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EubMterin sp. sradi VPI 1270 is an apaeobic intestnal bacterium which I ible bUe acid
7-dehydroxylatln actity. Several new polypepdes are produced in this strain folloi i with cholic
acid. Genes coding for two opIs of a b aciducible 27,000-dalton poypeptide (bajAl d bL42) have
been previously ced seqeed. We now report on a gene coding for a third copy of thi 27,0 o
polypeptide (b443). The heW gene has been comed i lambda DASH on an 11.2-kilobase DNA g tfrom
a partal Saa3A digest of the Eubactim DNA. DNA sequence analysis of the bai43 gene reveaed 100%
honology with the belAl gene within the coding region of the 27,000-daltn polypeptdes. The gene
shares 81% wceIdnit ith the other two genes at the nucleodde kvel. The g ncleoide
sequences as wt the baiAl and baiA3 genes are idenical for 930 baes in the S' difectofrom the
initiation codon and for at les 325 bas in the 3' dhection from the stop codon, the putative
promoter regions for the genes. An reading frame (occupying from 621 to 648 s,d_e e g
on the correct start codop) wasfod in the Idental 5' regions acated h the bai1 and MM3 clnes. The
S' sequence 930 bes u frm the bai41and bai43 genes was totaly divergnt, The heW gn, which
is part of a large bil add-inducible operon, showed no homolgy with the other two genes elier in the 5' or
3' direction f te polypeptde coding region, except for a 15-lae-paIr I site in
the S' regon. These stdies stron4y sugget that a gene dupication (bai and bi43) has occurred and is
stably tined i this bacterium,

One of the quantitatively most important bile acid
biotransformations of cholic and chenodeoxycholic acids is
7-dehydroxylation, yielding deoxycholic and lithocholic
acid, respectively. This biotransformation is carred out by
anaerobic intestinal bacteria (27, 28). Deoxycholic and litho-
cholic acids differ markedly from their 7-hydroxylated pre-
cursors in physicochemical properties as well as in physio-
logical effects (3, 6, 30, 33, 36, 37, 41). Deoxycholic acid
makes up approximately 20 to 25% of the total bile acid pool
in humans (45). Intestinal bactena capable of 7-dehydroxy-
lation of bile acids have been isolated by several laboratories
(15, 28). Most intestinal bacteria possessing 7-dehydroxyla-
tion activity have been identified as members of the Clos-
tridium (21, 23, 47) or Eubacteruim (20, 23) genus. It has
been demonstrated that the fecal population of 7-dehydrox-
ylating intestinal bacteria in humans and in rats is in the
range of 103 to iO cultivable organisms per g (wet weight) of
feces.
Eubacterium sp. strain VPI 12708 is an anaerobic intesti-

nal bacterium that possesses bile acid 7a-dehydroxylation
activity which is induced by culturing the bacterium in the
presence of C-24 bile acids containing a 7a-hydroxyl group.
At least four new polypeptides with estimated molecular
weights of 77,000, 45,000, 27,000, and 23,000 have been
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shown to be synthesized following cholic acid induction (38).
Immunoinhibition and immunoprecipitation studies have in-
dicated involvement of the 27,000-dalton polypeptide in bile
acid 7-dehydroxylation (38). The genes coding for two bile
acid-inducible polypeptides, a 27,000-dalton polypeptide
(27K-1) and a 45,000-dalton polypeptide (45K), have been
cloned on separate DNA fiagments (7, 52). Northern (RNA)
blot analysis of Eubacterium RNA has indicated that the
genes coding for the 27K-1 and 45K polypeptides reside on
separate bile acid-inducible transcripts with relative sizes of
950 base and 6 to 8 kilobases, respectively (7, 52).

Nucleotide sequence analysis in the 5' direction from the
gene encoding the 45K polypeptide revealed the presence of
a gene which encoded a second 27,000-dalton polypeptide
(27K-2). The two genes encoding the 27,000-dalton polypep-
tides exhibited extensive homology (53). Southern hybrid-
ization analysis of EcoRI-cut chromosomal DNA probed
with a 23-mer oligonucleotide consisting of a common se-
quence found within the coding regions for both of the 27K
genes revealed the presence ofthree equally intense bands of
2.2, 2.9 (previously estimated to be 2.6), and 3.5 kilobases
(53). Hybridization of the 2.2- and 2.9-kilobase fiagments is
consistent with the restriction maps of the genes encoding
the 27K-1 and 27K-2 polypeptides and flanking regions. The
3.5-kilobase EcoRI fragment indicated the possible presence
of an additional gene coding for a third 27,000-dalton poly-
peptide (27K-3). In the present study, a DNA fragment
coding for a third 27,000-dalton polypeptide was cloned and
characterized. We propose to label the members of this gene
family and other related genes as bai (bile acid-inducible)
genes and will label the genes encoding the 27,000-dalton
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FIG. 1. Restriction map and cloning strategy for the baiA3 gene and surrounding region. The region encoding the baiA3 gene is boxed and
the region of homology with the baiAl clone ( ) is indicated. Kb, Kilobases.

polypeptides as baiAl (encoding the 27K-1 polypeptide),
baiA2 (27K-2), and baiA3 (27K-3).

MATERIALS AND METHODS

Materials. T4 DNA ligase and T4 polynucleotide kinase
were obtained from Bethesda Research Laboratories, Gaith-
ersburg, Md. Restriction enzymes were obtained from Phar-
macia LKB Biotechnology, Inc., Piscataway, N.J., and
Bethesda Research Laboratories. Dideoxynucleotide se-

quencing reagents and modified T7 polymerase were ob-
tained from United States Biochemical Corp., Cleveland,
Ohio. Radionucleotides [y-32P]ATP and [a-35S]dATP were

obtained from Du Pont, NEN Research Products, Boston,
Mass., as were the GeneScreen hybridization membranes.
The lambda gtll and lambda DASH vectors were obtained
from Stratagene, La Jolla, Calif.

Bacterial strains and culture conditions. Eubacterium sp.

strain VPI 12708 stock cultures were maintained in chopped-
meat medium, as described by Holdeman and Moore (24).
Bacteria for DNA isolation were grown under anaerobic
conditions, as previously described (51). Escherichia coli
strains LE392, Y1090 (58), and JM101 (56) were used as host
strains for.,bacteriophage lambda DASH, lambda gtll, and
M13mpl8, rehpectively.

Nucleic acid isolation. Eubacterium sp. strain VPI 12708
chromosomal DNA was isolated by the method of Marmur
(34). Plasmid DNA was isolated by the method of Birnboim
and Doly (5). Single-stranded M13 DNA was prepared for
sequencing by the procedure described by Davis et al. (12).
DNA hybridization procedures. DNA restriction fragments

from agarose gels were transferred to nitrocellulose as

described by Southern (46). Lambda gtll and lambda DASH
plaques were transferred onto nitrocellulose filters as de-
scribed by Benton and Davis (4). Baked filters were prehy-
bridized, hybridized, and washed as described by Woods
(55). The hybridized filters were placed in a cassette with
Kodak X-RP film and a Du Pont Cronex Lightning-Plus
intensifying screen for 24 to 48 h at -70°C before the film
was developed. Oligonucleotides were synthesized with a

Cyclone DNA synthesizer (Biosearch, Inc., San Rafael,
Calif.) and purified as previously described (7). Purified
oligonucleotides were end labeled for Southern blots with
[_y-32PIATP (3,000 Ci/mmol). Unincorporated label was re-

moved with Nensorb 20 cartridges (Du Pont, NEN Research
Products).
Recombinant DNA methods. For preparation of the lambda

gtll library, Eubacterium sp. strain VPI 12708 genomic
DNA was digested to completion with EcoRI and size
fractionated on 0.8% agarose. Fragments of approximately 3
to 4 kilobases were isolated by electroelution onto NA-45
DEAE membranes (Schleicher & Schuell, Inc., Keene,
N.H.) (32) and ligated to EcoRI-digested lambda gtll arms.

For construction of the lambda DASH library, Eubacte-
rium DNA was purified by the method of Marmur (34), with
modifications. The sodium perchlorate step was omitted and
a hexadecyltrimethyl ammonium bromide extraction (2) was
performed following the RNase treatment of the DNA. The
Eubacterium DNA was partially digested with Sau3A and
size fractionated with a linear, 10- to-40% sucrose gradient.
Fractions (200 ,lI) were collected from the bottom of the tube
and stored at 4°C until sucrose and salt removal with a
Centricon 10 microconcentrator (Amicon Corp., Danvers,
Mass.). The molecular sizes of the collected DNA fractions
were determined by electrophoresing samples from the
gradient on a 0.6% agarose gel, and the fractions with the
desired DNA size range were pooled and used as inserts for
BamHI-digested lambda DASH arms.
DNA sequencing. DNA sequences were obtained by the

dideoxy sequencing method (42) and the Sequenase proce-
dure of United States Biochemical Corp. Commercially
available universal sequencing primers (17-mer) and other
synthetic oligonucleotides were used in the sequencing pro-
cedures. Both DNA strands in all reported regions were
sequenced. Regions of ambiguous DNA sequence were
further analyzed by use of dITP in the sequencing reactions.
DNA was labeled with [a-355]dATP.

Analysis of sequence data. Analysis of nucleic acid and
protein sequence data was performed with the Microgenie
sequence analysis program (Beckman Instruments, Inc.,
Fullerton, Calif.), the IBI/Pustell DNA analysis program
(International Biotechnologies, Inc., New Haven, Conn.),
and the GCG program (University of Wisconsin Biotechnol-
ogy Center, Madison, Wis.).

Nucleotide sequence accession number. The nucleotide
sequence data presented in this paper have been submitted
to GenBank (accession no. M34658).

RESULTS

Cloning of the baiA3 gene. Initial cloning experiments were
done with EcoRI digests of chromosomal DNA from Eubac-
terium sp. strain VPI 12708 cloned into lambda gtll. Of
approximately 3,000 plaques containing inserts (clear
plaques), 20 positive plaques were identified following
screening with a 32P-labeled 23-mer probe (bases 1183 to
1205 [see Fig. 2]) that hybridizes to all three copies of the
baiA gene family (53). DNA from phage obtained from
positive plaques was digested with EcoRI, fractionated on a
0.8% agarose gel, and Southern blotted with the 23-mer
probe. Two of the positive plaques were found to contain a
2.9-kilobase insert which has been previously cloned and
shown to contain the baiA2 gene (53). The remaining recom-
binant phage contained a 3.5-kilobase insert which strongly
hybridized to the 23-mer probe. One of the phage with a
3.5-kilobase insert was selected for further analysis. Diges-
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tion of this recombinant phage DNA with EcoRI was fol-
lowed by agarose gel electrophoresis and Southern blot
hybridization with probes MCV-1 and UAB-6, correspond-
ing to nucleotides 940 to 956 and 1574 to 1589, respectively,
of the baiAl gene (see Fig. 2). Although strong hybridization
was observed with MCV-1, there was no hybridization with
probe UAB-6. This indicated that DNA coding for the
N-terminal end of the putative 27K-3 polypeptide was on the
3.5-kilobase EcoRI fragment and that the part of the gene

coding for the C-terminal end of the polypeptide was not
present on this fragment.

In order to obtain the complete baiA3 gene, a lambda
DASH library containing fragments from a partial Sau3A
digest of Eubacterium sp. strain VPI 12708 DNA was

screened with the 23-mer probe. A positive plaque contain-
ing an 11.2-kilobase insert was identified. DNA was isolated
from this clone and digested with EcoRI. Agarose gel
electrophoresis and Southern blotting indicated that the
recombinant phage contained the 3.5-kilobase EcoRI frag-
ment which hybridized to the 23-mer probe and probe
MCV-1 (corresponding to the N-terminal region of the 27K-3
polypeptide). Probe UAB-6 hybridized to a 1.2-kilobase
EcoRI fragment, indicating that the coding region for the
C-terminal end of the 27K-3 polypeptide was on this frag-
ment.
DNA sequence analysis. The 1.2- and 3.5-kilobase EcoRI

fragments were subcloned into M13mpl8 in both orienta-
tions for sequencing. DNA sequence analysis of these clones
was performed with both universal primers and other syn-

thetic oligonucleotide primers directed against sequences

contained within the 1.2- and 3.5-kilobase EcoRI fragments.
The sequencing strategy and a restriction map for these
fragments are shown in Fig. 1.
The nucleotide sequences of the 1.2- and 3.5-kilobase

EcoRI fragments indicated that there was an open reading
frame which appeared to encode a polypeptide with a

calculated molecular weight of 26,745. This open reading
frame was designated the baiA3 gene. The complete DNA
sequence is shown in Fig. 2 along with the deduced amino
acid sequence. The coding region for the baiA3 gene in-
cludes nucleotides 931 through 1677.
Alignment of the sequence for the baiA3 gene with the

previously reported sequence for the baiA) gene (8) indi-
cated that there was 100% nucleotide sequence identity
within the 747-base coding regions of these two genes (Fig.
2). Sequences in the 5' and 3' directions from the baiA3
gene, including the putative promoter region and a large 3'
element with dyad symmetry, are also identical to the baiA)
clone. The baiA) and baiA3 clones were both sequenced in
the 5' direction until a point of divergence was discovered.
The homology between the two clones remains for 930 bases
in the 5' direction from the baiA genes and for at least 325
bases in the 3' direction. The nucleotide sequences of the
baiA) and baiA3 clones are divergent in the 5' direction after
the point indicated by nucleotide 1 in Fig. 2. An open reading
frame of from 621 to 648 bases, depending on the correct

initiation codon, was found in the identical 5' region up-

stream from the baiAl and baiA3 genes. A putative promoter
region for this open reading frame is located immediately to
the 3' side of the homology junction for the two cloned
fragments.
The baiA2 gene shows differences at 143 nucleotides

within the coding region, for an overall 81% homology with
the baiAl and baiA3 genes. Significant homology between
the baiA2 and baiA3 genes was not observed either in the 5'
direction from the initiation codon or in the 3' direction from
the stop codon, except for a 15-base-pair presumed ribosome
binding site in the 5' region. Comparative restriction maps

for the three baiA genes and surrounding regions are shown
in Fig. 3.
Data bank searches for sequences similar to the open

reading frame 5' from the baiAI and baiA3 genes revealed no
significantly homologous sequences. We have previously
reported that the 27K polypeptides share significant se-

quence homology with several alcohol-polyol dehydrogena-
ses (8, 53).

Southern blot hybridization analysis. In order to determine
if bile acids were involved in regulating the duplication of the
baiA) and baiA3 genes, the following experiment was per-

formed. Cultures of Eubacterium sp. strain VPI 12708 were

repeatedly cultured in the presence or absence of cholic
acid. Then, DNA was isolated from the cells and Southern
blot analysis was carried out by using a DNA probe specific
for the baiA genes. The results in Fig. 4 show three strongly
hybridizing bands from EcoRI-cut DNA isolated from bac-
teria cultured in the presence or absence of cholic acid.
Finally, Southern blot analysis of DNA digested with vari-
ous restriction endonucleases was inconclusive as to
whether the baiAI and baiA3 genes were located in a tandem
or nontandem orientation in the chromosome (data not
shown).

DISCUSSION

We have previously reported the cloning and sequencing
of genes coding for two similar copies of a 27,000-dalton bile
acid-inducible polypeptide (baiAI and baiA2) involved in
7-dehydroxylation of bile acids in Eubacterium sp. strain
VPI 12708 (7, 8, 53). In this study, we have identified an

additional gene (baiA3) in this multigene family.
The three members of the baiA gene family are highly

conserved at the nucleotide and amino acid levels. Nucleo-
tide sequence identities within the open reading frames are

100% between the baiAI and baiA3 genes and 81% between
the baiAl and baiA2 genes. The amino acid sequences for
the 27K-1 and 27K-3 polypeptides are identical, whereas the
27K-1 and 27K-2 polypeptides show 92% sequence identity
at the amino acid level. The baiA) and baiA3 genes share a

block of homology that spans at least 2 kilobases of DNA,
including 930 bases in the 5' direction and at least 325 bases
in the 3' direction from the open reading frames for the baiA
genes. A second open reading frame, which could code for at

FIG. 2. DNA sequences for the baiAI (27K-1), baiA2 (27K-2), and baiA3 (27K-3) genes and surrounding regions. Nucleotide 1 represents
the start of the region of homology between the baiAl and baiA3 clones. Deduced amino acid sequences are provided for the open reading
frame in the 5' region of homology for the baiAI and baiA3 clones (nucleotides 80 to 730), and for the baiA genes (nucleotides 931 to 1677).
Possible ribosome-binding sites are overlined (three possible sites for the first open reading frame). The putative -10 and -35 promoter
regions are underlined. A 12-nucleotide region containing several potential -35 sites is underlined for the baiAI and baiA3 genes (nucleotides
831 to 842 [8]). The mRNA start site for the baiAI and baiA3 genes, as determined by primer extension (8) (8 ), and the nucleotides present
at 10 and 35 bases upstream from the mRNA start site ( t ) are indicated. Restriction sites for TaqI ( I ) are indicated (after nucleotides -22,
438, 456, 639, 1010, and 2005). The EcoRI restriction site in the baiAI and baiA3 genes (K) is indicated after nucleotide 1221. A large potential
stem-loop structure is underlined from nucleotides 1724 to 1774.
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FIG. 3. Relative restriction maps for the baiAl, baiA2, and baiA3 genes and surrounding regions. Not all TaqI sites are identified. The

baiA genes are boxed, and the region of homology between the baiAl and baiA3 clones (VI/IIA) is highlighted. The open reading frames in the

homologous regions upstream from the baiAl and baiA3 clones (M) are also boxed. Kb, Kilobases.

least 207 amino acids, was found in the identical 5' flanking
sequences of the baiAI and baiA3 clones. No discernable
open reading frames were detected in the identical 3' flank-
ing regions of the baiAl and baiA3 clones. The nucleotide
sequences for the baiAI and baiA3 clones were totally
divergent after the 930-base 5' block of homology. A com-

parison of the baiAl and baiA3 clones after the 325-base
block of homology in the 3' direction could not be made
because this region could not be obtained for the baiA)
clone.. Repeated attempts to obtain such a clone were

unsuccessful.
Although the exact function of the 27K polypeptides in

7-dehydroxylation of bile acids is not known, protein se-

quence surveys indicate that these polypeptides share strong
homology with the nonzinc alcohol-polyol dehydrogenase
class of enzymes, especially in the proposed pyridine nucle-
otide-binding domains (8, 29, 53). It has therefore been
suggested that the 27K polypeptides are involved in one of

LOic :\C: v
I. " Ilnc|i I _ t i

1

AN, ) P0
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FIG. 4. Southern blot analysis of Eubacterium sp. strain VPI
12708 chromosomal DNA isolated from bacteria grown in the
presence (+) and absence (-) of sodium cholate. DNA was digested
with EcoRI endonuclease and probed with a 32P-labeled oligonucle-
otide (23-mer) consisting of a common sequence found in the three
baiA genes (nucleotides 1183 to 1205 [Fig. 2]). Abbreviation: Kb,
kilobases.

the pyridine nucleotide-dependent steroid oxidation-reduc-
tion reactions in the 7-dehydroxylation pathway in Eubacte-
rium sp. strain VPI 12708 (8, 53).
Although unusual, there are several examples of stabilized

gene duplication in bacteria. In the cyanobacteria, several
genes have been reported to occur as multiple copies,
including the psbA (photosystem II) gene from Anacystis
nidulans (three copies) (19) and a gas-vesicle protein gene
and a phycobilisome protein gene from a Calothrix strain
(two copies each) (11, 25). Other examples include highly
repetitive tRNA genes in Photobacterium phosphoreum
(18), homologous acid-soluble spore proteins from Bacillus
subtilis and Bacillus megaterium (9, 16), duplicated tufgenes
in numerous bacterial species (14, 44), and homologous nif
genes (40, 49); there is also the possibility of numerous
reiterated sequences in Rhizobium and Agrobacterium spp.
(17) and the possibility of multiple chromosomes in Azoto-
bacter vinelandii (39). The presence of isozymes which
exhibit extensive homology has also been reported in such
cases as pectic enzymes in Erwinia chrysanthemi (43),
alkaline phosphatase enzymes in Bacillus licheniformis (26)
and acetohydroxy acid synthase enzymes from E. coli (50).
The reason for having three copies of the baiA gene is

unclear. The need for a large amount of an enzyme involved
in 7-dehydroxylation would appear to be unlikely but cannot
be discounted. Duplication of the regions either upstream or
downstream from the baiAl and baiA3 genes could also be
potentially useful to the Eubacterium strain. Culturing bac-
teria in the presence or absence of cholic acid does not
appear to alter or select for the number of copies of the baiA
genes under laboratory conditions. Another possibility is
that the 27K-2 polypeptide may have a slightly different
activity than the 27K-1 and 27K-3 polypeptides. Recent
evidence has indicated the formation of isomeric forms of
bile acids (allo bile acids) during 7a-dehydroxylation of
cholic acid in Eubacterium sp. strain VPI 12708 (unpublished
data). Perhaps the 27K polypeptides, acting as steroid oxi-
doreductases, recognize and/or catalyze the formation of
different isomers in this pathway. A third possibility could
involve differences in transcriptional or translational control
of these bile acid-induced polypeptides. In this regard, both
the baiAl and baiA3 genes (8) and the baiA2 gene (52) have
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been shown by Northern blot analysis to be induced by
cholic acid. The B. licheniformis alkaline phosphatase genes
were reported to be transcribed from different RNA poly-
merases (26), and the E. coli acetohydroxy acid synthases
have been shown to be under different transcriptional and
translational control mechanisms (10, 50). Similar differ-
ences could exist between the baiA genes. The putative
promoter region for the operon associated with the baiA2
gene is currently being studied and compared with the two
identical promoter regions associated with the baiAl and
baiA3 genes.
The presence of two identical stretches of DNA, encom-

passing the baiAl and baiA3 genes and spanning at least 2
kilobases of DNA, poses additional questions. Why and how
would the Eubacterium strain sustain these two identical
copies? Possibilities include the presence of insertion se-
quence elements on the ends of both copies, which could
allow the segments to integrate into multiple sites on the
chromosome. Another possibility is that the baiAl and
baiA3 genes could be present on an integrated bacterio-
phage. An examination of both ends of the homologous
blocks of DNA associated with the baiAl and baiA3 clones
could help in testing these possibilities. It is unclear how
large these two identical stretches of DNA actually are, and
the 3' junctions of these two copies have not been deter-
mined. It is also unclear whether the two identical stretches
of DNA are present as tandem repeats or are positioned on
different parts of the chromosome. Southern blot analysis of
chromosomal digests from Eubacterium sp. strain VPI 12708
have been inconclusive in determining the sizes and relative
locations of these copies. However, the baiA3 gene has been
detected in approximately 19 lambda DASH clones, some
containing 12- to 15-kilobase inserts. None of these phages
contained the baiAl gene, suggesting either a very large
duplicated region or a nontandem arrangement (data not
presented). Further studies are necessary to investigate
these possibilities.
A third possible explanation for the two identical copies

could be random chromosomal crossover events, which
could produce a duplicated region. Random genetic duplica-
tion is not uncommon in bacteria. One report suggests that
3% of Salmonella typhimurium isolates have duplicated
regions of DNA (1). Many genetic duplications are thought
to be associated with unequal recombination events involv-
ing highly repetitive chromosomal elements such as rRNA
genes (1, 22) or rhs genes (13, 31). However, such duplica-
tions are generally not stably maintained unless they provide
the microorganism with a selective advantage. There have
been numerous reports on the integration of duplicated DNA
segments into the B. subtilis chromosome and on the appar-
ent stability of these duplicated regions (35, 48, 54, 57).
However, the possibility of a random duplication maintain-
ing a completely identical nucleotide sequence over a long
period of time would be remote, and the relative intensities
of hybridizing bands from Southern blots performed on
Eubacterium sp. strain VPI 12708 DNA suggest that the
entire population of cells possesses the duplicated regions.
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