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Abstract. Paxillin is a 68-kD focal adhesion phospho- 
protein that interacts with several proteins including 
members of the src family of tyrosine kinases, the trans- 
forming protein v-crk, and the cytoskeletal proteins 
vinculin and the tyrosine kinase, focal adhesion kinase 
(FAK). This suggests a function for paxillin as a molec- 
ular adaptor, responsible for the recruitment of struc- 
tural and signaling molecules to focal adhesions. The 
current study defines the vinculin- and FAK-interac- 
tion domains on paxillin and identifies the principal 
paxillin focal adhesion targeting motif. Using trunca- 
tion and deletion mutagenesis, we have localized the 
vinculin-binding site on paxillin to a contiguous stretch 
of 21 amino acids spanning residues 143-164. In con- 
trast, maximal binding of FAK to paxillin requires, in 
addition to the region of paxillin spanning amino acids 
143-164, a carboxyl-terminal domain encompassing 
residues 265-313. These data demonstrate the presence 
of a single binding site for vinculin, and at least two 
binding sites for FAK that are separated by an inter- 
vening stretch of 100 amino acids. Vinculin- and FAK- 
binding activities within amino acids 143-164 were 
separable since mutation of amino acid 151 from a neg- 
atively charged glutamic acid to the uncharged polar 
residue glutamine (E151Q) reduced binding of vinculin 
to paxillin by >90%, with no reduction in the binding 

capacity for FAK. The requirement for focal adhesion 
targeting of the vinculin- and FAK-binding regions 
within paxitlin was determined by transfection into 
CHO.K1 fibroblasts. Significantly and surprisingly, 
paxillin constructs containing both deletion and point 
mutations that abrogate binding of FAK and/or vincu- 
lin were found to target effectively to focal adhesions. 
Additionally, expression of the amino-terminal 313 
amino acids of paxillin containing intact vinculin- and 
FAK-binding domains failed to target to focal adhe- 
sions. This indicated other regions of paxillin were 
functioning as focal adhesion localization motifs. The 
carboxyl-terminal half of paxillin (amino acids 313- 
559) contains four contiguous double zinc finger LIM 
domains. Transfection analyses of sequential carboxyl- 
terminal truncations of the four individual LIM motifs 
and site-directed mutagenesis of LIM domains 1, 2, and 
3, as well as deletion mutagenesis, revealed that the 
principal mechanism of targeting paxillin to focal adhe- 
sions is through LIM3. These data demonstrate that 
paxillin localizes to focal adhesions independent of in- 
teractions with vinculin and/or FAK, and represents the 
first definitive demonstration of LIM domains func- 
tioning as a primary determinant of protein subcellular 
localization to focal adhesions. 

C 
ELLULAR adhesion to the extracellular matrix is 

critically involved in many processes including 
normal and transformed cell growth, migration, 

and metastasis, lymphocyte extravasation, and force trans- 
mission during muscle contraction (for review see Bur- 
ridge, 1986; Hynes, 1992; Clark and Brugge, 1995). A com- 
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plex mechanism of cell association with the extracellular 
matrix has evolved and is governed predominantly by the 
integrin family of heterodimeric transmembrane glycopro- 
teins (Hynes, 1992). These receptors mechanically couple 
to, and mediate signaling from, the extracellular matrix to 
the actin cytoskeleton through the direct association of in- 
tracellular molecules with the cytoplasmic domain of the 
integrin ~ subunit (Turner and Burridge, 1990; Luna and 
Hitt, 1992). While et-actinin and talin may be largely re- 
sponsible for the physical coupling of integrins to the actin 
cytoskeleton, a number of other proteins contribute to the 
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complex of cytoskeletal proteins concentrated at special- 
ized sites of cell adhesion to the extracellular matrix known 
as focal adhesions (Burridge et al., 1988). Focal adhesion 
proteins customarily have been categorized as either struc- 
tural molecules, such as the actin-binding proteins tensin 
and vinculin, or regulatory molecules, including zyxin, 
the focal adhesion tyrosine kinase (FAK) 1, and paxillin 
(Turner and Burridge, 1990; Lo and Chen, 1994). The po- 
tential interplay of these various focal adhesion proteins 
has been studied in an effort to delineate the structure and 
to probe the function of the focal adhesion. 

Vinculin is an abundant cytoskeletal protein present at 
cell-matrix and cell-cell contacts that interacts with a-actinin, 
talin, F-actin, tensin, and paxillin (for review see Hem- 
mings et al., 1995). An important role for vinculin in adhe- 
sion has been inferred by a number of studies, including 
the capacity of exogenous expression of vinculin to com- 
plement nonadherence of a vinculin-deficient embryonal 
carcinoma cell line (Samuels et al., 1993). Additionally, a 
role for vinculin in cell morphology, motility, and anchor- 
age-dependent growth has been demonstrated using anti- 
sense suppression of vinculin expression in NIH3T3 cells 
(Fern~indez et al., 1993). 

Paxillin was originally described as a 68-kD, vinculin- 
binding protein through the use of blot overlay assays us- 
ing paxillin purified from smooth muscle (Turner et al., 
1990). Further analyses using bacterially expressed glu- 
tathione-S-transferase (GST)-vinculin fusion proteins and 
purified paxillin have permitted the mapping of the paxil- 
lin-binding site on vinculin to a 22-amino acid region that 
is highly conserved in nematode, frog, chick, pig, and hu- 
man vinculin (Wood et al., 1994). In the same study, trans- 
fection experiments indicated that the 22-amino acid pax- 
illin-binding domain lies within a 50-amino acid region of 
the vinculin tail involved in the targeting of this protein to 
focal adhesions. As a result, it is generally accepted that 
paxillin localization to focal adhesions is, at least in part, 
due to an association with this abundant focal adhesion 
component. 

Paxillin is phosphorylated on tyrosine residues to a high 
stoichiometry (20--30%) during various cellular events as- 
sociated with cell adhesion, remodeling of the actin-based 
cytoskeleton, and growth control (for review see Turner, 
1994). This increase in tyrosine phosphorytation of paxillin 
is accompanied by a similar elevation in the tyrosine phos- 
phorylation of FAK, suggesting a direct correlation be- 
tween FAK activation and paxillin phosphorylation (Bur- 
ridge et al., 1992; Guan and Shalloway, 1992; Hanks et al., 
1992; Kornberg et al., 1992; Turner et al., 1993, 1995). 

Isolation of a cDNA encoding the paxillin protein has 
permitted the generation of GST-paxillin fusion proteins 
that have been used to identify binding sites for both vin- 
culin and FAK within the amino-terminal half of the pro- 
tein (Turner and Miller, 1994), as well as to determine the 
predominant site of tyrosine phosphorylation of paxillin 
by FAK in vitro (Bellis et al., 1995). Subsequent studies 
have firmly established that FAK associates directly with 
paxillin (Hildebrand et al., 1995; Tachibana et al., 1995). 

1. Abbreviat ions  used in this paper. FAK, focal adhesion kinase; FRNK, 
FAK-related nonkinase; GST, glutathione-S-transferase; PBS, paxillin- 
binding subdomain; dl, deletion. 

The paxillin cDNA revealed several additional motifs that 
have been implicated in protein-protein interactions fur- 
ther supporting the model that paxillin functions as an 
adaptor molecule directing focal adhesion dynamics. These 
modules include several potential tyrosine phosphoryla- 
tion sites that are consensus SH2 domain-binding motifs. 
Tyrosine 118 is of particular interest, because phosphory- 
lation of this residue by FAK forms a functional crk SH2- 
binding domain, consistent with data demonstrating an as- 
sociation between the v-crk SH2 domain and tyrosine 
phosphorylated paxillin in vivo and in vitro (Birge et al., 
1993; Bellis et al., 1995; Schaller and Parsons, 1995). A 
short proline-rich region conforms very closely to the con- 
sensus sequence for an SH3-binding motif (Ren et al., 
1993) and may be responsible for the interaction between 
paxillin and the SH3 domain of the tyrosine kinase c-src 
(Weng et al., 1993). Importantly, neither the tyrosine 
phosphorylated crk SH2-binding domain nor the proline- 
rich region are required for targeting paxillin to focal ad- 
hesions (Bellis et al., 1995). Finally, the carboxyl half of 
paxillin (amino acids 313-559) contains four LIM do- 
mains. 

The LIM domains of paxillin are cysteine/histidine-rich 
motifs of 51 amino acids and are related to the larger fam- 
ily of zinc-finger proteins (for review see S~inchez-G~ircia 
and Rabbitts, 1994). LIM domains were first identified in 
the homeodomain-containing transcription factors Lin-ll ,  
Isl-1, and Mec-3 (S~inchez-G~ircia and Rabbitts, 1994). These 
proteins are involved in cell lineage determination and 
pattern formation during embryogenesis. Subsequently, 
several groups of LIM-containing proteins have emerged. 
Members of the protooncogene rhombotin family of helix- 
loop-helix transcription regulators, associated with normal 
T cell development and T cell acute lymphocytic leukemia, 
have also been shown to contain LIM domains (S~inchez- 
G~ircia and Rabbitts, 1994). A novel role for LIM domains 
as protein dimerization motifs has been proposed (Rab- 
bitts and Boehm, 1990). The existence of other classes of 
LIM-containing proteins that lack DNA-binding domains 
has emerged more recently. Paxillin is a member of this 
class that also includes the proteins zyxin and cysteine-rich 
protein, proteins that are associated with the cytoskeleton 
at focal adhesions (Sadler et al., 1992). The diversity of 
LIM protein families continues to grow with the character- 
ization of a family of novel LIM-containing protein serine/ 
threonine kinases (Okano et al., 1995). 

The experiments presented in this manuscript offer a 
definition and molecular dissection of the vinculin- and 
FAK-binding sites on paxillin, and investigate the poten- 
tial role for the multiple protein-interaction domains of 
paxillin in targeting paxillin to focal adhesions. 

Materials and Methods 

DNA Constructs 

Chicken paxillin expression vectors were constructed by PCR amplifica- 
tion of selected regions of a paxillin cDNA template (Turner and Miller, 
1994; Bellis et al., 1995) using primers incorporating 5'-BamHI and 3'-EcoRI 
restriction sites followed by introduction of the amplicon into the mam- 
malian expression vector, pcDNA3 (Invitrogen, San Diego, CA), or the 
bacterial expression vector, pGEX2T (Pharmacia Fine Chemicals, Piscat- 
away, N J). Correct in-frame incorporation, or introduction of start or stop 
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codons, was verified by sequencing with vector-specific oligonucleotides. 
The paxillin cDNA, subcloned into M13, was used as a template for dele- 
tion and site-directed mutagenesis according to standard procedures 
(Kunkel, 1985). 

GST Fusion Proteins 
To express the GST-paxillin fusion proteins, Escherichia coli (DH5ct) 
transformed with the appropriate pGEX2T-paxillin construct were grown 
overnight, diluted 1:10, and grown for an additional 1.5 h. Protein expres- 
sion was induced for 3 h by the addition of 0.1-0.5 mM isopropyl-13-D- 
thiogalactopyranose. Cells were harvested by centrifugation at 10,000 g 
for 10 min. Fusion protein was purified by lysis of bacteria in Tris-buffered 
saline, pH 8.0, containing 2 mg/ml lysozyme, 0.1% [3-mercaptoethanol, 
and protease inhibitors for 30 min at room temperature. Triton X-100 was 
added to 1%, and the cells were incubated on ice for 10 min. Bacterial cell 
wall debris was removed by centrifugation at 10,000 g for 15 min with the 
fusion protein recovered from the supernatant by incubation with glu- 
tathione-Sepharose 4B (Pharmacia Fine Chemicals) according to the 
manufacturer 's instructions. 

GST-PaxiUin Binding Assays 
A lysate of embryonic day 18-20 chicken gizzard was prepared by homog- 
enizing the tissue in 10 vol of lysis buffer containing 50 mM Tris/HC1, pH 
7.6, 50 mM NaC1, 1 mM EGTA, 2 mM MgC12, 0.1% mercaptoethanol, 1% 
Triton X-100, and a cocktail of protease inhibitors. The lysate was clari- 
fied at 100,000 g for 30 min. Aliquots of lysate (1 mg of protein) were incu- 
bated with the various GST-paxillin fusion proteins coupled to the glu- 
tathione-Sepharose 4B beads or with GST-glutathione-Sepharose 4B for 
90 min, washed extensively in lysis buffer, and boiled directly in SDS- 
PAGE sample buffer. After electrophoresis, the proteins were transferred 
to nitrocellulose and probed with the appropriate antibody. 

SDS-PA GE and Western Blotting 
SDS-PAGE electrophoresis was performed using standard procedures us- 
ing either 10 or 12.5% polyacrylamide gels. Western immunoblotting and 
radioiodination of secondary antibodies were performed as described pre- 
viously (Towbin et al., 1979; Turner et al., 1990). Antibodies used in this 
study were as follows: paxillin mAb 165 (Turner et al., 1990) and a 
chicken-specific polyclonal antiserum, Pax 1 (Turner and Miller, 1994); 
vinculin mAb Vin-11-5 (Sigma Chemical Co., St. Louis, MO); and FAK 
polyclonal antibody, BC3 (a generous gift from Dr. J. Thomas Parsons, 
University of Virginia, Charlottesville, VA). 

Cell Culture and Transfection 
CHO.K1 cells (a generous gift from J. Couchman and A. Woods, Univer- 
sity of Alabama at Birmingham) were cultured in modified Ham's  F-12 
(Mediatech, Washington, DC) supplemented with 10% (vol/vol) heat- 
inactivated, certified FBS (GIBCO BRL, Gaithersburg, MD) and 1% 
penicillin-streptomycin at 37°C in a humidified chamber with 5% CO2. 
Cells were grown on tissue-culture-treated plastic dishes and routinely 
passaged every 5 d by washing in Ca2+-Mg2+-free PBS followed by gentle 
trypsin-EDTA treatment. CHO.K1 cells were transfected using Lipo- 
FECTAMINE (GIBCO BRL) essentially as previously described (O'Toole 
et al., 1995) with minor modifications. Briefly, CHO.K1 cells were plated 
at a density of 3.5 × 105 cells per 35-mm dish 24 h before transfection. 1 
~g of the respective paxillin-pcDNA3 construct and 5 p~g of Lipo- 
FECTAMINE were diluted separately into 100 p.l of serum- and antibi- 
otic-free Ham's  F-12 medium followed by mixing of the DNA and lipid 
and incubation at room temperature for 15 min. During this incubation, 
the adherent CHO.K1 cells were washed twice with prewarmed, unsup- 
plemented medium. Unsupplemented medium was then added to the 
DNA-lipid mixture to bring the volume to 1 ml, and the mixture was 
overlaid onto the cells for a 6-h incubation at 37°C. After 6 h, 1 ml of 
Ham's  F-12 with 20% FBS and 1% penicillin-streptomycin was added, 
and the cells were incubated overnight. The cells were washed twice in 
complete medium, and then changed to complete Ham's F-12 with 1.5 mg/ml 
G418 (GIBCO BRL) after 24 h. After an initial phase of selection, the 
G418 concentration was reduced to 750 txg/ml for maintenance of en- 
riched populations of transfected cells. The cells were harvested, plated 
onto 13-ram glass coverslips, and processed for immunofluorescence anal- 
ysis as has been described in detail elsewhere (Turner and Miller, 1994). The 
cells photographed are representative of each transfected cell population. 

Results 

Mapping the Vinculin- and FAK-binding Sites o n  

PaxiUin by Truncation Mutagenesis 

In a previous report, we identified a region of paxillin 
spanning amino acids 54-313 that, when expressed as a 
GST fusion protein, supports the binding of both vinculin 
and FAK (Turner and Miller, 1994). The inability of an- 
other abundant focal adhesion protein, talin, to bind to 
this fusion protein confirmed the specificity of these inter- 
actions. As an initial step to determine more precisely the 
binding sites for these two proteins, a series of carboxyl- 
terminal deletions of this region of paxillin was generated 
by PCR and expressed as GST fusion proteins as shown in 
Fig. 1 A. The ability of each of these fusion proteins to 
bind vinculin, metavinculin (a smooth muscle-specific iso- 
form of vinculin) (Belkin et al., 1988), and FAK was tested 
in in vitro binding assays by incubating GST-paxillin fu- 
sion proteins with chicken gizzard smooth muscle lysate 
(Fig. 1, B-D) followed by Western blotting with antibod- 
ies to vinculin and FAK as described in Materials and 
Methods. The results of this analysis (Fig. 1) indicated that 
binding of vinculin, metavinculin, and FAK to paxillin was 
retained by the construct expressing paxillin residues 54- 
164 (lane 5), but that the shorter paxillin fusion protein 
spanning residues 54-143 lost the ability to bind all of 
these proteins (lane 6). Therefore, residues 143-164 of 
paxillin contain a binding site for these proteins. Binding 
of both phosphoisoforms of the noncatalytic variant of 
FAK (Schaller et al., 1993), known as FAK-related nonki- 
nase (FRNK), generally mirrored that of FAK; however, 
variability in the binding of FRNK to residues 54-164 was 
noted, which may reflect a more complex association with 
paxillin or simply inefficient transfer of these proteins as a 
result of comigration on the gel of the GST-paxillin fusion 
protein. 

As the interaction between vinculin and paxillin has 
been defined previously using blot overlay technology 
(Turner et al., 1990; Wood et al., 1994), the binding of pu- 
rified, radioiodinated vinculin to the GST-paxillin fusion 
proteins immobilized on nitrocellulose was tested and 
yielded identical results (data not shown). 

The amino-terminal limits of the vinculin- and FAK- 
binding sites were examined further. Consistent with the 
carboxyl-terminal truncations reported in Fig. 1, a GST-  
paxillin construct spanning residues 168-313 failed to pre- 
cipitate vinculin or metavinculin (Fig. 2 A, lane 4), thus de- 
fining the binding site for vinculin on paxillin within amino 
acids 143-164. Surprisingly, the same construct (168-313) 
retained the capacity to bind FAK (Fig. 2 B, lane 5). Bind- 
ing of FAK was only completely eliminated by combining 
this amino-terminal deletion with a carboxyl-terminal de- 
letion from 266-313 (lane 6). These data suggest that there 
are potentially two discrete regions of paxillin separated 
by 97 amino acids that contribute to the FAK-binding site. 

Molecular Dissection of the Vinculin- and 
FAK-binding Domains 

Further confirmation that amino acid residues 143-164 
contained the vinculin-binding site was obtained by delet- 
ing the region of paxillin encompassing residues 134-167 
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Figure 1. Vinculin and FAK binding to carboxyl-terminal dele- 
tions of GST-paxillin (54-313). A series of carboxyl-terminal de- 
letions of the vinculin- and FAK-binding region of paxillin (shown 
previously to be within residues 54-313 [Turner and Miller, 
1994]) was generated by PCR and expressed as GST fusion pro- 
teins. A shows a Coomassie brilliant blue-stained gel of the puri- 
fied GST fusion proteins used. These were coupled to glu- 
tathione-Sepharose 4B beads and incubated with smooth muscle 
tissue lysate. After extensive washing, the protein complexes 
were electrophoresed, and then blotted with antibodies to vincu- 
lin (note the vinculin antibody recognizes both vinculin [116 kD] 
and metavinculin [150 kD]) (B) or FAK/FRNK (C and D). The 
region of paxillin encoded by each fusion protein is listed at the 
top of the figure. Removal of residues 164-143 (compare lanes 5 
and 6) resulted in the loss of binding of vinculin and FAK/FRNK. 

from the GST-54-313 construct by site-directed mutagen- 
esis. As expected, this construct failed to coprecipitate vin- 
culin or metavinculin (Fig. 3 A, lane 4). In contrast, the 
binding of FAK was retained, although at a reduced level 
when compared to 54-313 (Fig. 3 B, lanes 3 and 4). Consis- 
tent with the truncation mutagenesis binding data, further 
deletion of the carboxyl terminus was found to be neces- 
sary to completely abolish FAK binding (Fig. 3 B, lane 5), 
reinforcing the argument for the involvement of two re- 
gions of paxillin in the binding of FAK. To definitively 
demonstrate the capacity of amino acid residues 133-164 
to support vinculin and FAK binding, this region was ex- 
pressed as a GST fusion protein and incubated with 

Figure 2. Two distant regions of the GST 54-313-paxillin fusion 
protein contain FAK-binding activity. Precipitation binding stud- 
ies were performed using smooth muscle lysate as described in 
Materials and Methods, and precipitated proteins were probed 
with antibodies to vinculin (A) or FAK (B). (Lane 1) Total tissue 
lysate. (Lane 2) Paxillin fusion protein (54-313) containing bind- 
ing sites for vinculin (and metavinculin) and FAK. While the 
amino-terminal deletion construct spanning residues 133-313 
bound both vinculin and FAK (lane 3), an additional truncation 
to 168 (GST 168--313) failed to bind vinculin (A, lane 4) but re- 
tained significant FAK binding (B, lane 5). A combination of this 
amino-terminal truncation with a carboxyl-terminal truncation 
(GST 168-265) was necessary to eliminate FAK binding (B, lane 6). 
The carboxyl-terminal truncation alone (GST 133-265) was not 
sufficient to eliminate binding of FAK (B, lane 4). 

chicken smooth muscle lysate; the resulting precipitate 
was blotted and probed by vinculin and FAK antibodies as 
above. This defined region of paxillin is capable of sup- 
porting the binding of vinculin and FAK (Fig. 3, A and B, 
lane 6). 

To dissect further those residues important for vinculin 
binding from those necessary for FAK binding, we gen- 
erated a limited number  of point mutations within the 
region of paxillin spanning amino acid residues 143-164 
and assayed them for their ability to bind metavinculin, 
vinculin, and FAK. A double point mutation of the nega- 
tively charged aspartate residue 146 to an uncharged po- 
lar asparagine (D146N) and positively charged arginine 
residue 147 to an uncharged polar glutamine (R147Q), as 
well as the single point mutation of the negatively charged 
glutamate residue 151 to an uncharged polar glutamine 
(E151Q), reduced the vinculin binding to <10% of control 
levels (Fig. 4 A, lanes 2 and 3). The double mutation 
(D146N/R147Q) had a similar, if not greater, effect on re- 
ducing the binding of FAK (Fig. 4 B, lane 2), suggesting 
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Figure 3. Internal deletion of the vinculin binding site. The vin- 
culin binding site (residues 134-167 of paxillin) as defined by car- 
boxyl- and amino-terminal deletions described in Figs. 1 and 2 
was deleted from GST 54-313 by site-directed mutagenesis. This 
construct lost the capacity to bind vinculin (A, lane 4) but re- 
tained FAK binding (B, lane 4). Consistent with a model involv- 
ing two regions of paxillin in FAK binding, a carboxyl-terminal 
deletion of residues 266--313 combined with the internal deletion 
was necessary to eliminate FAK-binding capacity (B, lane 5). Im- 
portantly, the internal binding site (133-164) is capable of sup- 
porting the binding of both vinculin and FAK (lane 6) in and of 
itself, dl, deletion. 

that these residues contribute significantly to the binding 
of both vinculin and FAK. In contrast, the E151Q muta- 
tion did not cause any reduction in FAK binding when 
compared with the control fusion protein (Fig. 4 B, lane 3). 
Therefore, while E151Q is critical for normal vinculin 
binding to paxillin, it is not an essential determinant of 
FAK binding, whereas paxillin residues D146 and R147 
contribute to both vinculin and FAK binding. These bind- 
ing data are summarized in Table I. 

Vinculin, FAK, and Paxillin Interaction Domain 
Sequence Analysis 

As the regions on paxillin that interact with vinculin (134- 
167) and FAK (134-167 and 265-313) were relatively de- 
fined, we sought to determine whether these regions of 
paxillin were homologous to other known proteins. A 
BLAST search (Altschul et al., 1990) of SWISS-PROT 
Release 32.0 revealed a strikingly high homology with one 
protein, the TGFI31- and hydrogen peroxide-inducible 
LIM protein, HIC-5 (Shibanuma et al., 1994). Interest- 
ingly, three particular regions of the paxillin and HIC-5 
molecules are highly conserved. These domains include a 
region of paxillin within the vinculin/FAK-binding domain 
(134-167), which is 64% identical and 72% conserved to 
HIC-5 amino acids 63-89; the more carboxyl-terminal 
FAK-binding domain (265-313), which is 60% identical 

Figure 4. Point mutations can discriminate between the vinculin- 
and proximal FAK-binding sites. The charge on three amino ac- 
ids (146, 147, and 151) was neutralized by site-directed mutagene- 
sis within the vinculin/FAK-binding sites. These mutants were 
used in precipitation-binding studies as described. The double 
point mutation D146N/R147Q reduced the binding of vinculin by 
>90% (A, lane 2) when compared with the control fusion protein 
(A, lane 1). The single point mutation E151Q resulted in a similar 
reduction in vinculin binding (A, lane 3). This mutation failed to 
perturb the binding of FAK (B, lane 3). In contrast, the double 
mutation significantly reduced FAK binding (B, lane 2). 

and 67% conserved to HIC-5 amino acids 139-198; and 
the four LIM domains with 62% identity and 78% conser- 
vation to HIC-5 amino acids 211-444 (data not shown). 
We speculate on the basis of such a defined conservation 
of motifs that HIC-5, a protein potentially involved in cel- 
lular senescence (Shibanuma et al., 1994), is a paxillin fam- 
ily member. When the conserved sequences of paxillin and 
HIC-5 are examined more closely, three segments of the 
vinculin- and FAK-binding regions mapped on paxillin 
have a remarkably conserved character within HIC-5. 
These three segments that are 85% identical between pax- 
illin and HIC-5 and are likely sequence elements mediat- 
ing the interaction between paxillin, vinculin, and FAK 
(Table II) contain a 13-amino acid repeated motif. Paxillin 
also contains within its extreme amino terminus an addi- 
tional repeat of this motif. A function for this repeat is not 
known. We have named these 13 amino acid repeats paxil- 
lin LD motifs on the basis of the conserved character of 
the tandem leucine and aspartate amino acid residues in 
both paxillin and HIC-5. Preliminary studies investigating 
a functional role for the LD motifs of HIC-5 indicate that 
HIC-5 is capable of interacting with vinculin and FAK 
(Turner, C.E., M.C. Brown, and S.M. Thomas, unpub- 
lished observations). 
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Table L GST/Paxillin-binding Activity for Vinculin and FAK 

GST/Paxillin fusion 
protein 

Binding protein 
Paxillin amino acids 

encoded by eDNA Vinculin FAK 

54-313 + + + +  + + + +  

54-265 + + + 

54-218 + +  + 

54-164 + + + 

54-143 - - 

113-313 + + + +  + + +  

168-313 - + + +  

133-265 ND + + 

168-265 - - 

54-313 (dl 134-167) - + + 

54-296 (dl 134-167) ND + +*  

54-265 (dl 134-167) - - 

133-164 + + +  + + + +  

54-313 (D 146N/R147Q -~ - ~  

54-313 (EI51Q) - ~  + + + + 

GST - - 

*Data not shown. 
*Binding reduced by >90%. 

Contribution of  the Vinculin- and FAK-binding 
Domains to Paxillin Focal Adhesion Targeting 

The definition of the vinculin- and FAK-binding sites o n  

paxillin using in vitro-binding analyses allowed for the de- 
termination of the potential role for vinculin and FAK in 
localizing paxillin to focal adhesions. To examine the ef- 
fect of deletion of the vinculin-binding domain on paxillin 
targeting, CHO.K1 fibroblasts were transfected with full- 
length wild-type chicken paxillin cDNA or the full-length 
construct encoding a deletion of amino acids 134-167, fol- 
lowed by immunofluorescence analysis of paxillin localiza- 
tion using a chicken-specific polyclonal antibody, named 
Pax 1, raised against purified avian smooth muscle paxillin 
(Turner et al., 1990). The full-length chicken paxillin mole- 
cule localized efficiently to focal adhesions (Fig. 5 A). 
Double staining with rhodamine-phalloidin to decorate 
actin filaments confirmed the localization of paxillin to the 
ends of stress fibers (Fig. 5 B). To verify colocalization of 
wild-type chicken paxillin with vinculin, CHO.K1 cells trans- 
fected with wild-type paxillin were fixed and immuno- 
stained using the paxillin polyclonal antibody (Fig. 5 C) 
and a vinculin mAb (Fig. 5 D). A field containing a non- 
transfected cell (asterisk), which is vinculin positive, was 
photographed to document the species specificity of the 
paxillin antiserum. Transfection and immunoanalysis of 
the paxillin construct containing the 134-167 deletion re- 

Table II. 

Conserved LD Motifs of Paxillin and HIC-5 

3 --E is 
PAXILL|N D L D A L L A D[ L S T T LDI 

144 j 156 

PAXILLIN E L D iR L L L El L N A V Q 
LD2 

H I C - 5  E L D R L L Q El L N A T Q 
75 87 

266 278  

PAXILLIN E L D E L M A S L S D F K 
LD3 

H I C - 5  E L D R L M A SIL S D F R 

141] I 152 

301 

M L ~[ 

313 

PAXILLIN Q L D T M L G L Q S D L I-D4 

H I C - 5  S L D T G L Q S D L 
186 L~ 198 

Alignment of the paxillin primary amino acid sequence with the potential homologue 
HIC-5. The primary amino acid sequence of each of the four 13-amino acid repeats 
are identical between avian and human paxillin, except for a conservative threonine to 
serine substitution at position 4 within LD4 (data not shown). These repeats have been 
named LD motifs on the basis of the conservation of the leucine (L) and aspartate (D) 
doublet (boxed and in bold) in each of the repeats of paxillin and HIC-5. Additionally, 
these motifs share a combination of leucine and/or methionine residues at positions 5 
and 6, as well as a carboxyl-terminal leucine at position 9 (boxed). 

vealed strong focal adhesion localization (Fig. 5 E), dem- 
onstrating that the targeting of paxillin to focal adhesions 
is independent of vinculin binding. Interestingly, overex- 
pression of full-length paxillin with the 134-167 deletion 
did not block focal adhesion formation (Fig. 5 E, double 
arrow) or vinculin targeting (Fig. 5 F, double arrow), al- 
though the focal adhesions did appear to be smaller than 
wild-type contacts. 

Paxillin containing the point mutations that affected vin- 
culin and FAK binding in vitro were next examined to 
confirm the nonessential nature of vinculin binding for 
paxillin focal adhesion localization (Fig. 6). Indeed, paxil- 
lin E151Q localized to sites of focal adhesion (Fig. 6 A) 
and did not affect vinculin targeting (Fig. 6 B). Paxillin 
D146N/R147Q, which had a severely reduced capacity t o  

bind FAK, as well as vinculin, in in vitro-binding assays 
(Fig. 4), was examined by immunofluorescence analysis t o  

determine if this impaired ability to interact with each of 
these focal adhesion proteins diminished paxillin targeting in 
vivo. Despite the effective absence of these binding sites, 
mutagenesis of the vinculin- and FAK-binding domain did 
not eliminate paxillin or FAK localization (Fig. 6, C and D). 

Figure 5. Focal adhesion targeting of a paxillin construct that lacks the vinculin-binding domain. CHO.K1 fibroblasts were transfected 
with chicken paxillin constructs, followed by indirect immunofluorescence analysis using a chicken-specific paxillin polyclonal antiserum 
(Pax 1), and double labeled with either rhodamine-phalloidin to decorate actin stress fibers or a vinculin mAb (Vin 11-5). Cells trans- 
fected with full-length wild-type paxillin were stained with anti-paxillin antiserum (A and C) and double labeled with rhodamine-phal- 
loidin (B) or vinculin antibody (D). The asterisk denotes a nontransfected cell. Cells were transfected with full-length paxillin containing 
the 134--167 vinculin-binding site deletion, stained with anti-paxillin antiserum (E), and double labeled with vinculin antibody (F). This 
construct localizes efficiently to focal adhesions. The double arrows point to the presence of paxillin and vinculin-containing focal adhe- 
sions even in cells overexpressing the paxillin construct. Bar, 5 Ixm. 
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Figure 6. Effect of point mutations within the common vinculin- and FAK-binding region of paxiUin on focal adhesion targeting. 
CHO.K1 fibroblasts were transfected with chicken paxiUin constructs followed by indirect immunofluorescence analysis. Cells trans- 
fected with full-length E151Q paxillin were stained with anti-paxillin antiserum (A) and double labeled with anti-vinculin antibody (B). 
Cells transfected with full-length D146N/R147Q paxillin were stained with anti-paxillin antiserum (C) and double labeled with 2A7, an 
FAK mAb (D). Bar, 5 ~m. 

To exclude completely the potential involvement of the 
amino terminus in targeting paxiUin to focal adhesions, we 
transfected CHO.K1 fibroblasts with a pcDNA3 construct 
encoding amino acids 1-313 of paxillin. This region of the 
protein contains the SH3- and crk SH2-binding domains, 
as well as the entire vinculin- and FAK-binding domains, 
but excludes the four carboxyl-terminal LIM domains. When 
the transfectants were examined by immunofluorescence 
using the paxillin polyclonal antiserum, cytoplasmic stain- 
ing but no focal adhesion targeting was detectable (Fig. 7 A), 
whereas double labeling of these transfectants with a vin- 
culin mAb confirmed the presence of focal adhesions in 
these cells (Fig. 7 B). The failure of this carboxyl-terminal 
truncated paxillin molecule to target to focal adhesions 
confirms that, in the absence of the LIM domains, the vin- 

culin- and FAK-binding domains cannot function to direct 
paxillin localization. Conversely, a region of paxiUin span- 
ning amino acid residues 168-559 that lacks the combined 
vinculin- and FAK-binding domain but contains the four 
LIM domains was capable of targeting to focal adhesions 
(Fig. 7 C). Interestingly, this truncated paxillin molecule 
localizes to both focal adhesions and extends partially 
along actin stress fibers, while vinculin in the same cell is 
restricted to focal adhesions (Fig. 7 D). 

These data demonstrate that the predominant means of 
targeting paxillin to focal adhesions lies outside of the 
amino-terminal vinculin- and FAK-binding domains and, 
consistent with past analyses (Bellis et al., 1995), outside of 
the potential SH3-binding domain and crk SH2-binding 
domain. Consequently, the LIM domains of paxillin are 
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Figure 7. Inability of paxillin 
lacking the carboxyl-terminal 
LIM domains to localize to 
focal adhesions. CHO.K1 fi- 
broblasts were transfected 
with a chicken paxillin con- 
struct spanning residues 1-313, 
a region containing the vin- 
culin- and FAK-binding re- 
gion but lacking the LIM do- 
mains, followed by indirect 
immunofluorescence analy- 
sis. A cytosolic distribution 
was observed with Pax 1 
staining (A), while double la- 
beling with a vinculin mAb 
confirmed that these cells 
had focal adhesions (B). Ex- 
amination of cells transfected 
with a construct encoding 
residues 168-559, a region 
containing the LIM do- 
mains, revealed efficient tar- 
geting to focal adhesions as 
well as some stress fiber 
staining (C, Pax 1; D, Vin 11- 
5). The distribution of 168-- 
559 in heterogeneous popu- 
lations of transfected cells 
was somewhat variable in 
that, in addition to focal ad- 
hesion staining, some cells 
exhibited greater staining 
along stress fibers than oth- 
ers. Bar, 5 ixm. 

implicated as the primary mechanism of paxillin focal ad- 
hesion targeting. 

A Role for the LIM Domains of PaxiUin as a Focal 
Adhesion-targeting Motif 

To characterize the involvement of the LIM domains of 
paxillin in focal adhesion targeting, sequential truncation 
of the four carboxyl-terminal LIM domains was produced 
in the pcDNA3 construct, 54-559. This protein lacks the 
potential SH3-binding motif but targets efficiently to focal 
adhesions (Bellis et al., 1995; Fig. 8, A and B). Expression 
and distribution of paxillin mutants encoded within these 
constructs was determined by immunoanalysis using the 
paxiUin polyclonal antiserum and rhodamine-phalloidin. 
A paxillin molecule with a deletion of LIM4 localized effi- 
ciently to focal adhesions (Fig. 8, C and D). However, fur- 
ther truncation by the removal of LIM3 resulted in the 
elimination of targeting (Fig. 8, E and F). This implicates 
LIM3 as the primary mechanism of paxillin focal adhesion 
localization. Importantly, the molecule encoded in this 
construct retains the vinculin- and FAK-binding domains, 
yet it is unable to support localization of paxillin to focal 
adhesions. 

LIM domains are complex structures composed of two 
zinc fingers. Each zinc finger is formed and stabilized 
through the chelation of one molecule of zinc by a combi- 
nation of four cysteine, histidine, or aspartate amino acid 

residues. LIM motifs conform to the following consensus: 
C1X2C2X16.23H3X2C4X2CSX2C6X16.21C7X2(C~I-.I,D) 8. The fold- 
ing of this domain can be perturbed readily through the in- 
troduction of point mutations of individual zinc coordinat- 
ing residues (Feuerstein et al., 1994). Consequently, paxillin 
constructs were generated that contained point mutations 
of zinc-chelating residues within both the first and second 
zinc fingers of LIM1, LIM2, or LIM3, in the context of the 
full-length molecule, thus disrupting the structure of an in- 
dividual LIM domain. Immunofluorescence analysis of ex- 
pression of the full-length paxillin LIM1 double mutant 
(H4349I/C5352A) in CHO.K1 fibroblasts revealed efficient 
localization to focal adhesions that was comparable to wild 
type (Fig. 9, A and B). Expression of full-length paxillin 
LIM2 double mutant (H3405I/C5411A) in CHO.K1 fibro- 
blasts revealed localization to focal adhesions (Fig. 9, C 
and D). However, the targeting was frequently less effi- 
cient when compared with other targeting competent mu- 
tants, as assessed by the relative intensity of the focal ad- 
hesion staining. This mutant paxillin molecule displays a 
proportionate decrease in colocalization with vinculin as 
compared with colocalization of the 134-167 paxillin dele- 
tion mutant with vinculin (Fig. 5). Finally, we generated a 
similar mutation of LIM3 (C4467A/C5470A) in the full- 
length paxillin molecule. This modification eliminated tar- 
geting to focal adhesions (Fig. 9, E and F), consistent with 
the LIM3 truncation mutant and confirming a role for the 
third LIM domain of paxillin in targeting this focal adhe- 

Brown et al. Functional Domains of Paxillin 1117 



The Journal of Cell Biology, Volume 135, 1996 1118 



sion protein. That paxillin has four LIM domain double 
zinc finger motifs suggests the possibility of a complex in- 
terplay between the LIM domains in protein function. The 
decrease in efficiency of localization of the LIM2 zinc fin- 
ger double mutant suggests a potential cooperativity be- 
tween LIM2 and LIM3 in targeting paxillin to focal ad- 
hesions. The role of the LIM domains in paxillin focal 
adhesion targeting is potentially complex, and further 
studies will be required to determine the precise interplay 
amongst the LIM domains in facilitating subceUular local- 
ization. Nonetheless, when a paxillin construct encoding a 
full-length molecule with LIM3 deleted is expressed in 
CHO.K1 cells, a complete elimination of targeting is ob- 
served (Fig. 9, G and H), further confirming LIM3 as the 
principal determinant of paxiUin subcellular localization to 
focal adhesions. The results of the expression analysis are 
presented in Table III. 

D i s c u s s i o n  

Generally, it has been accepted that paxillin is targeted to 
focal adhesions in part through an interaction with vincu- 
lin and/or FAK (Wood et al., 1994; Hildebrand et al., 
1995). Through the process of truncation, deletion, and 
site-directed mutagenesis, we have defined the vinculin- 
and FAK-binding sites on paxiUin in an effort to examine 
the contribution of these interactions to paxillin focal ad- 
hesion localization. A single region localized to amino ac- 
ids 143-167 supported vinculin binding; whereas this re- 
gion, in addition to paxillin residues 265-313, contributed 
to the binding of FAK. Examination of these binding sites 
revealed the presence of four novel, repeated motifs of 13 
amino acids within the primary amino acid sequence of 
paxillin that we have named LD motifs (Table II). The 
first LD repeat is located on the extreme amino terminus 
of paxillin, the second resides within the combined vincu- 
lin- and FAK-binding region (143-168), and the third and 
fourth within the second FAK-binding region (265-313). 
A role for the fourth LD in supporting FAK binding has 
been excluded by producing an additional carboxyl-termi- 
nal truncation of the 54-313 (deletion [dl] 134-167) to 54- 
296 (dl 134-167), which was capable of binding FAK (un- 
published observation). Since these repeats are found in a 
variety of proteins, including dystrophin, myosin heavy 
chain, and G~ guanine nucleotide regulatory protein sub- 
units, we suspect that these are novel protein-protein in- 
teraction motifs of general importance. 

Previously, the paxillin-binding site on vinculin was 
mapped to a 22-amino acid region spanning residues 978- 
1,000 within the vinculin tail (Wood et aL, 1994), which 
was sufficient for paxillin binding but not for focal adhe- 
sion localization of vinculin. An additional carboxyl-termi- 
nal 28 amino acids were required for efficient localization 
of the tail domain of vinculin to focal adhesions in NIH3T3 

cells. This raised the possibility that paxillin is targeted to 
focal adhesions in part through an association with vincu- 
lin. Interestingly, transfection of a fulMength paxillin mol- 
ecule containing a deletion of the vinculin-binding site 
(amino acids 134-167) into CHO.K1 fibroblasts revealed 
no effect on paxillin focal adhesion localization, demon- 
strating the ability of paxillin to target in the absence of 
vinculin binding (Fig. 5). The capacity of paxillin to target 
to focal adhesions independent of an interaction with this 
major structural component was at first surprising. How- 
ever, during the course of this study, reports using F9 and 
embryonic stem cell vinculin-null cells revealed, in fact, 
enhanced labeling of focal adhesions for paxillin (Volberg 
et al., 1995), although these cells were less well spread than 
wild-type counterparts and were 2.4-fold more motile 
(Coil et al., 1995), confirming that paxillin targeting to fo- 
cal adhesions can occur independently of an interaction 
with vinculin. Additionally, the inability of paxillin to be 
recruited to focal adhesions through an association with 
vinculin may provide an explanation for the failure of pax- 
illin to colocalize with vinculin at sites of cell-cell adhesion 
(Turner et al., 1990). 

The carboxyl terminus of FAK supports both paxillin 
binding and focal adhesion localization, with the paxillin- 
binding site and the focal adhesion targeting sequence 
reported to be distinct (Hildebrand et al., 1995). This sug- 
gested that FAK localization to focal adhesions is inde- 
pendent of binding to paxillin and that FAK is likely in- 
volved in the recruitment of paxillin to focal adhesions. 
These conclusions are in conflict with a recent study exam- 
ining the interaction between FAK and paxillin and subse- 
quent focal adhesion localization of FAK (Tachibana et al., 
1995). A detailed molecular dissection of the paxillin-binding 
site on FAK revealed the involvement of two regions of 
FAK with high homology to the region of vineulin shown 
previously to interact with paxillin (Tachibana et al., 
1995). The vinculin sequence is contiguous, whereas the 
FAK sequences are separated by 91 amino acids. Conse- 
quently, this region of homology was divided into two in- 
dependent domains that were named paxillin-binding sub- 
domain (PBS) 1 and 2. Interestingly, a recently identified 
FAK family member, PYK2 (Levet  al., 1995; Sasaki et al., 
1995; Avraham et al., 1995; Li et al., 1996), also has highly 
conserved PBS1 (77% similarity) and PBS2 (100% simi- 
larity) domains. The integrity of both PBS1 and PBS2 on 
the carboxyl terminus of FAK was found to be essential 
for paxillin binding and, importantly, for FAK focal adhe- 
sion localization. Furthermore, microinjection of FAK 
constructs containing single point mutations in the PBS 
domains that eliminated the binding of paxillin also failed 
to target FAK to focal adhesions. These data suggest that 
FAK does not target, but is targeted by paxillin to focal 
adhesions (Tachibana et al., 1995). Also, a report examin- 
ing fibroblasts from FAK-deficient mice revealed paxillin 

Figure 8. Truncation mutagenesis localization of the paxillin focal adhesion targeting motif to LIM3. CHO.K1 fibroblasts were trans- 
fected with chicken paxillin constructs followed by indirect immunofluorescence analysis using a chicken-specific paxillin polyclonal an- 
tiserum (A, C, E, and G) and rhodamine-phaUoidin to decorate actin stress fibers (B, D, F, and H). Paxillin 54-559 (A) and 54-LIM3 (C) 
efficiently localized to focal adhesions. However, ceils transfected with paxillin 54-LIM2 (E) or 54-LIM1 (G) showed a cytoplasmic dis- 
tribution for the chicken paxillin, suggesting a loss of the paxillin focal adhesion targeting motif. Importantly, 54-LIM2 and 54-LIM1 
contain intact vinculin- and FAK-binding domains yet lack the capacity to target to focal adhesions. Bar, 5 ~m. 
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tyrosine phosphorylation, an increased number of focal 
adhesions, and decreased cell motility (Ili~ et al., 1995). 
Unfortunately, the capacity of paxillin to target to focal 
adhesions was not addressed. Our demonstration of a sin- 
gle binding site for vinculin and two sites for FAK on pax- 
illin correlates with the contiguous nature of PBS se- 
quences on vinculin and the separation of the PBS motifs 
on FAK. Additionally, our transfection studies demon- 
strate that the FAK-binding domains within the amino- 
terminal half of paxillin are insufficient and unnecessary 
for paxillin focal adhesion localization. When the FAK 
truncation and deletion mutagenesis study by Hildebrand 
et al. (1995) is examined in the context of the PBS termi- 
nology of Tachibana et al. (1995), it is apparent that the 
presence of both PBS1 and PBS2, as well as the interven- 
ing sequences, is essential for both paxillin binding and 
FAK focal adhesion localization. On the basis of the local- 

ization of the binding of vinculin and FAK to regions of 
paxillin containing a 13-amino acid LD motif, it is likely 
that these sequences represent the regions of interaction 
with the PBS sequences of vinculin and FAK. We are cur- 
rently examining in more detail the interaction between 
the individual LD repeats of paxillin and the PBS se- 
quences of vinculin, FAK, and related proteins. 

The determination that paxillin localizes to focal adhe- 
sions independent of interactions with vinculin and/or 
FAK (Figs. 8 and 9) raises a question regarding the func- 
tion of the interaction between paxillin, vinculin, and 
FAK. Although such binding domains on paxillin are not 
necessary or sufficient for localization, they are likely to be 
necessary for stabilization and maintenance of this sub- 
cellular distribution. Additionally, these interactions may 
modulate the capacity of these cytoskeletal proteins to in- 
teract with the many other constituents of the focal adhe- 
sion (Miyamoto et al., 1995), structurally or enzymatically, 
thereby modulating the assembly and disassembly of these 
structures and other signaling pathways associated with in- 
tegrin function (for review see Juliano and Haskill, 1993). 
The dynamic nature of paxillin phosphorylation (Turner, 
1994) may also affect interactions with associated proteins. 
Our observation of the paxillin LIM domains, in the ab- 
sence of the amino terminus, localizing both to focal adhe- 
sions and partially extending along the stress fibers, sug- 
gests that the focal adhesion localization of paxillin is 
stabilized through interactions involving the amino-termi- 
nal portion of the protein. 

Although we have established that LIM3 is the principal 
determinant of paxillin focal adhesion targeting, our data 
suggest mutations of LIM2 have an attenuating effect on 
paxillin focal adhesion targeting. This is consistent with a 
recent report detailing cooperativity among LIM domains 
in the subcellular distribution of the LIM proteins muscle 
LIM protein and cysteine-rich protein (Arber and Caroni, 
1996). Therefore, a complexity of LIM domain structural 
interactions affecting the functional role of LIM3 in paxil- 
lin focal adhesion targeting is possible. It will be important 
to determine the identity of the protein responsible for re- 
cruiting paxillin to focal adhesions via an interaction with 
the LIM domains. The LIM motifs of Enigma, a protein of 
unknown function, are capable of recognizing and binding 
to regions of proteins containing tyrosine tight turns 
(NPXY motifs) (Wu and Gill, 1994). Tyrosine tight turns 
are present on the cytoplasmic tails of 13 integrins as well 
as some growth factor receptors (Chen et al., 1990; Backer et 
al., 1992; Reszka et al., 1992). The directing of paxillin to 
focal adhesions via the LIM domains is intriguing in view 
of a recent report detailing the potential interaction of 
paxillin with the 131 integrin cytoplasmic tail, although it 

Figure 9. Site-directed and deletion mutagenesis demonstrate that LIM3 is the principal determinant of paxillin focal adhesion localiza- 
tion. CHO.K1 fibroblasts were transfected with chicken paxillin constructs followed by indirect immunofluorescence analysis using a 
chicken-specific paxillin polyclonal antiserum (A, C, E, and G) and rhodamine-phalloidin to decorate actin stress fibers (B, F, and H) or 
an mAb to vinculin (D). To further examine a role for the LIM domains of paxillin as the focal adhesion targeting motif, cells were 
transfected with full-length paxillin constructs in which the structural integrity of the double zinc fingers of individual LIM domains was 
compromised. Perturbation of LIM1 (H4349I/C5352A) (A) or LIM2 (H3405I/C5411A) (C) does not abrogate focal adhesion targeting, 
whereas perturbation of LIM3 (C4467A/C5470A) eliminates focal adhesion localization of paxillin (E). Furthermore, deletion of LIM3 
(444 494) from the full-length molecule eliminates focal adhesion targeting (G). This demonstrates a role for LIM3 as the principal de- 
terminant of paxillin focal adhesion localization. Bar, 5 tzm. 

Brown et al. Functional Domains of Paxillin 1121 



was not confirmed that this interaction is direct (Schaller 
et al., 1995). Although paxillin is capable of interacting 
with tyrosine-containing tight turns (Wu, R.-Y., G.N. Gill, 
M.C. Brown, and C.E. Turner, unpublished observations), 
we have been unable, in preliminary experiments, to de- 
tect interactions between the four tandem LIM domains of 
paxillin and the [31, [32, [33, [35, or [38 integrin cytoplasmic 
tails using the yeast two-hybrid system (O'Toole, T.E., 
M.C. Brown, and C.E. Turner, unpublished observations). 
The capacity of paxillin to interact with zyxin (Crawford et 
al., 1992) and other LIM proteins also is currently under 
examination. 

A thorough molecular examination, using tools such as 
we have defined in this study, will be required to deter- 
mine the temporal and spatial function of the meshwork of 
cytoskeletal interactions in regulating these contact sites, 
and, consequently, the diverse cellular phenomena associ- 
ated with cell adhesion. 
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