolism of the erythrocyte. '+' and '-' indicate forward and backward in the case of a reversible reaction.

### **Supplemental results**

#### Analyzing individual regulation parameters

The role of each regulation parameter (i.e. a saturation parameter corresponding to allosteric regulation) in the absence of any other regulation parameter is elucidated. Therefore all saturation parameters are chosen randomly and all but one regulation parameters are set to zero. This non-zero regulation parameter is increased stepwise and  $\lambda_{Re}^{\max}$  is calculated at each step. Subsequently, the monotony of  $\lambda_{Re}^{\max}$  (with respect to the stepwise increased regulation parameter) is determined. The results for a set of 1000 samples are shown in Table VI.

| regulation                | $\lambda_{Re}^{\max}$ monotonically | $\lambda_{Re}^{\max}$ monotonically | $\lambda_{Re}^{\max}$ not |  |  |
|---------------------------|-------------------------------------|-------------------------------------|---------------------------|--|--|
| parameter                 | increasing                          | decreasing                          | monotone                  |  |  |
| $\theta_{Fru16P2}^{PK}$   | 878                                 | 94                                  | 28                        |  |  |
| $\theta^{HK}_{23P2Gri}$   | 16                                  | 987                                 | 7                         |  |  |
| $\theta^{G6PD}_{23P2Gri}$ | 147                                 | 853                                 | 0                         |  |  |
| $	heta^{6PGD}_{23P2Gri}$  | 188                                 | 812                                 | 0                         |  |  |
| $\theta^{6PGD}_{ATP}$     | 166                                 | 834                                 | 0                         |  |  |
| $\theta_{AMP}^{PFK}$      | 19                                  | 966                                 | 15                        |  |  |
| $\theta_{ATP}^{PFK}$      | 14                                  | 986                                 | 0                         |  |  |
| $\theta_{ATP}^{PK}$       | 130                                 | 870                                 | 0                         |  |  |
| $\theta^{PFK}_{23P2Gri}$  | 30                                  | 970                                 | 0                         |  |  |
| $\theta_{ATP}^{G6PD}$     | 154                                 | 846                                 | 0                         |  |  |

**Table VI:** One regulation parameter (first column) is increased stepwise while all other regulation parameters are set to zero. This is done for 1000 different samples of saturation parameters. Columns 2 to 4 show how often (out of the 1000 samples)  $\lambda_{Re}^{\max}$  is monotonically increasing, monotonically decreasing or not monotone at all, respectively.

### **Extended ranking**

The extended rankings for the saturation parameters are shown in Tables VI to XI. For clarity, each saturation parameter  $\theta_{\text{metabolite}}^{\text{reaction}}$  is denoted by the metabolite and the reaction which is saturated by this metabolite.

| parar   | neter  | correlation |
|---------|--------|-------------|
|         |        | coefficient |
| Fru16P2 | PFK    | 0.37        |
| PEP     | PK     | 0.17        |
| ADP     | HK     | -0.16       |
| Glc6P   | HK     | 0.16        |
| 13P2G   | DPGM   | -0.16       |
| ADP     | PFK    | -0.11       |
| Fru6P   | PFK    | 0.11        |
| ATP     | ATPase | -0.1        |
| ADP     | PK     | -0.09       |
| PRPP    | PRPPT  | -0.07       |
| 23P2G   | DPGM   | -0.07       |
| ATP     | HK     | 0.05        |
| PRPP    | PRPPS  | 0.05        |
| ATP     | PFK    | -0.04       |
| ATP     | PK     | 0.03        |
| 23P2G   | DPGase | -0.03       |
| Fru16P2 | ALD    | 0.02        |
| 2PG     | EN     | 0.02        |
| PEP     | EN     | 0.02        |
| AMP     | PRPPS  | -0.02       |
| R5P     | PRPPS  | -0.01       |

**Table VII:** Correlation coefficients for the saturation parameters of  $C_{noreg}$ . All parametersthat are not listed here are not significant.

| paran   | neter  | mutual      |
|---------|--------|-------------|
|         |        | information |
| PRPP    | PRPPT  | 0.16        |
| Fru16P2 | PFK    | 0.145       |
| PRPP    | PRPPS  | 0.069       |
| Glc6P   | HK     | 0.045       |
| PEP     | PK     | 0.019       |
| ADP     | HK     | 0.016       |
| 13P2G   | DPGM   | 0.012       |
| Fru6P   | PFK    | 0.011       |
| 23P2G   | DPGase | 0.005       |
| ADP     | PFK    | 0.005       |
| ATP     | ATPase | 0.003       |
| 23P2G   | DPGM   | 0.002       |
| ADP     | PK     | 0.002       |
| 3PG     | DPGase | $< 10^{-3}$ |

**Table VIII:** Mutual information for the saturation parameters of  $C_{noreg}$ . All parameters that are not listed here are not sgnificant.

| parar   | neter  | p-value     |
|---------|--------|-------------|
| Fru16P2 | PFK    | $< 10^{-6}$ |
| Glc6P   | HK     | $< 10^{-6}$ |
| ADP     | HK     | $< 10^{-6}$ |
| Fru6P   | PFK    | $< 10^{-6}$ |
| PEP     | PK     | $< 10^{-6}$ |
| ADP     | PFK    | $< 10^{-6}$ |
| 23P2G   | DPGase | $< 10^{-6}$ |
| ATP     | ATPase | $< 10^{-6}$ |
| 13P2G   | DPGM   | $< 10^{-6}$ |
| ADP     | PK     | $< 10^{-6}$ |
| 23P2G   | DPGM   | $< 10^{-6}$ |
| 3PG     | DPGase | $< 10^{-5}$ |
| ATP     | HK     | $< 10^{-4}$ |

**Table IX:** P-value of the KS-test for the saturation parameters of  $C_{noreg}$ . All parameters that are not listed here are not significant.

Detailed rankings for suppressed allosteric regulation ( $C_{noreg}$ ). From a total amount of 87 only the significant parameters are listed.

| parar   | neter            | correlation |
|---------|------------------|-------------|
|         |                  | coefficient |
| AMP     | PFK <sup>a</sup> | -0.25       |
| Glc6P   | HK               | 0.17        |
| ADP     | HK               | -0.13       |
| Fru6P   | PFK              | 0.12        |
| Fru16P2 | PK <sup>a</sup>  | 0.12        |
| ATP     | PFK <sup>a</sup> | 0.09        |
| ADP     | PFK              | -0.07       |
| ATP     | ATPase           | -0.05       |
| Fru16P2 | PFK              | 0.05        |
| 3PG     | DPGase           | -0.05       |
| ATP     | HK               | 0.04        |
| PRPP    | PRPPT            | -0.04       |
| ATP     | PK <sup>a</sup>  | 0.03        |
| PEP     | PK               | -0.03       |
| ADP     | PK               | 0.03        |
| NADP    | LDHP             | 0.03        |
| PRPP    | PRPPS            | 0.03        |
| 13P2G   | DPGM             | -0.03       |
| R5P     | PRPPS            | -0.01       |
| 23P2G   | DPGM             | 0.01        |
| 23P2G   | HK <sup>a</sup>  | -0.01       |

**Table X:** Correlation coefficients for the saturation parameters of $\mathbf{C_{reg}}$ . All parameters that are not listed here are not significant.

| param   | eter             | mutual      |
|---------|------------------|-------------|
|         |                  | information |
| Glc6P   | HK               | 0.047       |
| AMP     | PFK <sup>a</sup> | 0.046       |
| Fru6P   | PFK              | 0.011       |
| Fru16P2 | PK <sup>a</sup>  | 0.01        |
| ADP     | HK               | 0.008       |
| ATP     | PFK <sup>a</sup> | 0.002       |

Table XI: Mutual information for the saturation parameters of  $\mathbf{C_{reg}}$ . All parameters that are not listed here are not significant.

| paran   | neter            | p-value     |
|---------|------------------|-------------|
| Glc6P   | HK               | $< 10^{-6}$ |
| AMP     | PFK <sup>a</sup> | $< 10^{-6}$ |
| Fru6P   | PFK              | $< 10^{-6}$ |
| Fru16P2 | PK <sup>a</sup>  | $< 10^{-6}$ |
| ADP     | HK               | $< 10^{-6}$ |
| ATP     | PFK <sup>a</sup> | $< 10^{-4}$ |
| 3PG     | DPGase           | $< 10^{-4}$ |
| ATP     | ATPase           | 0.01        |
| ADP     | PFK              | 0.013       |

Table XII: P-value of the KS-test for the saturation parameters of  $C_{reg}$ . All parameters that are not listed here are not significant.

Detailed rankings for allowed allosteric regulation ( $C_{reg}$ ). Those parameters marked with <sup>a</sup> correspond to allosteric regulation. From a total of 97 only the significant parameters are listed.



Figure 1: Correlation coefficient between saturation parameters and shuffled eigenvalues. The dotted red line marks the threshold for  $\alpha = 0.0001$ . All saturation parameters with a higher (absolute) correlation coefficient than 0.0012 are considered to be significant.

#### Significant parameters

We used a shuffling approach to calculate a threshold for the significant parameters. Therefore we permuted the values of  $\lambda_{Re}^{\max}$ , leading to a totally random relation between the saturation parameters and  $\lambda_{Re}^{\max}$ . The resulting probability density function for the correlation coefficients of 1000 permutations can be seen in Figure 1 (similar results for mutual information). The threshold of 0.0012 was chosen in such a way that only 0.01% (significance level  $\alpha = 0.0001$ ) of the calculated correlation are above the threshold (considering absolute values).

#### **Comparison of measures**

We compared the rankings according to three different measures (correlation coefficients, mutual information, Kolmogorov-Smirnov-test). The rankings for the significant parameters are in good accordance to each other (see Figure 2), justifying our decision to restrict the further analysis on the ranking obtained by correlation coefficients.

The measures used so far are dependent on the relation between the saturation parameters and  $\lambda_{Re}^{\max}$ . One could argue that these measures are not suitable to analyse the influence of the saturation parameters on stability because stability is not determined by the exact *value* of  $\lambda_{Re}^{\max}$  but by its *sign*. We therefore calculated a forth measure, defined as the mutual information between the saturation parameters and the frequency of stable models. This forth measure is in good accordance with the ranking according to correlation coefficients (see Figure 3), underlying once again the relevance and usefulness of the correlation coefficients.



**Figure 2:** Comparison of the different measures for  $C_{noreg}$  (A - C) and  $C_{reg}$  (D - F). The red dots are significant in both measures, the green circles only in one and the blue crosses are not significant at all. Clearly, the different rankings are consistent with each other and show similar results, especially for the significant parameters.



**Figure 3:** Comparison of the ranking according to correlation coefficients between the saturation parameters and  $\lambda_{Re}^{\max}$  and the mutual information between the saturation parameters and the frequency of stable models (A for  $C_{noreg}$  and B for  $C_{reg}$ ). The red dots are significant in both measures, the green circles only in one and the blue crosses are not significant at all.