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Abstract. The yeast membrane protein Kex2p uses a 
tyrosine-containing motif within the cytoplasmic do- 
main for localization to a late Golgi compartment. Be- 
cause Golgi membrane proteins mislocalized to the 
plasma membrane in yeast can undergo endocytosis, we 
examined whether the Golgi localization sequence or 
other sequences in the Kex2p cytoplasmic domain me- 
diate endocytosis. To assess endocytic function, the 
Kex2p cytoplasmic domain was fused to an endocyto- 
sis-defective form of the a-factor receptor, Ste2p. Like 
intact Ste2p, the chimeric protein, Stex22p, undergoes 
rapid endocytosis that is dependent on clathrin and 
End3p. Uptake of Stex22p does not require the Kex2p 
Golgi localization motif. Instead, the sequence NPFSD, 
located 37 amino acids from the COOH terminus, is es- 

sential for Stex22p endocytosis. Internalization was 
abolished when the N, P, or F residues were converted 
to alanine and severely impaired upon conversion of D 
to A. NPFSD restored uptake when added to the 
COOH terminus of an endocytosis-defective Ste2p chi- 
mera lacking lysine-based endocytosis signals present 
in wild-type Ste2p. An NPF sequence is present in the 
cytoplasmic domain of the a-factor receptor, Ste3p. 
Mutation of this sequence prevented pheromone-stim- 
ulated endocytosis of a truncated form of Ste3p. Our 
results identify NPFSD as a clathrin-dependent en- 
docytosis signal that is distinct from the aromatic amino 
acid-containing Golgi localization motif and lysine- 
based, ubiquitin-dependent endocytosis signals in yeast. 

C 
LATHRIN-mediated endocytosis of plasma membrane 

receptors promotes the rapid and efficient uptake 
of receptor-bound ligands, typically nutrients and 

signaling molecules important for cell growth and differ- 
entiation. Plasma membrane proteins subject to efficient 
endocytosis contain specific, cytoplasmically disposed amino 
acid sequences that are necessary for uptake (for review 
see Trowbridge et al., 1993). Such endocytic targeting sig- 
nals often contain an aromatic amino acid (tyrosine or 
phenylalanine) and serve to direct proteins into clathrin- 
coated pits. The critical importance of aromatic amino ac- 
ids in the targeting sequences has been established by mu- 
tational studies (for review see Trowbridge et al., 1993). 
For example, mutation of tyrosine 807 in the low-density 
lipoprotein (LDL) 1 receptor disrupts clathrin-coated pit 
localization and thereby prevents uptake from the plasma 
membrane (Davis et al., 1986, 1987). Furthermore, intro- 
duction of a single tyrosine into the cytoplasmic domain of 
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the influenza hemagglutinin protein dramatically increases 
the efficiency of internalization via clathfin-coated pits (Laz- 
arovits and Roth, 1988). In addition to the aromatic amino 
acid--containing motifs, there are also endocytic targeting 
signals that lack aromatic amino acids but appear to medi- 
ate internalization through clathrin-coated pits. Examples 
of these signals include di-leucine motifs in the CD3 sub- 
units of the T cell antigen receptor (Letourneur and 
Klausner, 1992) and a lysine-containing signal in the yeast 
a-factor receptor, Ste2p (Rohrer et al., 1993). 

The location of endocytic targeting signals within the cy- 
toplasmic domains of integral membrane proteins allows 
for interaction with cytosolic factors that mediate uptake. 
Internalization motifs containing aromatic amino acids or 
di-leucines serve as recognition sites for the binding of the 
AP-2 adaptor, a component of clathrin coats (Pearse, 1988; 
Glickman et al., 1989; Beltzer and Speiss, 1991; Chang et 
al., 1993; Nesterov et al., 1995; Ohno et al., 1995; Heilker 
et al., 1996). Structural analysis of aromatic amino acid- 
containing targeting signals suggests that they form a char- 
acteristic tight [3-turn, which may provide a common struc- 
tural determinant for AP-2 binding (Collawn et al., 1990; 
Bansal and Gierasch, 1991; Eberle et al., 1991; Backer et 
al., 1992). Internalization directed by other targeting sig- 
nals could also involve AP-2 binding, but this has not yet 
been established. 

Aromatic amino acid-containing targeting signals have 
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also been identified in proteins that do not reside primarily 
at the plasma membrane. Endocytosis directed by these 
signals is important in the normal trafficking patterns of 
some of these proteins, including lysosomal acid phos- 
phatase, the TGN proteins furin and TGN38, and the cat- 
ion-independent and -dependent mannose-6-phosphate 
receptors (M6PR). For lysosomal acid phosphatase, en- 
docytosis is an intermediate event in the delivery of newly 
synthesized protein from the Golgi complex to the or- 
ganelle of residence, the lysosome (Peters et al., 1990). In 
the cases of M6PR, TGN38, and furin, endocytosis acts to 
retrieve proteins to the TGN or endosomes where they are 
predominantly located (Johnson et at., 1990; Canfield et al., 
1991; Bos et al., 1993; Humphrey et al., 1993; Wong and 
Hong, 1993; Ponnambalam et al., 1994; Sch/ifer et al., 1995). 
In contrast to the aforementioned examples, an endocyto- 
sis signal was identified in a protein that does not normally 
reach the plasma membrane, the ER-Golgi intermediate 
compartment protein, ERGIC-53 (Itin et al., 1995). En- 
docytosis of ERGIC-53 was observed when localization 
was perturbed by overexpression. This finding allowed 
definition of an endocytic signal, KKFF, which requires 
the presence of aromatic amino acids in the two COOH- 
terminal positions and may mediate interaction with clath- 
rin coats. 

Recent studies in the yeast Saccharomyces cerevisiae also 
implicate endocytosis in the trafficking of intracellular mem- 
brane proteins that aberrantly reach the cell surface. In 
yeast strains with a mutation in the VPS1 gene (vpsl), 
which encodes a dynamin-like GTPase, TGN membrane 
proteins are mislocalized to the vacuole (Wilsbach and 
Payne, 1993a; Nothwehr et al., 1995). In vpsl cells also car- 
rying a mutation that blocks endocytosis, a TGN protein 
accumulates at the ceil surface (Nothwehr et al., 1995). 
This finding argues that the vps! mutation results in rout- 
ing of TGN proteins to the plasma membrane, where they 
are internalized and delivered to the vacuole. The same 
endocytosis mutation by itself does not cause accumula- 
tion of the TGN protein at the surface of cells expressing 
the wild-type Vpsl protein, supporting previous evidence 
that TGN protein localization does not normally involve 
retrieval from the plasma membrane (for review see Wils- 
bach and Payne, 1993b; Nothwehr and Stevens, 1994). In 
addition, mutation of the clathrin heavy chain gene (CHC1) 
in yeast, which also disrupts TGN protein localization, re- 
sults in accumulation of the proteins at the cell surface 
(Payne and Schekman, 1989; Seeger and Payne, 1992), 
presumably because of the endocytic defect caused by the 
chcl mutation (Tan et al., 1993). These results indicate 
that TGN proteins are able to undergo endocytosis in 
yeast and raise the possibility that such proteins might 
contain endocytosis signals in their cytoplasmic domains. 

We have used chimeric proteins to address the possibil- 
ity that the yeast TGN protein, Kex2p, harbors an endo- 
cytic signal. We find that the cytoplasmic domain of Kex2p 
contains a novel aromatic amino acid-containing signal for 
clathrin-mediated endocytosis that is distinct from the pre- 
viously reported Kex2p tyrosine-containing TGN localiza- 
tion sequence (Wilcox et ai., 1992) and the previously re- 
ported lysine-based endocytosis signal identified in S. 
cerevisiae (Rohrer et al., 1993). Furthermore, the aromatic 
amino acid-containing endocytic sequence is present in 

the cytoplasmic domain of the a-factor pheromone recep- 
tor and is necessary for pheromone-dependent uptake of a 
truncated form of this receptor. 

Materials and Methods 

Materials 
Unless noted, all reagents were purchased from Sigma Chemical Co. (St. 
Louis, MO). 

Strains, Media, and Genetic Methods 
The yeast strains and genotypes used in this work are listed in Table t. 
DNA transformations were performed by the lithium acetate procedure 
(Ito et al., 1983). The ste2A strains were produced by single-step gene re- 
placement (Rothstein, 1994) using plasmid pAB506 (a gift from James 
Konopka, SUNY Stony Brook, Stony Brook, NY) cleaved with BamHI. 
Gene replacements were monitored by Southern blotting, immunoblot- 
ting, and the halo assay (Sprague, 1994) to verify that the STE2 gene was 
disrupted. The ste3A strains were produced by single-step gene replace- 
ment using plasmid pSL1841 (a gift from George Sprague, University of 
Oregon, Eugene, OR) cleaved with HindIII. Immunoblotting and mating 
tests were used to verify gene disruption. SM1581 contains pSM219, a 
multicopy plasmid carrying Mfal (a gift from Susan Michaelis, Johns 
Hopkins University, Baltimore, MD). 

SD medium is 0.67% yeast nitrogen base (Difco Laboratories, Inc., De- 
troit, MI) and 2% dextrose with 20 tzg/mt each of uracil, adenine, me- 
thionine, histidine, tryptophan, and 30 Ixg/ml lysine. SD CAA medium is 
SD containing 5 mg/ml vitamin assay casamino acid mix (Difco Laborato- 
ries, Inc.). SD- t rp  is SD without tryptophan and SD C A A - t r p  is SD 
CAA without tryptophan. YP medium is 1% Bacto-yeast extract (Difco 
Laboratories, Inc.), 2% Bactopeptone (Difco Laboratories, Inc.). YPD is 
YP supplemented with 2% dextrose. YPR is YP supplemented with 2% 
raffinose. Cell densities in liquid culture were measured in a 1-cm plastic 
cuvette using a spectrophotometer (model DU-62; Beckman Instruments, 
Fullerton, CA). 

Construction of  STEX22 and Mutant Derivatives 
PCR and/or conventional suhcloning techniques were used in plasmid 
constructions. PCR fragments were synthesized using vent DNA poly- 
merase (New England Biolabs, Beverly, MA) and primers were synthe- 
sized using an ABI 391 DNA Synthesizer (Perkins-Elmer, Foster City, 
CA) or purchased from Operon Technologies, Inc. (Alameda, CA). PCR 
products were purified using the QIAquick PCR purification kit (Qiagen 
Inc., Chatsworth, CA) before digestion with the appropriate restriction 
enzymes and separation on TAE agarose gels before subcloning into vec- 
tors. All PCR products were Sequenced using Sequenase (United States 
Biochemical Corp., Cleveland, OH) after subcloning into pBKS (Strat- 
agene, La Jolla, CA). 

To create the STE2-KEX2 chimera, PCR fragments encoding relevant 
portions of STE2 and KEX2 were produced with the creation of a unique 
BglII site at the chimera junction. A 750-bp fragment of STE2 (Nakayama 
et al., 1985) encoding amino acids 45-297 was amplified from pRS314- 
STE2 (Weiner et aL, 1993) using the primers 5'-GCTTCTAGAGTTAA- 
CAGTACTGTTACTCAG-Y (primer A) and 5'-GGAAGATCTCGTG- 
GCCCACATTGATGA-3'. A 650-bp fragment of KEX2 (Fuller et al., 
1989) that encodes the entire cytoplasmic tail of Kex2p from amino acids 
701-814 as well as roughly 300 bases of the 3' untranslated region was am- 
plified from pJ2B (Julius et aL, 1984) with the primers 5'-GGAAGATCT- 
TCAAGGAGAAGGATCAGA-3 '  (primer B) and 5'-CGCGGATC- 
CTIT/ 'TAATACACCAAAGA-3'  (primer C). These PCR products were 
cloned into pCHC-BX8, which contains the 2-kb Xbal-BamHI fragment of 
CHC1 with a unique BgllI site in pUCll9  (Vieira and Messing, 1987), to 
create pUC119-SEX2. This plasmid contains both PCR products joined at 
their Bglll sites, pRS314-STEX2 was then created by replacing the Hpal- 
SacI fragment of pRS314-STE2 with the corresponding fragment of 
pUCll9-SEX2. This construct encodes Stex2p, a protein that has the en- 
tire cytoplasmic COOH-terminal tail of Ste2p (amino acids 298~31) re- 
placed by the entire COOH-terminal tail of Kex2p (amino acids 701-814). 
To create pRS314-STEX22, which encodes Stex22p, primer A was used 
with the primer 5 ' -GGAAGATCTATCTGTGGATGTFGTAAA-3 '  to 
synthesize a 820-bp PCR fragment of STE2 encoding amino acids 45-318 
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Table L Yeast Strains Used in This Study 

Strain Genotype Source 

GPY779 MATa ste2::LEU2 leu2-3,112 his4 or his6 trp1-289 ura3-52 sstl-3 This study 
GPY789 GPY779 pRS314 This study 
GPY790 GPY779 pRS314-STE2 This study 
GPY793 MATa chcl-521 (ts) ste2::LEU2 Ieu2-3,112 his6 trp1-289 ura3-52 sstl-3 pRS314-STE2 This study 
GPY839 MATa ste2::LEU2 ura3-52 Ieu2-3,112 his3-A200 his4 trpl-A901 sstl-I pRS314-STE2 This study 
GPY849 MATa ste2::LEU2 end3- l ura3-52 leu2-3,112 his3-A200 and/or his4 trpl-A90l sstl-1 pRS314-STE2 This study 
GPY 1016 GPY779 pRS 3 t 4-Y713A,Y724A This study 
GPY 1047 GPY779 pRS314-793" This study 
GPY1058 GPY779 pRS314-775" This study 
GPY 1059 GPY779 pRS314-788* This study 
GPY 1060 GPY779 pRS314-783-788A,793" This study 
GPY 1061 GPY779 pRS314-776-782A,788" This study 
GPY 1083 GPY779 pRS314-STEX22 This study 
GPY1084 MATa chci-521 (ts) ste2::LEU2 leu2-3,112 his4 or his6 trpl-289 ura3-52 sstl-3 pRS314-STEX22 This study 
GPY1085 MATa ste2::LEU2 ura3-52 1eu2-3,112 his3-A200 his4 trpl-A901 sstl-I pRS314-STEX22 This study 
GPY 1086 MATa ste2::LEU2 end3-1 ura3-52 leu2-3,112 his3-A200 and/or his4 trpl-A901 sstl- 1 pRS314-STEX22 This study 
GPY 1087 GPY779 pRS314-730" This study 
GPY 1088 GPY779 pRS314-730-endo This study 
GPY 1089 GPY779 pRS314-E776A This study 
GPY 1090 GPY779 pRS314-N777A This study 
GPY 1091 GPY779 pRS314-P778A This study 
GPY 1092 GPY779 pRS314-$780A This study 
GPY 1093 GPY779 pRS314-D781A This study 
GPY 1094 GPY779 pRS314-Y713A This study 
GPY 1095 GPY779 pRS314-Y724A This study 
GPY 1096 GPY779 pRS314-718-730A This study 
GPY 1097 GPY779 pRS314-702-717A This study 
GPY 1098 GPY779 pRS314-F779A This study 
GPY 1449 GPY779 pRS314-P782A This study 
GPYI474 MATa leu2-3,112 trp1-289 ura3-52 pep4::URA3 prbl gal2 ste3::LEU2 This study 
GPY 1476 GPY 1474 pRS314-Gal-Ste3A365 This study 
GPY 1477 GPY 1474 pRS314-Gal-Ste3A365APA This study 
SM 1581 MATa ura3 leu2 his4 trpl can1 pSM219 S. Michaelis 

that was subcloned directly into pRS314-STEX2, replacing the Hpal-Bglll 
fragment of STEX2. Therefore, STEX22 contains the STE2 upstream 
transcriptional regulatory region and nucleotides encoding amino acids 
1-318 of Ste2p fused to the KEX2 gene encoding amino acids 701-814 of 
Kex2p and 300 bases of the 3' untranslated region, with an additional 
serine codon at the junction of the two genes. 

To produce the tyrosine 713 mutant, primers B and C were used in a 
PCR reaction with pCWKXl l  (Wilcox et al., 1992) as a template. The 
PCR product was cloned into pBKS-CEX2 (see below) using BgllI and 
BamHI to produce pBKS-Y713A. The BgllI-SacI fragment of pBKS- 
Y713A was then placed into pRS314-STEX22 to create pRS314-Y713A. 

To facilitate production of Stex22p cytoplasmic tail mutations and dele- 
tions, pBKS-CEX2 was created by cloning the Clal-SacI fragment of 
pUC119-SEX2 into pBKS. Using mutagenic primers, PCR fragments that 
carry either point mutations or deletions in KEX2 were amplified from 
pBKS-CEX2, and the PCR fragments then were inserted into this plas- 
mid, replacing the wild-type Kex2p cytoplasmic tail. Fragments containing 
the mutations were then transferred into pRS314-STEX22 using BgllI and 
Sacl, replacing the wild-type BgllI-SacI fragment of STEX22. For exam- 
ple, the primer 5 ' -C C C GAT AT C AT T GAT AC AGAC T CTGAGGC-  
CGATI 'CTACTTTGGACAA-3 '  was used with primer C to amplify 
DNA from pBKS-CEX2. (For each primer that produces a point muta- 
tion, residues that differ from the wild-type KEX2 sequence appear in 
bold type.) The PCR fragment was then subcloned into pBKS-CEX2 with 
EcoRV and BamHI, replacing the corresponding fragment of pBKS- 
CEX2, to produce pBKS-Y724A. The BgllI-SacI fragment of this plasmid 
was then subcloned into pRS314-STEX22 to produce pRS314-Y724A. 
The same PCR product was similarly subcloned into pBKS-Y713A, pro- 
ducing pBKS-Y713A,Y724A, and subsequently pRS314-Y713A,Y724A. 

Primers used with primer C to generate internal deletions within 
Stex22p were 5'-GGAAGATCTATCATI'GATACAGACTCT-3' (702- 
717A) and 5'-CCCGATATCGGAACTFCCGGAATPACT-3' (718-730A). 

The unique HindIII site just downstream of the Kex2p termination 

codon in pBKS-CEX2 was used to subclone PCR fragments encoding trun- 
cations of STEX22 from the carboxy terminus as well as internal deletions. 
Primers creating these deletions contain a stop codon followed by a HindlII 
site. Primers used with primer B in PCR reactions and the deletions 
produced were as follows: 5 ' -CCCAAGCTTAATI 'GTCCAAAGTA-  
GAATC-3 '  (730"), 5'-CCCAAGCITATGCGT]?GGCGTCATITGG-3' 
(793"), 5 ' -CCCAAGCITAGITIGTTAGTACACTATC-3 '  (775*), 5'- 
CCCAAGCITATGGGAACTITFGCTT-3 '  (788*), 5 ' -CCCAAGCqTA- 
TGCATTAGCATCGTTAGGGTCACTAAATGG-3' (783-788A,793"), 
and 5 ' - C C C A G G C T T A T G G G A A C T / T I ' G C T I T A T G T I ' T G T T A G T -  
ACACT-3'  (776--782A,788"). 

To produce pRS314-730-endo, a PCR product amplified from primer B 
and the primer 5 ' - C C C A A G C T T A G G G A T C A C T A A A A G G G T T C T -  
C G T T T G T T A A C A C A T T G T C C A A A G T A G A A T C G T A - 3 '  was cloned 
into pBKS. After sequencing, the EcoRI-HindlIl fragment was removed 
and ligated into pBKS-CEX2 to create pBKS-730-endo. The BglII-SacI 
fragment was then subcloned into pRS314-STEX22. 

The constructs 793*, 775", 788", 783-788A,793", and 776-782A,788" 
contain a point mutation introduced by PCR located within the STE2 por- 
tion of the gene that replaces methionine at position 180 with isoleucine. 
The mutation has no effect on endocytosis of Stex22p. 

Conversion of individual residues 776-782 to alanine was carried out by 
oligonucleotide-directed mutagenesis. Mutagenesis was performed ex- 
actly as described in Kunkel et al. (1987). Single-stranded phage was pro- 
duced by infecting the dut- ung- bacterial strain CJ236 carrying pBKS- 
CEX2 with the M13K07 helper phage as described in Vieira and Messing 
(1987). To purify the single-stranded phage DNA, the phage was precipi- 
tated from the media by incubation with 0.2 vol of ice-cold 15% PEG8000 
in 3 M NaCI for 1 h on ice, followed by centrifugation at 10,000 g for 10 
min at 4°C. The pellet was resuspended in 3 ml of 100 mM Tris, pH 7.5, 
100 mM NaCI, and 25 mM EDTA, and the phage was disrupted by addi- 
tion of an equal volume of 4% SDS and incubation at 70°C for 10 min. 
The sample was then placed on ice, 3 ml of 2.55 M KOAc was added, and 
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the sample was centrifuged at 15,000 g for 30 min at 4°C. Single-stranded 
DNA was purified using a Qiagen-tip 100 following the procedure pro- 
vided by Qiagen, Inc. Mutagenized DNA was identified by new restriction 
sites introduced by the mutagenic primers. The DNA was sequenced and 
transferred into pRS314-STEX22 as above. Otigonucleotides used for the 
procedure and point mutations produced are as follows: 5 ' -TCACTA- 
AATGGATITGCGTI~G' ITAACACACTATCAATTGTA-3 '  (E776A), 
5 ' -AGGGTCACI'AAATGGCGCCTCGTTTGTFAGTACA-3'  (N777A), 
5 ' -TAGGGTCACTA AAT GC AT Iq~C GT T T GT rAG-3 '  (P778A), 5'- 
"Iq 'GCTTTATAGGGTCGCTAGCTG GAITITCGTTTGT-3  ' (F779A), 
5'-C i T ITGCTITATAGGATCCGCAAATGGAI  TIICGTT-3 '  ($780A), 
and 5 ' -CTITrGCTITATAGGAGCGCI'AAATGGATITI 'CG-3 '  (D781A). 
To introduce the P782A mutation into Stex22p, the following oligonucle- 
otide was used with single-straded template from pBKS-CEX2 D781A: 
5 ' -AACTITI 'GC-qTFATAGCGTCACTAAATGGATr-3 '  (P782A). Mu- 
tagenized DNA was identified by the loss of an Eco471II restriction site 
present in pBKS-CEX2 D781A. 

For construction of pRS314-GAL STE3A365, partial digestion by 
EcoRI was used to produce a 2-kb SacI-EcoRI fragment containing 
STE3-A365 under control of the GALl  promoter from pSL1922 (Davis et 
al., 1993). This fragment was then inserted into pRS314 (Sikorski and Hie- 
ter, 1989). 

To introduce N732A and F734A mutations into Ste3-A365p, a 1.3-kb 
EcoRI-Sacf fragment from pSL1590 (gift from George Sprague, University 
of Oregon) was inserted into pBKS to yield pBKS-STE3A365. Oligonu- 
cleotide mutagenesis was performed as described above using pBKS- 
STE3A365 as a template and the oligonucleotide 5 ' -TCAGAGTCT- 
GTAGAAGCTGGGGCI 'CTAGACFCTI~GCGTGAGGA-3 ' .  After con- 
firming successful mutagenesis by sequencing, a 0.3-kb NdeI-SacI frag- 
ment from the mutagenized plasmid was transferred to pRS314-GAL 
STE3A365 to generate pRS314-GAL STE3A365 APA. 

Immunoblotting 
For Ste2 and Stex22 constructs, 2 x 107 cells from mid-log phase cultures 
were pelleted in 13 x 100-ram glass tubes. After addition of 200 ~l of 
0.2-mm glass beads and 50 p.l Laemmli sample buffer (Lacmmli, 1970) 
containing 6 M urea (LSUB), the cells were lysed by vortexing at full 
speed for 90 s. The lysates were incubated at 37°C for 10 min and then 150 ~l 
LSUB added. 25 txl of each lysate was loaded onto 9% SDS-PAGE gels, 
and after electrophoresis the proteins were transferred to nitrocellulose. 
Stex22p was visualized using affinity-purified antibody that recognizes the 
cytoplasmic tail of Kex2p (Phan et al., 1994) or an antibody raised against 
the amino terminus of Ste2p (R708; kindly provided by James Konopka). 
Ste2p was visualized using antibody R708. 

For Ste3-A365p and Ste3-A365APAp, samples were pelleted and lysed 
as described above for Stex22p. The lysates were incubated at 70°C for 5 
min and then 150 Ixl LSUB added. 5 Ixl of each lysate was loaded onto 
12% SDS-PAGE gels, and after electrophoresis the proteins were ana- 
lyzed by immunoblotting using affinity-purified antibodies specific for the 
cytoplasmic tail of Ste3p (Davis et al., 1993; provided by Nicholas Davis, 
Wayne State University, Detroit, MI). 

Halo Assay 
5 × 106 cells were evenly layered on S D - t r p  plates and allowed to dry. 5 
Ixl of a-factor, serially diluted to 5, 1, and 0.2 p~g/ml, was then spotted and 
the plates were incubated at 30°C overnight. Halo sizes for 5 Ixg/ml a-fac- 
tor typically ranged from 17-22 mm for STEX22 strains and 12-15 mm for 
STE2 strains. Strains lacking STEX22 or STE2 gave no halos. 

Binding and Endocytosis of Radiolabeled a-Factor 
All strains were grown in SD C A A - t r p  at 30°C unless otherwise indi- 
cated. Binding and uptake of radiolabeled a-factor was performed as de- 
scribed (Tan et al., 1993) with a 5-min preshift and internalization at 30~C 
unless otherwise indicated. For each time point, duplicate samples were 
analyzed and the results averaged. All experiments were repeated at least 
twice and yielded the same results. A representative experiment is shown 
in each case. 

Pronase-Sensitivity Assay for Ste3-A 365 Endocytosis 
Strains GPY 1476 and GPY 1477 were grown for >8 h at 30°C to midlog 
phase in YPR. Galactose was then added to 2% and ceils were incubated 

for 1 h at 30°C to induce receptor expression. Cultures were then supple- 
mented with 3% dextrose and incubated for an additional hour to repress 
further receptor expression. At this point, 108 ceils were removed and 
brought to 10 mM NaN3 and 10 mM NaF and placed on ice (t = 0). The re- 
maining cells were pelleted and resuspended at 107 cells/ml in a-factor 
conditioned medium or YPD prewarmed to 30~C. a-Factor conditioned 
medium was prepared from a saturated culture of SM1581 by sedimenting 
the cells and supplementing the resulting supernatant with 2% dextrose 
and 0.2% Bacto-yeast extract. At the designated time intervals, 10-ml 
samples were removed to ice and treated with NaN 3 and NaF as described 
above. At the conclusion of the time course, cells were collected by sedi- 
mentation, washed once in PB (50 mM Tris-HCl, pH 7.5, 1.4 M Sorbitol, 
10 mM NaN3, 10 mM NaF, 40 mM 13-mercaptoethanol, 2 mM MgCI2), re- 
suspended in 2 ml PB, and divided into two 1-ml aliquots. One aliquot was 
treated with pronase and the other aliquot was mock-treated (Davis et al., 
1993). After a 1-h pronase treatment at 37°C, samples were placed on ice 
and received 4.5 × 107 SM1581 cells as carrier plus EDTA to 1 mM and a 
protease inhibitor cocktail (Tan et al., 1993). Cells were washed three 
times in PB plus protease inhibitor cocktail plus 1 mM EDTA, lysed, and 
analyzed for Ste3-A365p or Ste3-A365APAp by immunoblotting. 

Results 

Construction and Immunodetection of the 
Stex22p Chimera 

In yeast, the type I integral membrane protein Kex2p re- 
sides in a late Golgi compartment (analogous to the mam- 
malian TGN), where it cleaves a-factor prohormone in 
transit through the secretory pathway (Fuller et al., 1988; 
Graham and Emr, 1991). To determine whether Kex2p 
contains an endocytic signal, we designed a chimeric pro- 
tein in which the endocytic capacity of the Kex2p cytoplas- 
mic domain could be easily measured. In this chimeric pro- 
tein, designated Stex22p, the entire 114-amino acid Kex2p 
cytoplasmic domain replaces the COOH-terminal cyto- 
plasmic domain of the a-factor mating pheromone recep- 
tor, Ste2p (Fig. I). Ste2p is a seven membrane-spanning 
domain receptor which mediates the clathrin-dependent 
endocytosis of a-factor pheromone. The NH2-terminal 318 
amino acids of Ste2p, which are included in Stex22p, form 
a functional domain that is sufficient to bind a-factor and 
activate the signal transduction pathway necessary for the 
mating response (Konopka et al., 1988; Reneke et al., 
1988). The COOH-terminal cytoplasmic domain of Ste2p 
is required for endocytosis and desensitization to the ef- 
fects of the ligand (Konopka et al., 1988; Reneke et al., 
1988). In Stex22p, the Kex2p cytoplasmic sequences are 
appended to the NH2-terminal Ste2p domain, thereby re- 
placing the Ste2p cytoplasmic domain. Thus, the chimeric 
protein is designed to bind a-factor through the Ste2p se- 
quences and rely on the Kex2p sequences for endocytosis. 
This design allows endocytosis of the chimeric protein to 
be conveniently monitored using established assays for re- 
ceptor-mediated internalization of u-factor. 

The STEX22 gene, driven by the STE2 promoter and 
carrying the 3' untranslated region of KEX2 to ensure effi- 
cient expression, was placed into a single-copy centromere- 
containing vector and introduced into cells carrying a dele- 
tion of the chromosomal STE2 gene (see Materials and 
Methods). Expression of Stex22p was monitored by immu- 
noblotting cell extracts with antibodies directed against 
the COOH terminus of Kex2p and the NH 2 terminus of 
Ste2p (Fig. 2). For comparison, we also examined extracts 
of cells with the vector alone or with the vector carrying 
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STE2. The Ste2p antibodies recognized a doublet of 50 
and 52 kD in STEX22 cells (Fig. 2, lane 6), which is slightly 
larger than Ste2p (Fig. 2, lane 5). Species of reduced mo- 
bility were also apparent in extracts from both STEX22 
and STE2 cells (Fig. 2, asterisks) and correspond to aggre- 
gates most likely caused by the hydrophobic nature of 
these polytopic membrane proteins (Blumer et al., 1988; 
Konopka et al., 1988). No reactive proteins were detected 
in extracts of cells carrying the vector alone, demonstrat- 
ing the specificity of the antibodies (Fig. 2, lane 4). The 
Kex2p antibodies revealed a pattern of Stex22p bands 
identical to that produced by the Ste2p antibodies (com- 
pare Fig. 2, lanes 3 and 6), as anticipated from the hybrid 
character of the protein. In cells carrying vector alone or 
STE2, the Kex2p antibodies detected only the endogenous 
130-kD Kex2p (Fig. 2, lanes 1 and 2). The steady-state 
amounts of Stex22p were substantially higher than that of 
Kex2p, reflecting in part the relative strengths of the STE2 
and KEX2 promoters. Because of the relatively high ex- 
pression levels, the low mobility forms of Stex22p masked 
the signal from Kex2p in STEX22 cells (Fig. 2, lane 3). 

Stex22p Undergoes Clathrin and 
End3p-dependent Endocytosis 

For Stex22p to be useful in endocytosis assays, it must be 
delivered to the plasma membrane. However, the pres- 
ence of a Golgi localization signal in the Kex2p cytoplas- 
mic domain presented a potential complication (Wilcox et al., 
1992). Golgi localization of Kex2p can be overcome by 
overexpression, presumably because of saturation of the 
localization machinery (Wilcox et al., 1992). Therefore, we 
relied on the considerable overexpression of Stex22p com- 
pared to Kex2p (Fig. 2, lanes 1-3) to saturate the Golgi lo- 
calization machinery and allow the chimeric protein to 
reach the plasma membrane. Indeed, STEX22 cells, but 
not cells carrying the vector alone, displayed e~-factor- 
induced cell cycle arrest and mating, thereby providing an 

~-FACTOR 
814 

+ + +  

++.4- 
+ + 4 -  

-t-4- 
4-4-4- 

4-4- 

+ + +  
+ + +  

+ + +  

+ + +  
m 

B 

+ + +  
+ 

+ + +  

m 

4 - + +  

Figure 1. STEX22 constructs used in this study and 
summary of or-factor uptake for each construct. The 
seventh transmembrane domain (7TMD) and cyto- 
plasmic portion of Sle2p (hatched bars) to amino acid 
318, and the cytoplasmic domain of Kex2p from 
amino acids 701 to 814 (open bars) are represented. 
For STEX22 truncations and internal deletions, the 
* symbol follows the last remaining amino acid of a 
COOH-terminal truncation, and the A symbol fol- 
lows the amino acids removed by an internal dele- 
tion. Point mutations within the open bars are indi- 
cated by the symbol 0. The location of the Golgi 
localization motif with two tyrosine residues and 
amino acids in the endocytosis signal are also shown. 

indication that Stex22p is present at the cell surface, where 
it can bind pheromone and trigger the mating response 
signal transduction pathway (data not shown). Further- 
more, STEX22 cells specifically bound radiolabeled a-fac- 
tor with equivalent binding capacity and affinity to cells 
expressing Ste2p (data not shown). Thus, significant levels 
of Stex22p are delivered to the cell surface, where it dis- 
plays a-factor receptor properties similar to the native 
Ste2p receptor. 

Internalization of Stex22p was assessed by monitoring 
the uptake of prebound radiolabeled a-factor (Tan et al., 
1993). Radiolabeled a-factor was allowed to bind cells on 
ice in the absence of glucose, which provides an energy 
source necessary for endocytosis. After removing un- 
bound pheromone, the temperature was elevated for 5 
rain, and then glucose was added to initiate endocytosis. 
Uptake was determined at 5- and 20-min time intervals by 
subjecting cells to a low pH wash to remove a-factor re- 
maining at the surface. We chose these time points be- 
cause uptake in wild-type STE2 cells is linear for at least 5 
rain and approaches a plateau after 20 min (Tan et al., 
1993). Interestingly, the levels of a-factor internalization 
by STEX22 cells and STE2 cells were the same at both 
time points (Fig. 3), showing that both the rate and extent 
of Stex22p endocytosis are comparable to Ste2p. Some 
variation in the relative endocytosis rates of Stex22p and 
Ste2p was observed in different genetic backgrounds (for 
example, see Fig. 5). Nevertheless, Stex22p uptake was 
never less that 50% as efficient as Ste2p uptake. 

Mutations in a number of genes interfere with Ste2p 
endocytosis, including CHC1 and the END genes (Raths 
et al., 1993; Tan et al., 1993; Munn and Riezman, 1994). To 
determine whether internalization of Stex22p and Ste2p 
proceeds through similar pathways, we compared internal- 
ization of the two proteins in cells carrying a temperature- 
sensitive allele of CHC1 (chcl-ts) or in cells with a defec- 
tive END3 gene (end3-1). Plasmids carrying STEX22 or 
STE2 were introduced into mutant and wild-type cells 
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Figure 2. Expression of Stex22p. Extracts were prepared from 
GPY789 (pRS314; lanes 1 and 4), GPY 790 (pRS314-STE2; lanes 
2 and 5), and GPY 1083 (pRS3t4-STEX22; lanes 3 and 6). Sam- 
ples were subjected to SDS-PAGE and transferred to nitrocellu- 
lose. The nitrocellulose was then divided and one half probed 
with antibodies to the COOH terminus of Kex2p (lanes 1-3) and 
the other half probed with antibodies to the NH2 terminus of 
Ste2p (lanes 4--6). The positions of Stex22p, Ste2p, and Kex2p are 
indicated. Asterisks denote forms of Stex22p and Ste2p with re- 
duced mobility. 

lacking the endogenous STE2 gene. With chcl-ts cells, en- 
docytosis of Stex22p and Ste2p was determined at permis- 
sive (24°C) and nonpermissive temperatures (37°C) by 
measuring uptake of radiolabeled o~-factor. Ste2p internal- 
ization was equivalent in wild-type (CHC1) and chcl-ts 
cells at 24°C (Fig. 4 A, open symbols). As reported previ- 
ously (Tan et al., 1993), inactivation of the temperature- 
sensitive clathrin heavy chain in chcl-ts cells at 37°C im- 
mediately reduced uptake two- to threefold relative to the 
wild-type cells (Fig. 4 A, closed symbols). Similar results 
were obtained with Stex22p (Fig. 4 B). At the permissive 
temperature, uptake of bound ligand was equivalent in 
CHC1 and chcl-ts cells, whereas at the nonpermissive 
temperature, internalization was reduced five- to sixfold. 
It should be noted that we consistently observed a slightly 
more severe effect of chcl-ts on Stex22p (five- to sixfold) 
than on Ste2p (two- to threefold). The end3-1 allele blocks 
Ste2p uptake almost completely at all temperatures (Raths 
et al., 1993; Brn6detti et al., 1994). In cells carrying the 
end3-1 allele, Stex22p endocytosis was blocked to the 
same degree as Ste2p (Fig. 5, closed symbols). The results 
described in this section indicate that the Kex2p cytoplas- 
mic domain has the potential to mediate efficient endocy- 
tosis through a clathrin and END3-dependent pathway. 

The Kex2p Golgi Localization Motif Is Not Required for 
Endocytosis of Stex22p 

Previous studies show that mutation of the Kex2p cyto- 
plasmic sequences adjacent to the membrane spanning do- 
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Figure 3. Ligand-induced endocytosis of Stex22p is rapid and 
equivalent to that of Ste2p. Uptake of radiolabeled a-factor was 
measured in cells expressing Ste2p (GPY 790; open symbols) and 
Stex22p (GPY 1083; closed symbols). Radiolabeled a-factor was 
bound to cells on ice. After removal of the unbound pheromone, 
cells were incubated at 30°C for 5 min, and then glucose was 
added to a 10% final concentration to initiate endocytosis. Inter- 
nalized o~-factor was measured after the indicated internalization 
time periods. 

main severely disrupt Golgi localization (Wilcox et al., 
1992). This work defined a tyrosine-based signal for Golgi 
localization. The similarity of the Kex2p Golgi localization 
signal to tyrosine-based clathrin-coated pit targeting sig- 
nals in mammalian proteins, combined with the involve- 
ment of clathrin in uptake of Stex22p, led us to address 
whether the Golgi localization motif functions as an en- 
docytosis signal in Stex22p. For this purpose, mutations 
were generated in the cytoplasmic domain of Stex22p (Fig. 1) 
that were modeled on mutations shown to cause defects in 
Golgi localization of Kex2p (Wilcox et al., 1992). In partic- 
ular, two deletions were produced, 702-717A and 718- 
730A, as well as a single amino acid conversion of tyrosine 
713 to alanine (Y713A). (All numbering refers to the amino 
acid positions within the full-length Kex2p sequence. 
Stex22p contains Kex2p residues 701-814.) Considering the 
importance of tyrosines in endocytic signals, tyrosine 724 
was also converted to alanine (Y724A), although this resi- 
due is not important for Kex2p Golgi localization. Finally, 
we produced a double tyrosine point mutant (Y713A, 
Y724A), leaving no other tyrosines in the Stex22p cyto- 
plasmic domain. 

Cells carrying each of these mutant forms of Stex22p 
were subjected to endocytosis assays (Fig. 6). Individual 
point mutants Y713A and Y724A, as well as the 702-717A 
internal deletion, had no effect on endocytosis compared 
to wild-type Stex22p. The double tyrosine point mutant 
Y713A,Y724A and the 718-730A internal deletion dis- 
played slightly reduced uptake compared to wild-type 
Stex22p. After 5 min of endocytosis, the Y713A,Y724A 
and 718-730A mutants internalized 18 and 13% bound 
pheromone, respectively, compared to 31% uptake for 
Stex22p. After 20 min, the mutants internalized 46% 
(Y713A,Y724A) and 39% (718-730A), whereas the wild- 
type internalized 64% of the bound ligand. This corre- 
sponds to a 1.5-2-fold reduction in uptake. The absence of 
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Figure 4. Rapid endocytosis of Stex22p is dependent on func- 
tional clathrin heavy chain. Uptake of radiolabeled a-factor was 
measured in isogenic CHC1 (circles) and chcl-ts (squares) strains 
expressing Ste2p (A) or Stex22p (B). Strains used were: GPY 790 
(CHC1, Ste2p), GPY 1083 (CHC1, Stex22p), GPY 793 (chcl-ts, 
Ste2p), and GPY 1084 (chcl-ts, Stex22p). After  binding and re- 
moval of unbound pheromone as described in the legend for Fig. 3, 
cells were incubated for 5 min at the permissive temperature of 
24°C (open symbols) or for 5 min at the nonpermissive tempera- 
ture of 37°C (closed symbols)• Uptake of radiolabeled a-factor at 
24 ° and 37°C was measured as described in the legend for Fig. 3 
after the indicated internalization time periods. 

strong endocytic defects exhibited by these mutants argues 
that the Golgi localization sequence does not also function 
as an endocytic signal. Further mutagenesis studies pre- 
sented below confirm this interpretation. 

Identification of  a Sequence Necessary for Endocytosis 
of  Stex22p 

A series of COOH-terminal truncations were constructed 
to define sequences necessary for endocytosis (Fig. 1). Ini- 
tially, we analyzed two truncations, one which removes 21 
amino acids (793"), and one which removes 84 amino ac- 
ids, leaving just the first 30 amino acids of the Kex2p cyto- 
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Figure 5. Endocytosis of Stex22p is dependent on End3p. Uptake 
of radiolabeled a-factor was measured in wild-type (END3; open 
symbols) and end3-1 mutant (end3; closed symbols) cells express- 
ing Ste2p (circles) or Stex22p (squares). The experiment was 
done as described in legend for Fig. 3. Strains used were: GPY 
839 (END3, Ste2p), GPY 1085 (END3, Stex22p), GPY 849 (end3, 
Ste2p), and GPY 1086 (end3, Stex22p). 

plasmic domain (730*). The 793* mutant exhibited wild- 
type uptake of pheromone but the 730* mutant was com- 
pletely defective (Fig. 7 A). After 20 min, only 3% of the 
bound ligand was internalized by the 730* mutant. The re- 
sults from these truncations indicated that the sequences 
necessary for endocytosis occur between residues 731 and 
793 of the Kex2p cytoplasmic domain. The endocytic de- 
fect of 730* further strengthens the conclusion that the 
Golgi localization signal located between residues 702 and 
730 does not function as an endocytic signal. 

A deletion removing 25 residues from the Stex22p 
COOH terminus (788*) had no effect on endocytosis 
while a deletion removing 38 residues (775*) abolished up- 
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Figure 6. The Kex2p localization motif is not required for en- 
docytosis of Stex22p. Uptake of radiolabeled a-factor after 5 min 
(open bars) and after 20 min (closed bars) was performed for the 
indicated strains as described in the legend for Fig. 3. Strains used 
were: GPY t083 (Stex22p), GPY 1094 (Y713A), GPY 1095 
(Y724A), GPY 1016 (Y713A, Y724A), GPY 1097 (702-717A), 
and GPY 1096 (718-730A). 
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take (Fig. 7 B). Two internal deletions between residues 
775 and 788 further defined the endocytic signal. For con- 
venience, these deletions were engineered in the endocyti- 
cally competent COOH-terminal truncations 793* and 788*. 
Deletion of amino acids 783-788 within the truncated 793* 
mutant did not affect endocytosis (783-788A, 793", Fig. 7 B). 
In contrast, removal of amino acids 776-782 from 788* re- 
suited in a severe endocytic defect comparable to the 775* 
and 730* mutants (776-782A, 788", Fig. 7 C). This analysis 
revealed that residues 776-782 are critical for endocytosis 
of Stex22p. 

The amino acid sequence corresponding to residues 776 
to 782 is ENPFSDP (Fig. 1). We converted each of these 
residues individually to alanine within the full-length 
Kex2p cytoplasmic domain and measured internalization 
of each mutant (Fig. 7 D). Strikingly, mutation of aspar- 
agine 777, proline 778, or phenytalanine 779 eliminated en- 
docytosis of the chimera, with only 1-3% uptake of radio- 
labeled a-factor after the 20-min time point (Fig. 7 D, 
N777A, P778A, F779A). Mutation of aspartate 781 to ala- 
nine impaired but did not abolish uptake (Fig. 7 D, D781A). 
After 5 min of endocytosis, the D781A mutant internal- 
ized just 3% of the bound pheromone relative to 37% up- 
take for the wild-type Stex22p chimera, and after 20 min 
the mutant internalized 15% of the bound ligand com- 
pared to 73% for Stex22p. These values reveal a five- to 
tenfold reduction in the rate of internalization for the 
D781A mutant. In contrast, conversion of glutamate 776, 
serine 780, or proline 782 to alanine had no effect on en- 
docytosis (Fig. 7 D, E776A, $780A, P782A ). Therefore, we 
conclude that asparagine 777, proline 778, and phenylala- 
nine 779 are absolutely required and that aspartate 781 is 
very important but not required for endocytosis. These 
point mutations define a signal, NPFXD, that is necessary 
for uptake of Stex22p. Because these point mutations have 

775* 783-788A, 793" 

P778A F'/79A S780A D781A P'/82A 

Figure 7. Uptake of radiola- 
beled a-factor in STEX22 
mutant strain defines a se- 
quence necessary for endocy- 
tosis. Experiments were per- 
formed as described in the 
legend for Fig. 3. Uptake in 
each indicated strain was de- 
termined after 5 min (open 
bars) and after 20 rain 
(closed bars). Strains used 
were: (A) GPY 1083 (Stex22p), 
GPY 1047 (793"), and GPY 
1087 (730*); (B) GP¥ 1047 
(793"), GPY 1058 (775"), 
GPY 1059 (788"), and GPY 
1060 (783-788A, 793*); (C) 
GPY 1047 (793"), GPY 1058 
(775*), and GPY 1061 (776- 
782A, 788*); (D) GPY 1083 
(Stex22p), GPY 1089 (E776A), 
GPY 1090 (N777A), GPY 1091 
(PZ78A), GPY 1098 (F779A), 
GPY 1092 ($780A), GPY 1093 
(D781A), and GPY 1449 
(P782A). 

been generated in the full-length chimera, it is likely that 
the NPFXD sequence is the only signal for endocytosis of 
Stex22p. 

The NPFXD Endocytosis Signal Completely Restores 
Uptake in a Truncated Chimera 

To determine whether the endocytosis signal is sufficient 
for internalization and can function in other sequence con- 
texts, we placed 11 amino acids spanning the signal, VLT- 
NENPFSDP, at the end of the endocytosis-defective trun- 
cation 730* to produce 730-endo (Fig. 1). Addition of the 
signal to this endocytosis-deficient mutant completely re- 
stored uptake of radiolabeled a-factor to levels equivalent 
to the wild-type Stex22p (Fig. 8). Thus, the NPFSD se- 
quence acts as an autonomous signal for endocytosis. 

NPF Functions in Endocytosis of  a Truncated, 
Pheromone-dependent Form of  the a-Factor Mating 
Pheromone Receptor 

Since the pheromone receptors are internalized as a regu- 
lar part of their intracellular transport pattern, we sought 
similar sequences in the cytoplasmic domains of these pro- 
teins. The cytoplasmic domain of Ste2p does not contain a 
sequence with the three critical residues, NPF. In contrast, 
the a-factor receptor Ste3p contains a sequence NPFSTD 
beginning at residue 332 in its cytoplasmic domain. 

To facilitate examination of the role of NPFSTD in 
Ste3p endocytosis, we took advantage of a truncated form 
of the receptor, Ste3-A365p (Davis et al., 1993). Ste3- 
A365p is efficiently transported to the cell surface but, un- 
like the full-length Ste3p, is not internalized unless phero- 
mone is present. This property allowed us to monitor 
synchronized endocytosis of receptors initiated by the 
addition of a-factor. The putative NPF endocytosis signal 
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Figure 8. The NPFXD sequence completely restores internaliza- 
tion in an endocytosis-deficient construct. Uptake of radiolabeled 
a-factor was measured as described in the legend for Fig. 3 in 
strains expressing Stex22p (GPY 1083; open squares), 730* (GPY 
1087; closed squares) and 730-endo (GPY 1088; open circles). 

in Ste3-A365 was mutated to APA (Ste3-A365APAp), and 
then both wild-type and mutant genes were placed under 
control of the inducible GALl  promoter. The resulting 
plasmids were introduced into cells carrying a disruption 
of the chromosomal STE3 locus. 

Ligand-stimulated endocytosis of Ste3-A365p and Ste3- 
A365APAp was compared using a protease protection as- 
say. Receptor expression was induced by incubating cells 
in galactose-containing media and then repressed by addi- 
tion of glucose. After a 1-h incubation to ensure that all re- 
ceptors reached the cell surface, a-factor was added to 
stimulate endocytosis. The extent of receptor endocytosis 
was determined at various times by treatment of cells with 
pronase, which cleaves receptors present at the cell sur- 
face. Before pheromone addition (Fig. 9, A and B, lanes 1 
and 2), both the mutant and wild-type receptors were al- 
most completely sensitive to pronase, indicating that the 
bulk of both receptor populations resided at the plasma 
membrane. Degradation of the receptors was accompa- 
nied by the appearance of a proteolytically resistant frag- 
ment that is derived from the cytoplasmic domain (Fig. 9, 
asterisk; Davis et al., 1993; Tan et al., 1993). After phero- 
mone addition, a distinct difference was apparent in the 
pronase sensitivity of Ste3-A365p and Ste3-A365APAp. 
Ste3-A365p became resistant to protease, reflecting the se- 
questration of receptor from the external pronase by en- 
docytosis (Fig. 9 A, lanes 1-10). Uptake was pheromone- 
dependent as judged by the degradation of the receptor in 
cells incubated for 90 min in the absence of pheromone 
(Fig. 9 A, lanes 11 and 12). In contrast, the Ste3-A365APA 
receptor remained pronase-sensitive throughout the course 
of the experiment, revealing a defect in endocytosis (Fig. 9 
B, lanes 1-10). These experiments show that the NPF se- 
quence is necessary for the ligand-induced endocytosis of 
the Ste3-A365 receptor. 

Discuss ion  

We have identified a novel yeast internalization signal, 

Figure 9. NPF is necessary for endocytosis of Ste3-A365p. Strains 
expressing either STE3-A365 (GPY1476) or STE3-365APA 
(GPY1477) under control of the GALl promoter were grown for 
1 h in galactose medium to induce receptor expression. After ad- 
dition of glucose to repress expression and a 1 h incubation to al- 
low accumulation of receptors at the cell surface, n-factor was 
added to stimulate endocytosis (a-factor, +). At the designated 
times, cells were harvested and divided into two aliquots. One al- 
iquot was treated with pronase (Pronase, +) while the second ali- 
quot was mock treated (Pronase, -).  Cells were then lysed, the 
extracts were subjected to SDS-PAGE, and receptors were de- 
tected by immunoblotting (arrows). As a control for the ligand- 
dependence of receptor endocytosis, one sample was incubated 
for 90 min in the absence of a-factor (lanes 11 and 12, a-factor, 
-) .  The asterisks mark pronase-resistant COOH-terminal recep- 
tor fragments. 

NPFXD, through the analysis of a chimeric protein. The 
amino acid sequence derives from the cytoplasmic domain 
of the late Golgi membrane protein Kex2p and mediates 
rapid End3p- and clathrin-dependent endocytosis of the 
Stex22p chimera. Endocytosis is abolished when the aspar- 
agine, proline, and phenylalanine are individually con- 
verted to alanine, and uptake is severely impaired when 
the aspartate is changed to alanine. Furthermore, endocy- 
tosis is fully restored upon addition of the sequence to an 
endocytosis-deficient construct. The complete block in up- 
take when the sequence is mutated and the complete res- 
toration of uptake when the sequence is present argue that 
the NPFXD sequence is the only signal that mediates up- 
take of Stex22p. 

The NPFXD sequence is only the second internalization 
signal identified in yeast to our knowledge. The first, 
DAKSS, was uncovered in the cytoplasmic domain of 
Ste2p and participates in ligand-induced endocytosis of 
the receptor (Rohrer et al., 1993). In the context of a trun- 
cated form of Ste2p, the lysine in DAKSS is specifically re- 
quired for uptake, and recent results indicate that phero- 
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mone-stimulated ubiquitination of this residue plays a critical 
role in the internalization process (Hicke and Riezman, 
1996). Mutation of the DAKSS iysine eliminates ligand- 
induced ubiquitination and endocytosis of the truncated 
Ste2p (Hicke and Riezman, 1996). We attempted to deter- 
mine whether uptake of Stex22p, like Ste2p, is ligand in- 
ducible, but the intracellular pool of Stex22p precluded 
unequivocal interpretation of experiments designed to 
measure receptor clearance from the cell surface (Tan, P., 
unpublished results). Regardless of the role of ligand in 
Stex22p uptake, two considerations suggest that ubiquiti- 
nation may not be necessary for NPFXD-mediated en- 
docytosis. First, the sequence contains no lysine residues 
for ubiquitination. Second, the 730-endo construct is effi- 
ciently internalized. The only lysines in 730-endo are con- 
tained in the Ste2p portion of the molecule. A truncated 
Ste2p that contains these lysines but lacks the DAKSS 
lysine is not subject to ligand-induced ubiquitination or 
endocytosis (Hicke and Riezman, 1996). Consequently, 
the cytoplasmically disposed lysines within the first 318 
Ste2p residues do not act as ubiquitin acceptors after pher- 
omone binding. Because the 730-endo protein contains no 
other lysines, internalization of this receptor occurs in the 
absence of sites that serve as ubiquitin acceptors. There- 
fore, endocytosis mediated by NPFXD is likely to be 
mechanistically distinct, to some degree, from that medi- 
ated by DAKSS. Based on this argument, we suggest that 
at least two classes of endocytic targeting signals exist in S. 
cerevisiae: one class contains lysine residues and requires 
ubiquitination for uptake, and the second class contains a 
critical aromatic amino acid and may not require ubiquiti- 
nation. 

Analysis of Ste3-A365p revealed that the NPF-based en- 
docytic signal is necessary for ligand-dependent internal- 
ization of this form of the a-factor receptor. This finding 
demonstrates that the NPF endocytic signal is not a feature 
peculiar to Kex2p but also is found in a protein that nor- 
mally undergoes endocytosis. Endocytosis of Ste3-A365p 
differs from full-length Ste3p in the extent of pheromone 
dependence. Full-length Ste3p is rapidly internalized in 
the absence of pheromone, while Ste3-A365p requires 
ligand binding for uptake (Davis et al., 1993). The basis for 
this difference is not clear. Preliminary experiments sug- 
gest that mutation of the NPF sequence in the full-length 
receptor does not impede uptake in the absence of ligand 
(Howard, J.P., and G. Payne, unpublished results), arguing 
that some other signal, presumably between residue 365 
and the COOH terminus, mediates ligand-independent 
endocytosis of Ste3p. A recent study indicates that ubiq- 
uitination may be involved in endocytosis of both Ste3p 
and Ste3-A365p (Roth and Davis, 1996). With the identifi- 
cation of NPF as an endocytic targeting signal in Ste3- 
A365p, it should now be possible to address the relation- 
ship between the NPF signal and ubiquitination in endocy- 
tosis of this receptor. 

The NPFSD and NPFSTD internalization signals resem- 
ble the NPXY internalization signal of the LDL receptor and 
other plasma membrane proteins that mediates clustering 
into clathrin-coated pits and uptake into clathrin-coated 
vesicles (Davis et al., 1986; Chen et al., 1990). Since muta- 
tions in clathrin heavy chain interfere with Stex22p and 
Ste3-A365p uptake (Tan et al., 1993), it is possible that 

NPF also functions as a signal for clathrin-mediated en- 
docytosis. In view of this proposal, it may be noteworthy 
that Stex22p endocytosis is more severely impaired than 
Ste2p in chcl-ts cells. Conversion of the asparagine, pro- 
line, or tyrosine in the NPXY sequence severely impairs 
endocytosis of the LDL receptor (Davis et al., 1986, 1987), 
a result similar to the corresponding mutations within the 
NPFXD signal of Stex22p. Although a phenylalanine 
rather than a tyrosine is present in the Stex22p sequence, 
phenylalanine in place of the tyrosine in NPXY results in 
normal uptake (Davis et al., 1986, 1987). The NPXY se- 
quence adopts a tight [3-turn conformation, which is impli- 
cated as a structural determinant of the endocytic signal 
(Collawn et al., 1990; Bansal and Gierasch, 1991; Eberle et 
al., 1991). It is therefore possible that the NPFXD signal 
also forms this structural conformation involving a tight 
turn. Consistent with this idea, the combination of aspar- 
agine and proline is a statistically favored pair in type 113-turns, 
as well as in the first turn of an o~ helix (Wilmot and Thorn- 
ton, 1988; Richardson and Richardson, 1988). Further ex- 
periments will be needed to establish the conformation of the 
NPFXD signal. 

The sequence in the Kex2p cytoplasmic domain that 
mediates Golgi localization of Kex2p is also based on an 
essential aromatic amino acid (tyrosine 713) and resem- 
bles clathrin-coated pit targeting sequences in mammalian 
proteins (Wilcox et al., 1992). Mutations of this sequence 
in Kex2p result in Golgi localization defects, but the same 
mutations in Stex22p have little or no effect on internaliza- 
tion. Conversely, mutations that remove the NPFXD endo- 
cytosis signal from the cytoplasmic domain of native Kex2p 
do not cause Golgi localization defects (Wilcox et al., 1992). 
Thus, the cytoplasmic domain of Kex2p carries two func- 
tionally distinct, and physically separate, aromatic amino 
acid-based targeting signals, one for GoIgi localization 
and one for endocytosis. 

Since both Golgi localization of Kex2p and endocytosis 
of Stex22p are dependent on clathrin function (Payne and 
Schekman, 1989; Seeger and Payne, 1992; this work), it is 
tempting to speculate that the distinct targeting signals 
serve as recognition sites for clathrin coat components that 
differ between the endocytic pathway and the Golgi local- 
ization pathway. In mammalian cells, the clathrin-associ- 
ated protein (AP) complexes differ between plasma mem- 
brane clathrin coats (AP-2) and TGN clathrin coats (AP-1) 
(for reviews see Robinson, 1992; Kirchhausen, 1993). AP-2 
interacts with the cytoplasmic tails of plasma membrane 
receptors (Pearse, 1988; Chang et al., 1993), whereas AP-1 
specifically binds to the cytoplasmic domains of cation- 
independent and -dependent M6PR that are sorted in the 
TGN (Glickman et al., 1989; Sosa et al., 1993). In yeast, 
genes encoding proteins homologous to AP-1 subunits 
have been identified and genetic analysis suggests that 
they interact with clathrin and Kex2p (Phan et al., 1994; 
Rad et al., 1995; Stepp et al., 1995). Thus, Golgi localiza- 
tion of Kex2p may involve interaction between the yeast 
AP-1 complex and the Kex2p Golgi localization motif. 
However, although other yeast genes may encode subunits 
of a plasma membrane AP-2 complex, there is no func- 
tional evidence linking these proteins to clathrin-mediated 
endocytosis (Phan et al., 1994; Rad et al., 1995; Stepp et al., 
1995; Tan, P., H, Phan, and G. Payne, unpublished), Con- 
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sequently, there are no promising candidates for NPFXD- 
recognizing yeast proteins at present. 

Why is there an endocytosis targeting signal in the cyto- 
plasmic domain of the Golgi-localized Kex2p? By analogy 
with the mammalian TGN proteins such as M6PR, TGN38, 
and furin, the endocytosis signal could function in retrieval 
from the plasma membrane. However, unlike the mamma- 
lian T G N  proteins that cycle between the TGN, plasma 
membrane, and endosomes (for reviews see Nilsson and 
Warren, 1994; Sandoval and Bakke, 1994), the current evi- 
dence supports a model for Kex2p localization in wild- 
type cells that involves direct cycling between endosomes 
and the TGN without transport to the plasma membrane 
(for reviews see Wilsbach and Payne, 1993b; Nothwehr 
and Stevens, 1994). For example, significant levels of Kex2p 
do not reach the cell surface in wild-type cells even when 
Kex2p is mislocalized by overexpression or by mutation of 
the Golgi localization signal (Wilcox et al., 1992). In these 
cases, mislocalized Kex2p reaches the vacuole without 
traveling via the plasma membrane. Thus, endocytic re- 
trieval is not expected to be an important aspect of Kex2p 
localization in wild-type cells. In support of this model, re- 
moval of the endocytosis signal from Kex2p in wild-type 
cells does not result in the appearance of the protein at the 
plasma membrane, even if the Golgi localization signal is 
also absent (Wilcox et al., 1992). We speculate that yeast 
cells growing in the wild may experience conditions that 
result in a degree of Kex2p mislocalization to the cell sur- 
face. Under these conditions, retrieval of Kex2p from the 
surface could provide the selective pressure for evolution 
of a functional endocytic targeting sequence. 

In conclusion, we have identified a novel yeast endocy- 
tosis targeting signal, NPFXD, that is unrelated to the pre- 
viously identified signal in the Ste2p cytoplasmic domain. 
Although both sequences direct internalization through 
End3p- and clathrin-dependent pathways, the Ste2p signal 
requires ubiquitination while the NPFXD sequence may act 
independently of the ubiquitination process. We suggest 
that the NPFXD sequence serves as a specific recognition 
site for the endocytic apparatus. The availability of endo- 
cytosis-defective mutants of this signal with single amino 
acid changes will greatly facilitate efforts to identify en- 
docytosis apparatus components that recognize the signal. 

We would like to acknowledge Nicholas Davis, James Konopka, George 
Sprague, Susan Michaelis, and Robert Fuller for generous gifts of plas- 
mids, strains, and antibodies and Leila Hebshi for assistance with a-factor 
endocytosis assays. We thank James Bowie, Olaf Schneewind, Kendall 
Blumer, Linda Hicke, and Nicholas Davis for helpful discussions. 

P. Tan was supported in part by U.S. Public Health Service award GM- 
07185 and a UCLA Dissertation Year fellowship. J. Howard is a fellow of 
the University of California, Los Angeles, Medical Scientist Training Pro- 
gram. This work was supported by National Institutes of Health grant GM 
39040. 

Received for publication 22 October 1996. 

References 

Backer, J.M., S.E. Shoelson, M.A. Weiss, Q.X. Hua, R.B. Cheatham, E. Haring, 
D.C. Cahin, and M.F. White. 1992. The insulin receptor juxtamembrane re- 
gion contains two independent tyrosine/13-turn internalization signals. J. Cell 
BioL 1t8:831-839. 

Bansal, A., and L.M. Gierasch. 1991. The NPXY internalization signal of the 
LDL receptor adopts a reverse-turn conformation. Cell 67:1195-1201. 

Beltzer, J.P., and M. Speiss. 1991. In vitro binding of the asialoglycoprotein re- 

ceptor to the 13 adaptin of plasma membrane coated vesicles. EMBO (Eur. 
MoL BioL Organ.) J. 10:3735-3742. 

B~n6detti, H ,  S. Raths, F. Crausaz, and H. Riezman. 1994. The END3 gene en- 
codes a protein that is required for the internalization step of endocytosis 
and for actin cytoskeleton organization in yeast. MoL BioL Cell. 5:1023- 
1037. 

Blumer, K.S., J.E. Reneke, and J. Thorner. 1988. The STE2 gene product is the 
ligand binding component of the a-factor receptor'of Saccharomyces cerevi- 
siae. Z BioL Chem. 263:10836--10842. 

Bus, K., C. Wraight, and K. Stanley. 1993. TGN38 is maintained in the trans- 
Golgi network by a tyrosine-containing motif in the cytoplasmic domain. 
EMBO (Eur. MoL BioL Organ.) J. 12:2219-2228. 

Canfield, W.M., K.F. Johnson, R.D. Ye, W. Gregory, and S. Kornfeld. 1991. 
Localization of the signal for rapid internalization of the bovine cation-inde- 
pendent mannose 6-phosphate/insulin-like growth factor-ll receptor to 
amino acids 24-29 of the cytoplasmic tail. J. Biol. Chent 266".5682-5688. 

Chang, M.P., W.G. Mallet, K.E. Mostov, and F.M. Brodsky. 1993. Adaptor,self- 
aggregation, adaptor-receptor recognition and binding of a-adaptin snbunits 
to the plasma membrane contribute to recruitment of adaptor (AP2) compo- 
nents of clathrin-coated pits. EMBO (Eur. MoL BioL Organ.) J. 12:2169- 
2180. 

Chen, W.J., J.L. Goldstein, and M.S. Brown. 1990. NPXY, a sequence often 
found in cytoplasmic tails, is required for coated pit-mediated internalization 
of the low density lipoprotein receptor. J. BioL Chem. 265:3116-3123. 

Collawn, J.F., M. Stangel, L.A. Kuhn, V. Esekowgwu, S. Jing, I.S. Trowbridge, 
and J.A. Tainer. 1990. Transferrin receptor internalization sequence YXRF 
implicates a tight turn as the structural recognition motif for endocytosis, 
Cell. 63:1061-1072. 

Davis, C.G., M.A. Lehrman, D.W. Russell, R.G.W. Anderson, M.S. Brown, 
and J.L. Goldstein. 1986. The J.D. mutation in familial hypercbolester- 
olemia: amino acid substitution in cytoplasmic domain impedes internaliza- 
tion of LDL receptors. Cell. 45:15-24. 

Davis, C.G., I.R. van Driel, D.W. Russell, M.S. Brown, and J.L. Goldstein. 
1987. The low density lipoprotein receptor: identification of amino acids in 
the cytoplasmic domain required for rapid endocytosis. J. BioL Chem, 262: 
4075~,082. 

Davis, N.G., J.L. Horecka, and G.F. Sprague. 1993. C/s and tram-acting func- 
tions required for endocytosis of the yeast pheromone receptors..L Cell BioL 
122:53-65. 

Eberle, W., C. Sander, W. Klaus, B. Schmidt, K. yon Figura, and C. Peters. 
1991. The essential tyrosine of the internalization signal in lysosomal acid 
phosphatase is part of a 13 turn. Cell 67:1203-1209. 

Fuller, R.S., R.E. Sterne, and J. Thorner. 1988. Enzymes required for yeast pro- 
hormone processing. Annu. Rev. PhysioL 50:345-362. 

Fuller, R.S., A. Brake, and J. Thorner. 1989. Yeast prohormone processing en- 
zyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. NatL 
Acad. Sci. USA. 86:1434-1438. 

Glickman, J.N., E. Conibear, and B.M.F. Pearse. 1989. Specificity of binding of 
clathrin adaptors to signals on the mannose-6-phosphatetinsulin-like growth 
factor 11 receptor. EMBO (Eur. MoL BioL Organ.) J. 8:1041-1047. 

Graham, T.R., and S.D. Emr. 1991. Compartmental organization of Golgi-spe- 
cific protein modification and vacuolar protein sorting events defined in a 
yeast sec18 (NSF) mutant. J. Cell BioL 114:207-218. 

Heilker, R., U. Manning-Krieg, J.-F. Zuber, and M. Speiss. 1996. In vitro bind- 
ing of clathrin adaptors to sorting signals correlates with endocytosis and ba- 
solateral sorting. EMBO (Eur. MoL BioL Organ.) J. 15:2893-2899. 

Hicke, L., and H. Riezman. 1996. Ubiquitination of a yeast plasma membrane 
receptor signals its ligand-stimulated endocytosis. Cell. 84:277-287. 

Humphrey, J.S., P.J. Peters, L.C. Yuan, and J.S. Bonifacino. 1993. Localization 
of TGN38 to the trans-Golgi network: involvement of a cytoplasmic ty- 
rosine-containing sequence. J. Cell BioL 120:1123-1135. 

Itin, C., F. Kappeler, A.D. Linstedt, and H.-P. Hanri. 1995. A novel endocytosis 
signal related to the KKXX ER-retrieval signal. EMBO (Eur. MoL BioL Or- 
gan.) Z 14:2250-2256. 

Ito, H., K. Fukuda, K. Murata, and K. Kimura. 1982. Transformation of intact 
yeast cells with alkali cations. J. BacterioL 153:163-168. 

Johnson, K.F., W. Chan, and S. Kornfeld. 1990. Cation-dependent mannose 
6-phosphate receptor contains two internalization signals in its cytoplasmic 
domain. Proc. NatL Acad. Sci. USA. 87:10010-10014. 

Julius, D., A. Brake, L. Blair, R. Kunisawa, and J. Thorner. 1984. Isolation of 
the putative structural gene for the lysine-arginine-cleaving endopeptidase 
required for processing of yeast prepro-a-factor. Cell 37:1075-1089. 

Kirchhausen, T. 1993. Coated pits and coated vesicles--sorting it all out. Curt. 
Opin. Struct. BioL 3:182-188. 

Konopka, J.B., D.D. Jenness, and L.H. Hartwell. 1988. The C-terminus of the S. 
cerevisiae a-pheromone receptor mediates an adaptive response to phero- 
mone. Cell 54:609-620. 

Kunkel, T.A., J.D. Roberts, and R.A. Zakour. 1987. Rapid and efficient site- 
specific mutagenesis without phenotypic selection. Methods EnzymoL 154: 
367-381. 

Laemmli, U.K. 1970. Cleavage of structural proteins during assembly of the 
head of bacteriophage T4. Nature (Lond.). 227:680-685. 

Lazarovits, J., and M.G. Roth. 1988. A single amino acid change in the cytoplas- 
mic domain allows the influenza virus hemagglutinin to be endocytosed 
through coated pits. Cell. 53:743-752. 

Tan et al. A Novel Endocytosis Signal in Yeast 1799 



Letourneur, F., and R.D. Klausner. 1992. A novel di-leucine motif and a ty- 
rosine-based motif independently mediate lysosomal targeting and endocy- 
tosis of CD3 chains. Cell, 69:1143-1157. 

Munn, A.L., and H. Riezman. 1994. Endocytosis is required for the growth of 
vacuolar H(+)-defective yeast: identification of six new END genes. J. Cell 
BioL 123:373-386. 

Nakayama, N., A. Miyajima, and K. Arai. 1985. Nucleotide sequences of STE2 
and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. 
EMBO (Eur. Mol. Biol. Organ.) J. 4:2643-2648. 

Nesterov, A., R.C. Kurten, and G.N. Gill. 1995. Association of epidermal 
growth factor receptors with coated pit adaptins via a tyrosine phosphoryla- 
tion-regulated mechanism. J. Biol. Chem. 270:14. 

Nilsson, T., and G. Warren. 1994. Retention and retrieval in the endoplasmic 
reticulum and the Golgi apparatus. Curr. Opin. Cell Biol. 6:517-521. 

Nothwehr, S.F., and T.H. Stevens. 1994. Sorting of membrane proteins in the 
yeast secretory pathway. J. Biol. Chem. 269:10185-10188. 

Nothwehr, S.F., E. Conibear, and T.H Stevens. 1995. Golgi and vacuolar mem- 
brane proteins reach the vacuole in vpsl mutant yeast cells via the plasma 
membrane. J. Cell Biol. 129:35-46. 

Ohno, H., J. Stewart, M.C. Fournier, H. Bosshart, I. Rhee, S. Miyatake, T. 
Saito, A. Gallusser, T, Kirchhausen, and J.S. Bonifacino. 1995. Interaction of 
tyrosine-based sorting signals with clathrin-associated proteins. Science 
(Wash. DC). 269:1872-1875. 

Payne, G.S., and R.S. Schekman. 1989. Clathrin: a role in the intracellular re- 
tention of a Golgi membrane protein. Science (Wash. DC). 44:1358-1365. 

Pearse, B.M.F. 1988. Receptors compete for adaptins found in plasma mem- 
brane coated pits. EMBO (Eur. MoL BioL Organ.) J. 7:3331-3336. 

Peters, C., M. Braun, B. Weber, M. Wendland, B. Schmidt, R. Pohlmann, A. 
Waheed, and K. von Figura. 1990. Targeting of a lysosomal membrane pro- 
tein: a tyrosine-containing edocytosis signal in the cytoplasmic tail of lysoso- 
mal acid phosphatase is necessary and sufficient for targeting to lysosomes. 
EMBO (Eur. Mot. Biol' Organ.) J. 9:3497-3506. 

Phan, H.L., J.A. Finlay, D.S. Chu, P.K Tan, T. Kirchhausen, and G.S. Payne. 
1994. The S. cerevisiae APS1 gene encodes a homologue of the small subunit 
of the mammalian clathrin AP-1 complex: evidence for functional interac- 
tion with clathrin at the Golgi complex. EMBO (Eur. Mot, Biol. Organ.) J. 
13:1706-1717. 

Ponnambalam, S., C. Rabouille, P. Luzio, T. Nilsson, and G. Warren. 1994. The 
TGN38 glycoprotein contains two non-overlapping signals that mediate lo- 
calization to the trans-Golgi network. J. Cell Biol. 125:253-268. 

Rad, M.R., H.L. Phan, L. Kirchrath, P.K. Tan, T. Kirchhausen, C.P. Hollen- 
berg, and G.S. Payne. 1995. Saccharomyces cerevisiae Apl2p, a homologue of 
the mammalian clathrin AP [3 subunit, plays a role in clathrin-dependent 
Golgi functions. J. Cell Sci. 108:1605-1615. 

Raths, S., J. Rohrer, F. Crausaz, and H. Riezman. 1993. end3 and end4: two mu- 
tants defective in receptor-mediated and fluid-phase endocytosis in Saccha- 
romyces cerevisiae. Z Cell Biol. 120:55~o6. 

Reneke, J.E., K.J. Blumer, W.E. Courchesne, and J. Thorner. 1988. The car- 
boxy-terminal segment of the yeast c~-factor receptor is a regulatory domain. 
Cell. 55:221-234. 

Richardson, J.A., and D.C. Richardson. 1988. Principles and patterns of protein 
conformation. In Prediction of Protein Structure and the Principles of Pro- 
tein Conformation. G.D. Fasman, editor. Plenum Publishing Corp., New 
York. 1-98. 

Robinson, M.S. 1992. Adaptins. Trends Cell BioL 2:293-297. 

Rohrer, J., H. B6nddetti, B. Zanolari, and H. Riezman. 1993. Identification of a 
novel sequence mediating regulated endocytosis of the G-protein-coupled 
a-pheromone receptor in yeast. Mot. Biol. Cell 4:511-521. 

Roth, A.F., and N.G. Davis. 1996. Ubiquitination of the yeast a-factor receptor. 
J. Cell Biol. 134:661--674. 

Rothstein, R. 1994. Targeting, disruption, replacement, and allele rescue: inte- 
grative DNA transformation in yeast. Methods Enzymol. 194:281-301. 

Sandoval, I.V., and O. Bakke. 1994. Targeting of membrane proteins to endo- 
somes and lysosomes. Trends Cell Biol. 4:292-297. 

Sch~ifer, W., A. Stroh, S. Bergh6fer, J. Seiler, M. Vey, M.-L. Kruse, H.-F. Kern, 
H.-D. Klenk, and W. Garten. 1995. Two independent targeting signals in the 
cytoplasmic domain determine trans-Golgi network localization and endoso- 
mal trafficking of the proprotein convertase furin. EMBO (Eur. Mol. Biol. 
Organ.) J. 14:2424-2435. 

Seeger, M., and G.S. Payne. 1992. Selective and immediate effects of clathrin 
heavy chain mutations on Golgi membrane protein retention in Saceharo- 
myees cerevisiae. J. Cell Biol. 118:531-540. 

Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host 
strains designed for efficient manipulation of DNA in Saccharomyces cerevi- 
siae. Genetics. 122:19-27. 

Sosa, M.A., B. Schmidt, K. von Figura, and A. Hille-Rehfeld. 1993. In vitro 
binding of plasma membrane coated vesicle adaptors to the cytoplasmic do- 
main of lysosomal acid phosphatase. J. Biol. Chem. 268:12537-12543. 

Sprague, G.F., Jr. 1994. Assay of yeast meting reaction. Methods Enzymol. 194: 
77-93. 

Stepp, J.D., A. PeUicena-Palle, S. Hamilton, T, Kirchhausen, and S.K. Lem- 
mon. 1995. A late Golgi sorting function for Saccharomyces cerevisiae 
Apmlp,  but not for Apm2p, a second yeast clathrin AP medium chain- 
related protein. Mot, Biol. Cell. 6:41-58. 

Tan, P.K., N.G. Davis, G.F Sprague, and G.S Payne. 1993. Clathrin facilitates 
the internalization of seven transmembrane segment receptors for mating 
pheromones in yeast. J. Cell Biol. 123:1707-1716. 

Trowbridge, I.S., J.F. Collawn, and C.R. Hopkins. 1993. Signal-dependent 
membrane protein targeting in the endocytic pathway. Annu. Rev. Cell Biol. 
9:129-161. 

Vieira, J., and J. Messing. 1987. Production of single-stranded plasmid DNA. 
Methods Enzymol. 153:3-11. 

Weiner, J.L., C. Guttierez-Steil, and K.J. Blumer. 1993. Disruption of receptor-G 
protein coupling in yeast promotes the function of an SST2-dependent adap- 
tation pathway. J. Biol. Chem. 268:8070-8077. 

Wilcox, C.A., K. Redding, R. Wright, and R.S. Fuller. 1992. Mutation of a ty- 
rosine localization signal in the cytosolic tail of the yeast Kex2 protease dis- 
rupts Golgi retention and results in default transport to the vacuole. Mot, 
Biol, Cell. 3:1353-1371. 

Wilmot, C.M., and J.M. Thornton. 1988. Analysis and prediction of the differ- 
ent types of [3-turn in proteins. J. Mot, Biol. 203:221-232. 

Wilsbach, K,  and G.S. Payne. 1993a. Vpslp, a member of the dynamin GTPase 
family, is necessary for Golgi membrane protein retention in Saccharomyces 
cerevisiae. EMBO (Eur. Mol. Biol. Organ.) J. 12:3049-3059. 

Wilsbach, K., and G.S. Payne. 1993b. Dynamic retention of trans-Golgi net- 
work membrane proteins in Saccharomyces cerevisiae. Trends Cell Biol. 3: 
426-432. 

Wong, S.H., and W. Hong. 1993. The SXYQRL sequence in the cytoplasmic 
domain of TGN38 plays a major role in trans-Golgi network localization. J. 
Biol. Chem. 268:22853-22862. 

The Journal of Cell Biology, Volume 135, 1996 1800 


