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Abstract. Mammalian polo-like kinase 1 (Plkl) is 
structurally related to the polo gene product of Dro- 
sophila melanogaster, Cdc5p of Saccharomyces cerevi- 
siae, and plol ÷ of Schizosaccharornyces pombe, a newly 
emerging family of serine-threonine kinases implicated 
in cell cycle regulation. Based on data obtained for its 
putative homologues in invertebrates and yeasts, hu- 
man Plkl is suspected to regulate some fundamental as- 
pect(s) of mitosis, but no direct experimental evidence 
in support of this hypothesis has previously been re- 
ported. In this study, we have used a cell duplication, 
microinjection assay to investigate the in vivo function 
of Plkl in both immortalized (HeLa) and nonimmortal- 
ized (Hs68) human cells. Injection of anti-Plkl antibod- 
ies (Plkl +) at various stages of the cell cycle had no ef- 
fect on the kinetics of DNA replication but severely 
impaired the ability of cells to divide. Analysis of 
Plkl +-injected, mitotically arrested HeLa cells by fluo- 
rescence microscopy revealed abnormal distributions 

of condensed chromatin and monoastral microtubule 
arrays that were nucleated from duplicated but unsepa- 
rated centrosomes. Most strikingly, centrosomes in 
Plkl +-injected cells were drastically reduced in size, 
and the accumulation of both ~/-tubulin and MPM-2 im- 
munoreactivity was impaired. These data indicate that 
Plkl activity is necessary for the functional maturation 
of centrosomes in late G2/early prophase and, conse- 
quently, for the establishment of a bipolar spindle. Ad- 
ditional roles for Plkl at later stages of mitosis are not 
excluded, although injection of Plkl + after the comple- 
tion of spindle formation did not interfere with cytoki- 
nesis. Injection of Plkl + into nonimmortalized Hs68 
cells produced qualitatively similar phenotypes, but the 
vast majority of the injected Hs68 cells arrested as sin- 
gle, mononucleated cells in G2. This latter observation 
hints at the existence, in nonimmortalized cells, of a 
centrosome-maturation checkpoint sensitive to the im- 
pairment of Plkl function. 

C 
ELt cycle progression in all eukaryotes depends on 

the periodic activation and inactivation of cyclin- 
dependent kinases (for reviews see Norbury and 

Nurse, 1992; Morgan, 1995; Nigg, 1995). However, it is be- 
coming increasingly clear that protein kinases structurally 
distinct from cyclin-dependent kinases also play important 
roles in the regulation of cell cycle events. One prominent, 
newly emerging family of serine/threonine-kinases with a 
likely role in cell cycle control is represented by the polo 
gene product of Drosophila melanogaster (Sunkel and 
Glover, 1988; Llamazares et al., 1991) and its putative ho- 
mologues Cdc5p of Saccharomyces cerevisiae (Kitada et al., 
1993), plol + of Schizosaccharomyces pombe (Ohkura et al., 
1995), and polo-like kinase 1 (Plkl, also referred to as 
Plk) 1 of mouse and human (Clay et al., 1993; Lake and Jel- 
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inek, 1993; Golsteyn et al., 1994, 1995, 1996; Hamanaka 
et al., 1994; Holtrich et al., 1994). All these kinases exhibit 
a high degree of sequence similarity, particularly within 
their amino-terminally located catalytic domains. More- 
over, regions of sequence identity are also present within 
the carboxy-terminal noncatalytic domains, and a consen- 
sus motif comprising ,--~30 amino acids may constitute a 
characteristic signature of polo-like kinases (Clay et al., 
1993; Hamanaka et al. 1994; Golsteyn et al.; 1994, 1996). In 
addition to Plkl, two murine kinases more distantly re- 
lated to Drosophila polo have also been discovered. These 
kinases, termed Snk (Simmons et al., 1992) and Fnk 
(Donohue et al., 1995), are transcriptionally induced in re- 
sponse to mitogens, suggesting that they may play a role in 
progression through the G1 phase of the cell cycle. Thus, 
the family of polo-like kinases may comprise multiple 
members, at least in vertebrates, and it is an attractive pos- 
sibility that different polo-like kinases may function at 
multiple stages of the cell cycle. Yet another polo-related 
murine kinase, termed Sak, is also thought to be involved 
in mitotic and meiotic cell division (Fode et al., 1994). 
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However, although Sak resembles Drosophila polo over 
its catalytic domain, it lacks the polo-consensus motif in 
the carboxy-terminal domain. 

The most detailed information about the properties and 
biological function of polo-like kinases has been obtained 
for Drosophila polo, the founding member of the family. 
During Drosophila development, increased levels of polo 
transcripts are observed in tissues with extensive mitotic 
activity, and polo protein expression appears to be re- 
quired for all proliferative stages (Llamazares et al., 1991). 
In syncytial embryos, polo kinase activity was reported to 
peak during late anaphase-telophase (Fenton and Glover, 
1993), and the phenotype of polo mutants strongly sug- 
gests a role for this kinase in mitosis (Sunkel and Glover, 
1988; Llamazares et al., 1991). Drosophila mutants ho- 
mozygous for a strong mutant polo allele (polo 2) die as lar- 
vae. However, flies with a weaker mutant allele (polo 2) 
produce embryos unable to undertake the syncytial mi- 
totic cycles (Sunkel and Glover, 1988). These embryos dis- 
play condensed chromosomes associated with branched, 
highly irregular microtubule arrays, and they appear to 
lack organized centrosomes (Sunkel and Glover, 1988). In 
larval neuroblasts, polo 1 mutants display a range of abnor- 
mal mitoses, which include overcondensed and polyploid 
chromosome complements and monopolar mitotic spindles. 
During male meiosis, chromosome disjunction is also dis- 
turbed (Sunkel and Glover, 1988; Llamazares et al., 1991). 

The putative yeast homologues of polo have also been 
studied by genetic approaches. In S. cerevisiae, mutations 
in the CDC5 gene produce abnormalities in both mitotic 
and meiotic divisions (Hartwell et al., 1973; Byers and 
Goetsch, 1974; Schild and Byers 1980; Sharon and Sim- 
chem, 1990). CDC5 is essential for viability (Kitada et al., 
1993), and cdc5 mutants arrest in late mitosis as large, bud- 
ded, dumbbell-shaped cells, with partially segregated nu- 
clei on an elongated spindle (Kitada et al., 1993). In the 
case of S. pombe, loss of plol + function has two distinct 
consequences: it leads to either a mitotic arrest in which 
condensed chromosomes are associated with a monopolar 
spindle or, following the completion of nuclear division, to 
a failure in septation (Ohkura et al., 1995). Overexpres- 
sion of wild-type plol ÷ results in the formation of mono- 
polar spindles and multiple septa, and, interestingly, multi- 
ple septa are formed even when plol ÷ is overexpressed in 
Gl-arrested cells (Ohkura et al., 1995). These results sug- 
gest that the fission yeast plol ÷ kinase may play a dual 
role, being involved in both the establishment of a bipolar 
spindle and in septum formation. 

To what extent Drosophila polo, budding yeast Cdc5p, 
and fission yeast plol ÷ perform exactly corresponding 
functions is not clear at this time. Likewise, the biological 
role of vertebrate Plkl remains to be established, and as 
yet, information pertaining to mammalian Plkl function is 
mainly indirect. Plkl transcripts are highly expressed in 
tissues and cells exhibiting a high mitotic index (Clay et al., 
1993; Lake and Jelinek, 1993; Golsteyn et al., 1994; Hol- 
trich et al., 1994), including tumors and immortalized cell 
lines (Holtrich et al., 1994). Similar to budding yeast CDC5 
(Kitada et al., 1993), mammalian Plkl mRNA shows a cell 
cycle-dependent expression, accumulating to maximal lev- 
els during G2 and M phases (Lake and Jelinek, 1993; Lee 
et al., 1995). Corresponding cell cycle oscillations have 

also been observed for the Plkl protein (Golsteyn et al., 
1994, 1995; Hamanaka et al., 1995; Lee et al., 1995) and 
Plkl-associated casein kinase activity (Golsteyn et al., 
1995; Hamanaka et al., 1995; Lee et al., 1995). Most inter- 
estingly, Plkl associates with the mitotic spindle apparatus 
throughout mitosis (Golsteyn et al., 1994, 1995; Lee et al., 
1995). Specifically, the kinase localizes to spindle poles 
during prophase and metaphase, redistributes to the spin- 
dle equatorial plane (the midzone) as cells enter anaphase, 
and finally, concentrates at the midbody during telophase 
(Golsteyn et al., 1994, 1995; Lee et al., 1995). 

The data described above support the view that verte- 
brate Plk may play a role during mitotic progression, much 
like its purported homologues in lower organisms. How- 
ever, we emphasize that data on the biological function of 
mammalian Plkl remain scarce, and there is no direct evi- 
dence for a mitotic role. Instead, results obtained with a 
sense-antisense RNA approach were interpreted to indi- 
cate that Plkl functions somehow in the regulation of 
DNA replication (Hamanaka et al., 1994). In these experi- 
ments, microinjection of in vitro transcribed Plkl sense 
mRNA into serum-starved murine NIH 3T3 cells was re- 
ported to induce DNA synthesis, whereas full-length anti- 
sense RNA appeared to block thymidine incorporation in 
growing cells (Hamanaka et al., 1994). 

The goal of the present study was to directly explore the 
in vivo function of Plkl in human cells. To this end, highly 
specific anti-Plkl antibodies were microinjected into both 
immortalized (Hela) and nonimmortalized (Hs68) human 
cells at various stages of the cell cycle, and the ability of 
the injected cells to perform cell cycle functions was moni- 
tored. No evidence was obtained to support a role for Plkl 
in S phase progression. Instead, our data clearly demon- 
strate that Plkl function is required for both immortalized 
and nonimmortalized ceils to proceed normally through 
mitosis. Cells injected with anti-Plkl antibodies displayed 
striking defects in their ability to assemble a bipolar spin- 
dle. As indicated by the use of antibodies against several 
centrosomal antigens, these defects most probably arise 
from a failure of centrosomes to undergo critical structural 
changes at the G2 to M transition. Additional roles for 
Plkl at later stages of mitosis are not excluded, although 
they could not be revealed by antibody microinjection. Fi- 
nally, microinjection of anti-Plkl antibodies into nonim- 
mortalized Hs68 cells revealed that the majority of these 
cells failed to enter mitosis in the absence of Plkl function. 
This observation raises the intriguing possibility that the 
activation of Cdc2 kinase in nonimmortalized cells may de- 
pend on Plkl function and/or proper centrosome maturation. 

Materials  and  M e t h o d s  

Cell Culture, Synchronization, and Extraction 

Hs68 human foreskin fibroblasts were obtained from the American Type 
Culture Collection (Rockville, MD) and grown for not more than eight 
passages. All cells were cultured in DME (GIBCO BRL, Gaithersburg, 
MD) supplemented with 5% (HeLa) or 10% (Hs68) FCS and penicillin- 
streptomycin (100 i.u./ml and 100 p.g/ml, respectively) at 37°C in 7% CO2. 
G0-arrested Hs68 fibroblasts were obtained by incubating 50% confluent 
cultures for 36 h in DME without FCS. After this period, <1% of the ceil 
population incorporated bromodeoxyuridine (BrdU) during an incuba- 
tion for 24 h, as detected by immunofluorescence microscopy (see below). 
This result correlated well with cell cycle analysis by flow cytometry, using 
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a FACS II ® fluorescence-activated cell sorter, (Becton-Dickinson Immu- 
nocytometry Systems, Mountain View, CA), which demonstrated that 
>95% of the cells presented a 2 N DNA content. To arrest exponentially 
growing HeLa cells at prometaphase, nocodazole (Sigma Chemical Co., 
St. Louis, MO) was added to a final concentration of 50 ng/ml for 17 h. Mi- 
totic cells were collected by mechanical shake-off, rinsed twice in pre- 
warmed medium, and replated in standard HeLa growth medium. To ar- 
rest HeLa cells at the G1/S boundary, aphidicolin (1 ~g/ml; Sigma 
Chemical Co.) was added for 19 h. This treatment resulted in an accumu- 
lation of cells that were >80% arrested in late G1/early S phase with a 2 N 
DNA content, as assessed by flow cytometry. 

Cell extracts were prepared in NP-40 lysis buffer (50 mM Tris-HCI, pH 
8.0, 120 mM NaCI, 1% NP-40, 20 mM NaF, 1 mM EDTA, 5 mM EGTA, 
20 mM [3-glycerol phosphate, 0.1 mM PMSF, 10 I~g/ml leupeptin, 10 ~g/ml 
pepstatin A, 0.1 mM aprotinin) essentially as outlined in Golsteyn et al. 
(1995), except that lysates were centrifuged at 12,000 g (4°C) for 20 min 
immediately after extraction. Total protein concentrations were deter- 
mined using the BioRad Protein Assay system (Hercules, CA) and BSA 
as a calibration standard. 

Iramunocheraical Techniques 
Anti-Plkl lgG (Plkl ÷) were affinity purified from serum R32 as previ- 
ously reported (Golsteyn et al., 1995). A negative control antibody 
(Plkl-) was prepared by passing the flow through the affinity column, de- 
pleted of all Plkl-specific antibodies, over a protein A-Sepharose column 
(Pharmacia LKB Biotechnology, Piscataway, N J) and eluting with 100 mM 
glycine-HCI, pH 3.0, according to manufacturers instructions. Purified 
Plkl ÷ and Plkl-  IgG preparations, as well as nonimmune IgG (Sigma 
Chemical Co.), were dialyzed extensively against PBS, concentrated using 
a Centricon 30 unit (Amicon, Beverly, MA) and frozen in small aliquots at 
-70°C. Affinity-purified IgG specific for the human kinesin-related mo- 
tor protein HsEg5 (Eg5÷; Blangy et al., 1995) was also prepared as above. 

For immunoblotting, 10 Ixg of HeLa or Hs68 whole cell extracts or 3 ixg 
of an extract from Sf9 cells overexpressing recombinant Plkl (see Gol- 
steyn et al., 1995) were resolved on a 10% acrylamide SDS-PAGE gel, 
transferred to nitrocellulose membranes, and incubated with Plkl + or 
Plkl-  IgG (112 ng/ml in PBS containing 0.5% Tween 20), followed by al- 
kaline phosphatase-conjugated secondary antibodies (1/5,000 in PBS con- 
taining 0.5% Tween 20; Promega Corp., Madison, Wl), as previously de- 
scribed (Krek and Nigg, 1991). 

Microinjection and Immunofluorescence Microscopy 
For microinjection of asynchronous cells, HeLa and Hs68 cells were 
grown on acid-washed coverslips until 50% confluent and injected with 
antibodies using glass capillary needles (Clark Electromedical Instru- 
ments, Reading, UK) pulled on a micropipette puller (Flaming/Brown; 
Sutter Instruments Co., Novato, CA). Alternatively, ceils were injected 
after serum starvation for 30-36 h (Hs68 GO injections), after a nocoda- 
zole block and a 6-8 h release (HeLa G1 injections), or after an aphidi- 
colin block and a 5-6 h release (HeLa late S phase injections). All cover- 
slips were transferred into fresh medium shortly before injection of the 
appropriate IgG preparation (1.7 and 2 mg/ml for Plkl ÷ and Eg5 ÷ lgG, re- 
spectively, in 75% PBS) into the cytoplasm of interphase or metaphase 
ceils. Injections were either clustered for DNA synthesis experiments or 
widely scattered (one cell per microscopic field) so that any effects on the 
ability of injected cells to divide could be clearly observed. After injection, 
coverslips were placed into fresh medium containing 5% FCS (for HeLa 
cells), 10% FCS (for Hs68 asynchronous injections), or 20% FCS (for 
Hs68 GO injections). For measurements of DNA synthesis, bromodeoxy- 
uridine/fluorodeoxyuridine (Amersham Corp., Arlington Heights, IL) 
was added to the medium (1/1,000) for the duration of the experiment or 
for the times specified in the text. 

Cells were fixed at room temperature for 10 min with 3.7% formalde- 
hyde in PBS and permeabilized for 30 s with 100% acetone at -20°C. In- 
jected cells were located by incubating coverslips with biotinylated anti- 
rabbit IgG antibodies (1/50 in PBS containing 1% BSA [PBS/BSA]; Am- 
ersham Corp.) for 1 h, followed by a mixture of Texas red-conjugated 
streptavidin (1/200 in PBS/BSA; Amersham Corp.) and Hoechst 33258 
(0.5 p~g/ml in PBS/BSA; Calbiochem-Novabiochem, La Jolla, CA) for 30 
min. For analysis of DNA synthesis, fixed and permeabilized cells were 
treated for 10 min at room temperature with 1.5 M HCI followed by ex- 
tensive washing with PBS. BrdU incorporation into nuclei was revealed as 
above, except that an anti-BrdU mouse mAb (Amersham Corp.) was used 

in the primary incubation, followed by FITC-conjugated anti-mouse lgG 
antibodies (Sigma Chemical Co.). 

For costaining of injected antibodies and microtubules, cells were first 
incubated with undiluted rat anti-tubulin YOL1/34 hybridoma superna- 
rant (Serotec Ltd., Oxford, UK) for 1 h, followed by biotinylated anti-rat 
lgG antibodies (1/100 in PBS/BSA; Amersham Corp.) for 30 min and, fi- 
nally, Texas red-conjugated streptavidin (1/200 in PBS/BSA), Hoechst 
33258 (0.5 ~g/ml in PBS/BSA), and FITC-conjugated anti-rabbit IgG an- 
tibodies (I/100 in PBS/BSA; Sigma Chemical Co.) for 30 min. For staining 
of centrosomes with the mouse mAb CTR453, cells were fixed either as 
above or in -20~C methanol for 6 min, as described previously (Bailly et 
al., 1989). For v-tubulin staining, a rat antipeptide polyclonal antibody 
raised against a synthetic peptide (Joshi et al., 1992) was used, kindly pro- 
vided by Val Scott and Keith Gull (University of Manchester, UK), and 
cells were preextracted in detergent and fixed as previously described 
(MacRae et al., 1990). Before staining with the MPM-2 mAb, cells were 
preextracted before methanol fixation, as previously described (Vandr6 et 
al., 1984). CTR453, ~/-tubulin, and MPM-2 epitopes were revealed using 
the tubulin staining protocol, except that either CTR453 (diluted l/5 in 
PBS/BSA), -/-tubulin (diluted 1/~00 in PBS/BSA), or MPM-2 (diluted 1/ 
1,000 in PBS/BSA) antibodies were used for the primary incubation, fol- 
lowed by biotinylated anti-mouse or anti-rat IgG antibodies (1/50 in PBS/ 
BSA; Amersham Corp.). Coverslips were routinely mounted in 80% glyc- 
erol, 3% n-propyl gallate (in PBS), but were mounted in 90% glycerol, 
I00 mM Tris-HCl, pH 9.0, for DNA synthesis experiments. Cells were ob- 
served with a microscope (Axiophot; Carl Zeiss, Inc., Thornwood, NY) 
using 63 or 100x oil immersion objectives. In some cases, confocal laser 
scanning microscopy was performed on an invert laser scan microscope 
(model LSM 410; Carl Zeiss, Inc.), with a 63× plan-APOCHROMAT oil 
immersion objective, according to manufacturers instructions. Excitation 
wavelengths used were 488 nm for FITC (argon laser) and 543 nm for 
Texas red (helium/neon laser), with absorption windows of 510--525 nm 
and >570 nm, respectively. Confocal images presented in this paper rep- 
resent projections of Z-series scans. 

Resul ts  

A Polyclonal Antibody Highly Specific for Plkl in HeLa 
and Hs68 Cells 
A rabbit polyclonal antibody (R32) was raised against the 
carboxy-terminal 202 amino acids of human Plkl (Gol- 
steyn et al., 1995). For the purpose of the present microin- 
jection study, Plkl-specific IgG (Plkl +) were affinity puri- 
fied from R32 serum. As a control, nonspecific IgG 
(Plkl-) were prepared from the flow through of the affin- 
ity column. The specificity of these reagents is demon- 
strated in Fig. 1 (see also Golsteyn et al., 1995). Upon im- 
munoblotting, Plkl + decorated a single N66-kD protein in 
asynchronous HeLa and Hs68 cell extracts (Fig. 1, lanes 2 
and 3). This protein comigrated exactly with recombinant 
Plkl expressed in baculovirus-infected Sf9 insect cells 
(lane 1). It is noteworthy that the expression level of Plkl 
protein was approximately twofold lower in Hs68 than in 
HeLa cells (compare lanes 2 and 3), probably reflecting 
the lower mitotic index of nonimmortalized cell popula- 
tions. Also, no Plkl protein could be detected in extracts 
derived from G0-arrested Hs68 cells (Jane 4), consistent 
with previous analyses of Plkl mRNA levels (Lake and Jel- 
inek, 1993; Holtrich et al., 1994; Lee et al., 1995). The 
Plkl- IgG did not recognize Plkl in any of the samples 
(Fig. 1, lanes 5-7), indicating that this preparation had in- 
deed been successfully depleted of all Plkl-specific anti- 
bodies and could thus be used as an innocuous control. 

Plkl ÷ InJection Does Not Affect DNA Synthesis in 
HeLa or Hs68 Cells 

On the basis of antisense experiments, Plkl had previously 
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Figure I. Specificity of the Plkl ~" antibody. Extracts of Sf9 cells 
expressing recombinant Plkl (lanes I and 5), asynchronous HeLa 
cells (lanes 2 and 6), asynchronous Hs68 cells (lanes 3 and 7), and 
GO serum-arrested Hs68 cells (lanes 4 and 8) were resolved by 
SDS-PAGE, transferred to nitrocellulose, and probed with Plkl ÷ 
(lanes 1-4) or Plkl- (lanes 5-8) IgG. Molecular mass standards 
are indicated on the left. 

been implicated in the control of D N A  replication (Ha- 
manaka et al., 1994). Therefore,  we wished to determine 
whether microinjection of  Plkl-specific antibodies would 
interfere with D N A  synthesis. Equal  concentrations of 
Plkl  ÷ and P lk l -  IgG (1.7 mg/ml) were injected into the cy- 
toplasm of both asynchronous HeLa  and G0-arrested 
Hs68 cells. Then, BrdU was added to the injected cells, 
and these were either further cultured for 20 h (HeLa) or 
released into the cell cycle by readdition of serum for 40 h 
(Hs68). After fixation, the ability of  injected cells to incor- 
porate BrdU into nuclei was assessed using an anti-BrdU 
m A b  for indirect immunofluorescence microscopy. In both 
cell types, very similar proportions of cells had incorpo- 
rated BrdU,  regardless of whether they had been injected 
with Plkl ÷ or P lk l -  antibodies, or had not been injected at 
all (Fig. 2 A). 

The above experiment argued that Plkl  ÷ antibodies did 
not block D N A  synthesis, but it remained possible that 
they might have influenced the kinetics of either entry into 
or exit from S phase. To examine this possibility, both 
HeLa  and Hs68 cells were synchronized before injection 
with Plkl ÷ antibodies. HeLa cells were arrested in pro- 
metaphase with nocodazole and then released and micro- 
injected in the subsequent early G1 phase. Hs68 cells, on 
the other hand, were arrested in GO by serum starvation 
and then injected and released into the celt cycle by serum 
readdition. In both cases, entry into and exit f rom S phase 
were monitored by pulse labeling with BrdU. The results, 
summarized in Fig. 2 B, clearly show that cells microin- 
jected with Plkl ÷ entered and exited S phase with the 
same kinetics as the surrounding, noninjected cells. We 
conclude, therefore, that injection of Plkl-specific IgG has 
no effect on the ability of  either HeLa  or  Hs68 cells to pro- 
ceed through S phase. These results lend no support to the 
proposition that Plkl plays a role in S phase events (Ha- 
manaka et al., 1994; see Discussion). 
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Figure 2. Plkl + injection has no effect on  S phase  progress ion in 
HeLa or Hs68 cells. (A) Asynchronously growing HeLa cells, and 
Hs68 ceils induced to withdraw from the cell cycle by serum dep- 
rivation (GO), were microinjected into the cytoplasm with Plkl* 
or Plkt - IgG. Upon continued incubation (HeLa) or release into 
the cell cycle by serum readdition (Hs68), in the presence of 
BrdU, the cells were analyzed by immunofluorescence after 20 
and 40 h, respectively. The percentage of cells incorporating 
BrdU into nuclei is presented. Results are averages with standard 
deviations derived from three (HeLa) and two (Hs68) indepen- 
dent experiments. A total of 227 (HeLa) and 85 (Hs68) cells were 
injected with Plkl +, and 134 (HeLa) and 70 (Hs68) cells were in- 
jected with Plkl-. (B) HeLa cells synchronized in G1 by nocoda- 
zole release and Hs68 arrested in GO were injected with Plkl + 
IgG. Upon continued incubation (HeLa) or serum readdition 
(Hs68), cells were pulse-labeled with BrdU for the times indi- 
cated and then analyzed by immunofluorescence microscopy. 
The percentage of cells incorporating BrdU into nuclei during 
the pulse time is presented. At least 40 cells were injected for 
each time point. 

Plkl  + Injection into HeLa Cells Interferes with Mitotic 
Progression and Cell Division 

During the course of the experiments described above, we 
had noticed a build-up of  rounded, mitotic-like ceils after 
Plkl  + injection. To investigate the possibility that Plkl  
might be required for progression through mitosis, we es- 
tablished a protocol of  scattered microinjection, Accord-  
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same kinetics as the surrounding, noninjected cells. We 
conclude, therefore, that injection of Plkl-specific IgG has 
no effect on the ability of  either HeLa  or  Hs68 cells to pro- 
ceed through S phase. These results lend no support to the 
proposition that Plkl plays a role in S phase events (Ha- 
manaka et al., 1994; see Discussion). 

Figure 2. Plkl + injection has no effect on S phase progression in 
HeLa or Hs68 cells. (A) Asynchronously growing HeLa cells, and 
Hs68 ceils induced to withdraw from the cell cycle by serum dep- 
rivation (GO), were microinjected into the cytoplasm with Plkl ~ 
or Plkt - IgG. Upon continued incubation (HeLa) or release into 
the cell cycle by serum readdition (Hs68), in the presence of 
BrdU, the cells were analyzed by immunofluorescence after 20 
and 40 h, respectively. The percentage of cells incorporating 
BrdU into nuclei is presented. Results are averages with standard 
deviations derived from three (HeLa) and two (Hs68) indepen- 
dent experiments. A total of 227 (HeLa) and 85 (Hs68) cells were 
injected with Plkl +, and 134 (HeLa) and 70 (Hs68) cells were in- 
jected with Plkl-. (B) HeLa cells synchronized in G1 by nocoda- 
zole release and Hs68 arrested in GO were injected with Plkl + 
IgG. Upon continued incubation (HeLa) or serum readdition 
(Hs68), cells were pulseqabeled with BrdU for the times indi- 
cated and then analyzed by immunofluorescence microscopy. 
The percentage of cells incorporating BrdU into nuclei during 
the pulse time is presented. At least 40 cells were injected for 
each time point. 

Plkl  + Injection into HeLa Cells Interferes with Mitotic 
Progression and Cell Division 

During the course of the experiments described above, we 
had noticed a build-up of  rounded, mitotic-like ceils after 
Plkl  + injection. To investigate the possibility that Plkl  
might be required for progression through mitosis, we es- 
tablished a protocol of  scattered microinjection, Accord-  

The Iournal of Cell Biology, Volume | 35, 1996 1704 



ing to this protocol, only one cell per microscopic field is 
injected, and the fate of each cell is then monitored as a 
function of time. In a first series of experiments, Plkl + or 
control antibodies were microinjected into the cytoplasm 
of asynchronously growing HeLa cells, and after incuba- 
tion for 20 or 40 h, cells were analyzed by fluorescence mi- 
croscopy using secondary antibodies to visualize injected 
cells and Hoechst dye to monitor the state of the DNA. 
The results of these experiments are summarized in Fig. 3 
and Table I. Of the Plkl--injected cells, >90% proceeded 
through mitosis to the two cell stage by 20 h, with only 
very few cells in mitosis (<1%), and with no significant 
proportion of abnormal phenotypes evident. After 40 h, 
most of these cells had proceeded through a second round 
of division, reaching the four cell stage (Fig. 3 A and Table I). 
Identical results were obtained after injection of a nonim- 
mune IgG control (Table I). In contrast, only 30% of the 
cells injected with Plkl + had divided normally by 20 h, 
while 34% accumulated as rounded, mitotic-like cells (Ta- 
ble I). Hoechst staining of these cells revealed condensed, 
ball-like chromosomes that, in most cases, exhibited no 
obvious alignment in a metaphase plate (Fig. 3 B, a). Some 
25% of the cells displayed additional abnormal pheno- 
types (Fig. 3 B and Table I). These included cells with 
strikingly fragmented nuclei (referred to as micronuclei; 
Fig. 3 B, b) or with multiple nuclei of unknown karyotype 
(Fig. 3 B, c), and cells that had undergone inappropriate 
nuclear division, as characterized by the appearance of 
DNA strands between divided cells (Fig. 3 B, d). By 40 h 
after injection of Plkl ÷, the number of abnormal mitotic 
cells had dropped to 5%, with a concomitant increase in 
the number of micronucleated and multinucleated cells to 
40% (Table I). 

The described phenotypes suggested a function for Plkl 
specifically during mitosis. One could legitimately argue, 
however, that Plkl might actually be required earlier in 
the cell cycle, for example during S phase when centro- 
somes are duplicated, but that the consequences of im- 
paired Plkl function might only become apparent in the 
subsequent mitosis. To rule out this possibility, HeLa cells 
were synchronized at the G1/S border, using aphidicolin, 
and Plkl ÷ or Plkl-  IgG were injected 5-6 h after release 
from this block, i.e., when cells were in late S phase/early 
G2 (as assessed by flow cytometry; data not shown). After 
an additional incubation for 7, 14, or 24 h, cells were fixed 
and their mitotic index and ability to divide recorded 
(Fig. 4). By 13 h after the release from the G1/S block, the 
time at which we found the wave of mitotic cells to reach 
its highest level in the control samples, 23 and 19% of non- 
injected and Plkl--injected cells, respectively, were in mi- 
tosis (Fig. 4 A). At this early time, the number of Plkt + 
cells in mitosis was somewhat reduced (14%; Fig. 4 A), 
and comparatively few of the injected ceils had completed 
division (19% for Plkl-  and 12% for Plkl+; Fig. 4 B). The 
impairment of Plkl function did, however, produce strik- 
ing effects by 20 h; at this time, 77% of Plkl--injected cells 
had divided (Fig. 4 B), and, concomitantly, the mitotic in- 
dex of these as well as the surrounding noninjected cells 
was strongly reduced (Fig. 4 A). In marked contrast, com- 
paratively few of the Plkl+-injected cells (26%) had com- 
pleted division (Fig. 4 B), and instead, many (45%) had ac- 
cumulated as rounded, mitotic-like cells (Fig. 4 A). After 

30 h, virtually all Ptkl--injected cells had completed divi- 
sion (87%), but there was no significant further increase in 
the number of Plkl+-injected cells that had divided (29%; 
Fig. 4 B). At this late time, up to 50% of the Plkl +- 
injected cells were either micronucleated or multinucle- 
ated (data not shown). From the data shown in this sec- 
tion, we conclude that abrogation of Plkl function in 
HeLa cells results in a strong inhibition of progression 
through mitosis, which ultimately culminates in a lack of 
cytokinesis and a failure to segregate chromosomes cor- 
rectly. 

Microinjection of  Plkl + into HeLa Cells Leads to 
Nucleation of Abnormal Microtubule Arrays from 
Small, Duplicated but Unseparated Centrosomes 

As a first step towards understanding the molecular basis 
for the observed requirement for Plkl function during mi- 
tosis, Plkl+-injected, mitotically blocked cells (of the type 
shown in Fig. 3 B, a) were analyzed by confocal and con- 
ventional microscopy, using antitubulin and antipericen- 
trosomal mAbs for immunofluorescent staining (Fig. 5). 
Whereas Plkl--injected cells were able to set up a normal 
bipolar spindle (Fig. 5 A, left), most of the Plkl+-injected 
cells failed to do so. Instead, 68% of all mitotic cells exam- 
ined displayed arrays of comparatively thin microtubule 
bundles nucleating from a single organizing center, more 
reminiscent of interphase microtubules than of spindle fi- 
bres (Fig. 5 A, right). Structures resembling bipolar spin- 
dles could be observed in the remaining cells, but only few 
of these looked completely normal (data not shown). 

Colocalization of microtubules and the CTR453 antigen, 
a pericentrosomal protein (Bailly et al., 1989), revealed that 
the monoastral microtubule arrays frequently contained 
two centrosomes that had clearly duplicated but had failed 
to separate sufficiently for bipolar spindle formation (Fig. 
5 B, left). At first glance, this phenotype appears similar to 
that previously observed after microinjection of antibodies 
against HsEg5, a centrosome-associated, kinesin-related 
motor protein (Blangy et al., 1995). However, although 
centrosome separation was indeed inhibited in both cases, 
a direct comparison of the phenotypes induced by Plkl ÷ 
or anti-HsEg5 antibodies (Eg5 ÷) revealed striking differ- 
ences: compared to Eg5+-injected cells, Plkl+-injected 
cells displayed much smaller centrosomes, and the density 
of microtubules nucleating from these centrosomes ap- 
peared to be decreased (Fig 5 B, compare left and right). 
To confirm the apparent reduction in centrosome size, 
HeLa cells were injected in the exact same experiment 
with Plkl ÷ or Eg5 ÷ IgG's. After 20 h, centrosomes were 
stained with CTR453 and the sizes of centrosomes were 
recorded using conventional ~ fluorescence microscopy and 
identical photographic conditions. As can be seen from 
Fig. 5 C, the centrosomes in Eg5+-injected cells (right) 
were indistinguishable in their sizes from those of unin- 
jected mitotic HeLa cells (left), whereas those of Plkl +- 
injected cells were substantially reduced in size (middle). 
These data indicate that Plkl function is required for cen- 
trosomes to undergo a functional maturation that is typi- 
cally reflected by an apparent increase in centrosome size 
(Vorobjev and Nadehzdina, 1987; Kimble and Kuriyama, 
1992; Kalt and Schliwa, 1993). 
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Figure 3. Injection of HeLa 
cells with Plkl + inhibits mi- 
totic progression and causes 
abnormal division pheno- 
types. Widely scattered 
HeLa cells were injected 
with Plkl ÷ or Plkl- IgG, 
fixed, and analyzed by immu- 
nofluorescence microscopy 
after 20 and 40 h of incuba- 
tion. (A) Plkl-  control- 
injected ceils showing normal 
progression through the first 
(20 h) and second (40 h) cell 
division. (B) Commonly ob- 
served phenotypes caused 
by Plkl + injection: rounded 
mitotic cells with ball-like 
DNA condensation (a), mi- 
cronucleated interphase cells 
(b), multinucleated inter- 
phase ceils (c), and divided 
cells still connected by a DNA 
strand (d). Bars, 10 izm. 

The Journal of Cell Biology, Volume 135, 1996 1706 



Table L Effect of Anti-Plkl Antibodies on HeLa Cell Division 

Antibody injected Plk 1 + Plk I - Nonimmune IgG 

20 h % 

Single interphase cells 11 (32/291)* 

Normally divided cells 30 (87/291) 

Mitotic cells* 34 (98/291) 
Micro-/Multinucleated cells 20 (58/291) 

Divided cel ls  with connecting 

DNA strand 5 (161291) 
Total 1 O0 

40 h 

Single interphase cells 1 (2/201) 

Normally divided cells § 51 ( 102/201 ) 

Mitotic cells* 5 ( 10/201 ) 

Micro-/Multinucleated cells 40 (81/201 ) 

Divided cells with connecting 

DNA strand 3 (6/201) 
Total 100 

% % 

3 (5/147) 4 (8/191) 

94 (138/147) 92 (176/191) 

0.5 (1/147) 1 (2/191) 

2.5 (4/147) 2 (4/191) 

(0/147) 1 (1/191) 
100 100 

1 (1/78) 0 (0/66) 

91 (71/78) 94 (62/66) 

0 (0/78) 0 (0/66) 
8 (6/78) 6 (4/66) 

0 (0/78) 0 (0/66) 
100 100 

Asynchronously growing interphase HeLa cells were microinjected with Plk 1 +, Plkl , or nonimmune IgG. After 20 and 40 h incubation, cells were fixed and analyzed by immu- 
nofluorescence microscopy. Microscopic scanning of the glass coverslip allowed the calculation of the percentage of injected cells with the phenotypes listed. The total results of 
four independent experiments with the appropriate controls are shown. 
* MitoUc cells injected with Plkl + display abnormal DNA condensation as described in the text (see also Fig. 3 B, a). 
Total number of cells displaying phenotype/total number of injected cells. 

~Cells that have gone through at least one normal cell division. For simplicity, ceils that have divided once or twice are grouped together. In contro[-injeeted cells, at least 80% 
have gone to the four ceil stage. 

Plkl  + Injection Inhibits the Recruitment o f  y-Tubulin 
and MPM-2 Epitopes to Mitotic Centrosomes 

To analyze the centrosome maturation defect in more de- 
tail, HeLa cells were injected with either Plkl + or Eg5 + 
IgG's and 20 h later were stained with antibodies recogniz- 
ing either "y-tubulin (Fig. 6 A) or the MFM-2 phospho- 
epitope (Fig. 6 B). ~/-Tubulin is a highly conserved cen- 
trosomal protein required for microtubule nucleation 
(Oakley and Oakley, 1989; Oakley et al., 1990; Steams et al., 
1991; Zheng et al., 1991, Joshi et al., 1992; F61ix et al., 1994; 
Stearns and Kirschner, 1994; Shu and Joshi, 1995; Sunkel 
et al., 1995; Moritz et al., 1995a,b), whereas MPM-2 immu- 
noreactivity appears on multiple proteins upon entry of 
cells into mitosis (Davis et al., 1983; Vandr6 et al., 1991), 
most prominently on mitotic spindle poles (Vandr6 et al., 
1984, 1986, 1991). Thus, in HeLa cells the accumulation of 
both -y-tubulin and MPM-2 immunoreactivity can be con- 
sidered as excellent markers for the functional maturation 
of centrosomes at the G2 to M transition. 

In line with previous results (Zheng et al., 1991; Lajoie- 
Mazenc et al., 1994), we found that centrosome staining 
with anti-'y-tubulin antibodies was comparatively weak in 
interphase HeLa cells, but increased substantially as cells 
entered mitosis (Fig. 6 A, compare left panels). Within 
monoastral spindles of Plkl+-injected cells, the cen- 
trosomes displayed very weak "¥-tubulin staining, reminis- 
cent of interphase cells, whereas in Eg5 + injected mitotic 
cells, staining was as intense as in noninjected mitotic cells 
(Fig 6 A, compare right panels). Although the lack of im- 
munoreactivity cannot be considered as rigorous proof for 
the absence of the corresponding antigen, the most likely 
interpretation of these results is that, during the G2 to M 
transition, Plkl + antibodies specifically inhibited the re- 
cruitment of ~/-tubulin to centrosomes, whereas Eg5 + anti- 
bodies were without effect. Next, we investigated whether 
the injection of Plkl +, or Eg5 + for control, would interfere 

with the appearance of MPM-2 reactivity. 20 h after injec- 
tion, HeLa cells were stained with MPM-2 (Fig. 6 B, up- 
per) and, for comparison, with antibodies against et-tubu- 
lin (Fig. 6 B, lower). In agreement with previous results 
(Vandr6 et al., 1984, 1986, 1991), the MPM-2 antibody 
stained spindle poles and spindle microtubules in HeLa 
cells; in addition, it stained a number of dots in the spindle 
mid-zone, most likely representing kinetochores (Fig. 6 B, 
upper left). After injection of Plkl + antibodies, however, 
MPM-2 reactivity was rearranged. Most typically, spindle 
poles showed little if any staining, and instead, MPM-2 re- 
activity was confined to surrounding microtubules (Fig. 6 
B, upper middle). In contrast, MPM-2 reactivity could 
readily be discerned on the duplicated centrosomes as well 
as on the astral microtubules in Eg5+-injected cells (Fig. 6 
B, upper right). We reproducibly observed also that kineto- 
chore staining by MPM-2 antibodies was impaired after 
the microinjection of Plkl + but not Eg5 + antibodies, al- 
though this result is very difficult to document photo- 
graphically (see Fig. 6 B). These latter data indicate that 
the accumulation of MPM-2 reactivity at centrosomes, and 
possibly at kinetochores, is inhibited by Plkl + but not 
Eg5 + antibodies. 

Plkl  + Injection Blocks Entry into Mitosis in 
Noniramortalized Hs68 Fibroblasts 

As many immortalized tumor cell lines, including HeLa, 
are known to be defective in cell cycle checkpoint func- 
tions (Hartwell and Weinert, 1989; Murray, 1992; Hartwell 
and Kastan, 1994), we considered it important to extend 
our studies to diploid, nonimmortalized human cells. Spe- 
cifically, we examined the effects of Plkl + injection on the 
cell cycle progression of human foreskin fibroblasts (Hs68). 
Plkl + and Plkl-  IgG were injected into the cytoplasm of 
widely scattered, asynchronously growing interphase Hs68 
cells, and 36 or 48 h later, cells were fixed and examined 
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Figure 4. Plkl ÷ injection of HeLa cells in late S phase inhibits mi- 
totic progression. HeLa cells, synchronized at G1/S by aphidi- 
colin treatment, were released into the cell cycle for 5-6 h before 
Plkl ÷ or Plkl- injection into the cytoplasm; at that time, they 
were in late S/early G2 phase. Injections were scattered for accu- 
rate counting, and upon continued incubation, cells were fixed 
and analyzed by immunofluorescence microscopy at the times 
(post G1/S release) indicated. Indicated are in (A) the mitotic in- 
dex (i.e., the percentage of cells showing chromosome condensa- 
tion) and in (B) the percentage of injected cells that had pro- 
ceeded through one cell division. At least 30 cells were injected 
for each time point in each experiment, and the averages of three 
independent experiments with standard deviations are shown. 

microscopically. Whereas 52 and 67% of the Plkl--injected 
cells had divided normally after 36 and 48 h, respectively, 
with no abnormal phenotypes evident, only 5% of the 
Plkl+-injected cells had progressed to the two cell stage by 
these times (Table II). Furthermore, only 16% of the 
Plkl+-injected cells had accumulated as rounded, mitotic- 
like cells by 36 h (Table II). These abnormal cells dis- 
played the same ball-like chromatin condensation as seen 
with HeLa cells (Fig. 7 A, right). Further analysis of these 
cells by immunofluorescence and confocal microscopy 
demonstrated a complete absence of bipolar mitotic spin- 
dles (Fig. 7 A, left). Centrosomes, although duplicated, 
were unseparated and drastically reduced in size, as de- 

scribed above for HeLa  cells (data not shown). By 48 h, 
the number of mitotically blocked cells decreased to 2%, 
with a concomitant increase in the proportion of micro- 
and multinucleated cells (from 8 to 18%; Table II), consis- 
tent with the idea that these late phenotypes may repre- 
sent the end result of aborted mitoses. 

These results show that Plkl + antibody injection into 
Hs68 cells could produce aberrant mitotic phenotypes that 
were qualitatively similar to those observed in HeLa cells. 
Rather unexpectedly, however, we found that the vast ma- 
jority of the Plkl+-injected Hs68 cells (75%) persisted as 
single, interphase cells with apparently normal interphase 
microtubule networks. As shown in Fig. 7 B, these Plkl +- 
injected cells displayed duplicated centrosomes (middle), 
the sizes of which were comparable to those of uninjected 
interphase cells (left), but significantly smaller than those 
of mitotic cells (right). It would seem, therefore, that most 
of the Plkl+-injected Hs68 cells did not even attempt en- 
tering mitosis, but instead arrested in late interphase. In 
comparison, only 32% of Plkl--injected Hs68 cells, and 
only 1% of Plkl+-injected HeLa cells, persisted as single 
cells (Tables I and II). One intriguing interpretation of 
these results is that nonimmortalized cells contain a check- 
point monitoring the proper maturation of centrosomes 
(see Discussion). 

Plkl  ÷ Injection Does Not Affect Mitotic Events 
Subsequent to Bipolar Spindle Formation 

In a final series of experiments, we asked whether Plkl 
function might also be essential during later stages of mi- 
tosis, particularly during cytokinesis. To this end, Plkl + 
and P lk l -  IgG were injected into cells that had already es- 
tablished a mitotic spindle. These were selected amongst 
exponentially growing HeLa and Hs68 cells, using phase 
contrast microscopy to identify cells with clearly visible 
metaphase chromosomes. After 15-20 h, 87 and 97% of 
control-injected HeLa and Hs68 cells had completed cy- 
tokinesis and proceeded to the two-cell stage, respectively 
(Table III). Remarkably, a similar percentage of Plkl +- 
injected cells (88 and 91% of HeLa and Hs68, respec- 
tively) had also divided, with no significant percentages of 
cells displaying abnormal phenotypes (Table III). These 
results indicate that Plkl function is no longer sensitive to 
inhibition by microinjected antibodies beyond the meta- 
phase state. They do not prove that Plkl is not involved in 
later stages of mitosis (see Discussion), but they provide 
an exquisite control and attest to the specificity of the 
block to mitotic progression observed after antibody injec- 
tion into interphase cells. 

Discuss ion  

In this study, we have explored the function of human 
Plkl, using highly specific anti-Plkl antibodies for micro- 
injection experiments. We have obtained no evidence to 
support a role for Plkl during DNA replication. Instead, 
our data clearly establish that Plkl function is required for 
progression through mitosis. A detailed analysis of the 
phenotypes of antibody-injected cells indicates that mam- 
malian Plkl is required for the functional maturation of 
centrosomes, and hence for the assembly of a bipolar spin- 
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Figure 5. Plkl + injection into HeLa 
cells causes nucleation of abnormal 
microtubule arrays from tiny, unsep- 
arated centrosomes. Asynchronous 
interphase HeLa cells were injected 
with Plkl ÷, Plkl-, or Eg5 ÷ antibod- 
ies, fixed, and analyzed by immuno- 
fluorescence microscopy. (A) Confo- 
cal projection of the microtubules of 
mitotic cells injected with Plkl- or 
Plkl +. (B) Overlays of confocal pro- 
jections of microtubules (stained with 
anti--a-tubulin; green) and cen- 
trosomes (stained with CTR453; yel- 
low) in mitotic cells injected with 
either Plkl + or Eg5 +. (C) Centro- 
somes, stained with CTR453, of 
uninjected mitotic cells (Normal), 
Plkl+-injected mitotic cells (Plkl+), 
and Eg5+-injec~ed mitotic cells 
(Eg5+). Bar, 10 I~m. 

die. Additional functions at later stages of mitosis are not 
excluded. We also found that Plkl+-induced inhibition of 
cell cycle progression is more pronounced in diploid, non- 
immortalized cells (Hs68) than in karyotypically abnormal 
carcinoma cells (HeLa). Thus, nonimmortalized cells may 
depend on Plkl function and/or may monitor the proper 
maturation of centrosomes, before entering mitosis. This 
G2 checkpoint appears to be lost in at least some immor- 
talized cell lines. 

Plkl is Specifically Required for Entry into Mitosis 

We found that microinjection of anti-Plkl antibodies re- 
sulted in a significant accumulation of abnormal mitotic 
cells and in a severe block to cell division. Many injected 
cells displayed ball-like, condensed chromatin and mono- 
astral microtubule arrays reminiscent of interphase micro- 

tubules. These were nucleated from a single organizing 
center that contained duplicated but small, unseparated 
centrosOmes. At later times after injection of Plkl ÷ anti- 
bodies, we also observed an accumulation of multinucle- 
ated and micronucleated cells. These phenotypes may rep- 
resent end products of aborted mitoses. Alternatively, 
they might reflect additional requirements for Plkl func- 
tion during later stages of cell division. Antibody injection 
had no effect on the kinetics of either entry into S phase or 
exit from S phase. Although negative results need to be in- 
terpreted with caution, these data lend no support to a 
previous study attributing to Plkl an important S phase 
function (Hamanaka et al., 1994). Considering our present 
data, together with the timing of cell cycle-dependent ex- 
pression and activation of Plkl (Lake and Jelinek, 1993; 
Golsteyn et al., 1994, 1995; Lee et al., 1995; Hamanaka et al., 
1995), it appears unlikely that Plkl should perform a ma- 
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Figure 6. Injection of HeLa ceils with Plkl + inhibits the accumulation of ~/-tubulin and MPM-2 reactivity characteristic of mitotic cen- 
trosomes. Asynchronously growing HeLa cells were injected with Plkl + or Eg5 + and analyzed by immunofluorescence microscopy after 
20 h. (A) ~/-tubulin staining of uninjected interphase and mitotic HeLa cells (left), and of Plkl +- and Eg5+-injected mitotic HeLa cells 
(right). (B) Staining of the MPM-2 phospho-epitopes (MPM-2) and microtubules (et-tubulin) of, from left to right, an uninjected mitotic 
cell (Normal), a Plkl +-injected mitotic cell (Plkl+) and an Eg5+-injected mitotic cell (Eg5+). Bar, 10 p,m. 

jor function during S phase. This does not exclude, how- 
ever, that other polo-like kinases, such as Snk or Fnk, 
might play important roles during G1, the G1/S transition, 
or S phase (Simmons et al., 1993; Donohue et al., 1995). 

Although it is difficult to directly compare the pheno- 
types produced by Plkl ÷ antibody injection to those re- 
suiting from mutations of the putative Plkl homologues in 
Drosophila and yeasts (for references see Introduction), 
our present data fall in line with some of the phenotypes 
observed for the polo 1 mutant of Drosophila and for plol ÷ 
gene disruptants in fission yeast. In contrast, cdc5 mutants 
of budding yeast arrest in late nuclear division with sepa- 
rated chromosomes and thus appear to retain the ability to 
construct a bipolar spindle. Considering the differences in 
the temporal and spatial choreography of mitotic events in 
the above organisms, it is not entirely unexpected that the 
inhibition of polo homologues may produce distinct phe- 
notypic consequences in different species. Also, we em- 
phasize that our data do not necessarily exclude additional 
functions for mammalian Plkl at later stages of mitotic 
progression. Both HeLa and Hs68 cells divided normally 
when Plkl ÷ antibodies were injected during metaphase, 
but, considering the rapidity with which mitosis proceeds, 

it remains possible that antibodies injected during metaphase 
might not have reached their epitopes in time. Also, Plkl 
function may be redundant at later stages of mitosis. 

Plk l Is Required for the Functional Maturation of  
Centrosomes and Bipolar Spindle Formation 

The centrosomal and spindle abnormalities observed after 
Plkl ÷ injection strongly suggest a specific role for human 
Plkl in the establishment of a bipolar spindle. Normally, 
centrosomes increase in size shortly before the onset of 
mitosis, and concomitantly, they acquire the ability to nu- 
cleate highly dynamic spindle microtubules (Vorobjev and 
Nadehzdina, 1987; Karsenti, 1991; Kimble and Kuriyama, 
1992). This increase in size is thought to reflect a func- 
tional maturation of centrosomes that can be visualized by 
monitoring the accumulation of multiple proteins (Kalt 
and Schliwa, 1993; Kellogg et al., 1994; Lange and Gull, 
1995). In HeLa cells, these include -y-tubulin (Zheng et al., 
1991; Lajoie-Mazenc et al., 1994) and MPM-2 reactive 
phosphoepitopes (Vandr6 et al., 1986). As shown by im- 
munofluorescent staining with several antibodies, the cen- 
trosomes in Plkl+-injected cells were much smaller than 
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Table 111. Effect of Anti-Plkl Antibodies on Cell Division in 
HeLa and Hs68 Cells Injected at Metaphase 

Antibody injected Plkl ÷ P/kl 

% % 

HeLa 

Normally divided cells 88 (117/133)* 87 (106/122) 
Hs68 

Normally divided cells 91 (91/100) 97 (94/97) 

Widely scattered (one cell per microscopic field) metaphase HeLa and Hs68 cells 
were microinjected with Plkl ÷ and Plkl-  IgG. 15 (HeLa) or 20 (Hs68) h after injec- 
tion, cells were fixed and analyzed by immunoflourescence microscopy. Coverslips 
were scanned, and the percentage of injected cells that had divided calculated. The to- 
tal results from two independent experiments are shown. 
* Number of normally divided cells/number of injected cells. 

Figure 7. Plkl ÷ injection of Hs68 cells causes mitotic microtubule 
abnormalities, and in the majority of cells, an interphase arrest 
with duplicated but small, unseparated centrosomes. Hs68 cells 
were injected with Plkl ÷ and incubated for 36 or 48 h. Then, cells 
were fixed and analyzed by immunofluorescence microscopy. (A) 
Confocal projection of microtubules (a-Tubulin) and DNA of a 
Plkl+-injected mitotic cell after 36 h incubation. (B) CTR453 
staining of the centrosomes of an uninjected interphase (Inter) 
and mitotic (Mitotic) Hs68 cell compared to a Plkl+-injected in- 
terphase cell (Plkl +) after 48 h incubation. Bars, 10 ixm. 

normal mitotic spindle poles, and furthermore, contained 
reduced amounts of ~/-tubulin and MPM-2 immunoreac- 
tivity, two markers for HeLa mitotic centrosomes. Attest- 
ing to the specificity of the observed effects, no changes in 

Table 11. Effect of Anti-Plkl Antibodies on Cell Division in 
Human Diploid Fibroblasts (Hs68) 

Antibody injec~d Plkl + Plkl - 

% % 

3 6 h  
Single interphase cells 72 (67/93)* 46.5 (64/138) 

Normally divided cells § 4 (4/93) 52 (72/138) 

Mitotic cells* 16 (15/93) 1.5 (2/138) 
Micro-/Multinucleated cells 8 (7/93) 0 (9/138) 

Total 100 100 

48 h 

Single interphase cells 75 (67/89) 32 (37/116) 
Normally divided cells ~ 5 (4/89) 67 (78/116) 

Mitotic cells* 2 (2/89) 0 (0/116) 

Micro-/Multinucleated cells 18 (16/89) 1 ( 1 / 116) 
Total 100 100 

Asynchronously growing interphase Hs68 cells were microinjected with Plkl ÷ or 
Plkl IgG. At the times specified, cells were fixed and analyzed by immunofluores- 
cence microscopy, The coverslip was scanned as in Table I, and scored for cells with 
the listed phenotypes. The total results from four independent experiments are shown. 
* Mitotic cells injected with Plk 1 + display abnormal DNA condensation as described 
in the text (see also Fig. 7 A). 
*Total number of cells displaying phenotype/total number of injected cells. 
~Cells that have gone through at least one normal cell division. 

either centrosome size or marker acquisition were seen in 
monoastral microtubule arrays produced by the injection 
of antibodies against HsEg5, a human kinesin-related mo- 
tor protein (Blangy et al., 1995). These findings place Plkl 
upstream of HsEg5, and they imply that Plkl functions be- 
fore prometaphase, when HsEg5 (and its homologues) act 
to promote the migration of centrosomes (for review see 
Sawin and Endow, 1993; see also Heck et al., 1993; Blangy 
et al., 1995). Furthermore, they indicate that one of the 
early functions of Plkl concerns the recruitment of specific 
proteins to centrosomes. In line with this conclusion, it has 
previously been reported that the centrosomal antigen 
CP190 (formerly called Bx63) is not recruited to cen- 
trosomes in polo l mutant Drosophila embryos (Sunkel 
and Glover, 1988). 

During late G2/early prophase, the microtubule nucle- 
ation capacity of centrosomes increases drastically (Sny- 
der and Mclntosh, 1975; Kuriyama and Borisy, 1981, Kar- 
senti, 1991). The cell cycle regulation of this change in 
centrosomal activity remains poorly understood, but re- 
cent studies strongly implicate ~t-tubulin as a critical ele- 
ment in centrosomal microtubule nucleation (Joshi et al., 
1992; Frlix et al., 1994; Stearns and Kirschner, 1994; Shu 
and Joshi, 1995; Sunkel et al., 1995; Moritz et al. 1995a,b). 
Our finding that anti-Plkl antibodies inhibit the recruit- 
ment of 3,-tubulin to centrosomes raises the possibility that 
Plkl may participate in promoting the increased centroso- 
mal nucleation activity at the G2 to M transition. This no- 
tion is supported by the relatively low density of microtu- 
bules in the monoasters of Plkl÷-injected cells (Fig. 5), 
and the apparent absence of centrosomal MPM-2 phos- 
phoepitope reactivity in these structures (Fig. 6 B). MPM-2 
reactive phosphoproteins have been found at mitotically 
activated microtubule organizing centers of all eukaryotic 
cell types examined (e.g., Vandr6 et al., 1984, 1986, 1991), 
and dephosphorylation of MPM-2 reactive centrosomal 
components directly blocks microtubule nucleation in 
vitro (Centonze and Borisy, 1990). 

Our data raise the possibility that Plkl may itself be an 
MPM-2 kinase. Alternatively, one or several distinct 
MPM-2 kinase(s) may depend on Plkl for their activity. In 
direct support of the former interpretation, a putative Plkl 
homologue from Xenopus eggs was recently shown to be 
able to phosphorylate the Cdc25 phosphatase, thereby 
generating MPM-2 reactive sites and stimulating Cdc25 
phosphatase activity (Kumagai and Dunphy, 1996). Con- 
sidering that Cdc25C phosphatase is a key activator of 
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Cdc2, these findings have two important implications for 
the interpretation of our results: firstly, they bear directly 
on our finding that anti-Plkl antibodies inhibit entry into 
mitosis in nonimmortalized Hs68 ceils (see below). Sec- 
ondly, they raise the possibility that Plkl might in part reg- 
ulate centrosomal structure and nucleation activity through 
the activation of Cdc25 phosphatase, and consequently, 
Cdc2 kinase. In support of this view, there is compelling 
evidence that Cdc2 kinase plays an important role in the 
activation of centrosomal microtubule nucleation (Buen- 
dia et al., 1992; Verde et al., 1992), and both Cdc2 and B-type 
cyclins accumulate at the centrosome during interphase 
(Riabowol et al., 1989; Bailly et al., 1989, 1992; Pines and 
Hunter, 1991; Gallant and Nigg, 1992). 

The molecular identity of all MPM-2 antigens has not 
yet been established, but it is intriguing that, in addition to 
Cdc25, several other mitotic regulators are MPM-2 anti- 
gens. These include Wee1, Mytl, Cdc27, and NIMA (Kuang 
et al., 1994; King et al., 1995; Mueller et al., 1995a,b; Ye 
et al., 1995). It will clearly be interesting to search for addi- 
tional Plkl substrates amongst these proteins. In particu- 
lar, it seems plausible that Plkl might phosphorylate the 
Weel and/or Mytl kinases, thereby down-regulating Cdc2- 
inhibitory pathways. Likewise, it is attractive to speculate 
that Plk's might phosphorylate the Cdc27 gene product 
and perhaps other components of the anaphase promoting 
complex (Irniger et al., 1995; King et al., 1995; Tugend- 
reich et al., 1995), and thereby contribute to the regulation 
of anaphase onset. 

A Checkpoint Monitoring Centrosome Maturation ? 

In an elegant study, microsurgical removal of centrosomes 
from cultured mammalian cells was shown to prevent all 
aspects of mitosis, including the activation of Cdc2 kinase 
(Maniotis and Schliwa, 1991). This observation strongly 
suggested a link between centrosomes and Cdc2 activa- 
tion, but the nature of this link remained unknown (for 
discussion see Bailly and Bornens, 1992). A priori, cen- 
trosomes might exert control over Cdc2 via a positive sig- 
nal (emitted by mature centrosomes), via a negative signal 
(emitted by immature centrosomes), or both. The data by 
Maniotis and Schliwa (1991) argue in favor of a positive 
signal, but do not exclude the existence of inhibitory sig- 
nals. A rote of Plkl in stimulating the Cdc25 phosphatase 
has recently been established (Kumagai and Dunphy, 
1996), and a possible role for this kinase in counteracting 
inhibitory pathways involving Wee1 and/or Mytl kinase is 
worth investigating. Most intriguingly, we have shown 
here that nonimmortalized diploid fibroblasts (Hs68) re- 
spond to the inhibition of Plkl function by a G2 arrest. In 
contrast, karyotypicalIy abormal cells (HeLa) attempt to 
proceed through mitosis despite the loss of Plkl function, 
indicating that they do not depend on Plkl for the activa- 
tion of Cdc2. Such a scenario appears plausible, since tu- 
mor cells frequently display deregulated expression of cell 
cycle regulators, including Cdc25 (Hunter and Pines, 1994; 
Galaktionov et at., 1995). Thus, we propose that normal 
cells may exhibit a checkpoint that causes a G2 arrest in 
response to the lack of Plkl function and/or the resulting 
lack of functionally mature mitotic centrosomes. This cen- 
trosome maturation-related checkpoint would appear to 

be absent from HeLa cells. Loss of such a checkpoint 
might be common among tumor ceils and conceivably con- 
tribute to the development of aneuploidies (Murray, 1992; 
Hartwell and Kastan, 1994). 

We would like to thank M. Bornens (Institut Curie, Paris, France) for the 

kind gift of the CTR453. K. Mundt, L. Arnaud, and A. Fry are acknowl- 
edged for helpful comments on the manuscript, and M. Allegrini and P. 
Dubied for photographic assistance. 

This work was supported by a grant from the Swiss National Science 
Foundation (31-33615.92) and the Swiss Cancer League (SKL 267-1-1996) 
to E.A. Nigg. H.A. Lane acknowledges a postdoctoral fellowship from the 
Schering Research Foundation, Berlin, Germany. 

Received for publication 14 March 1996 and in revised form 4 October 
1996. 

Rg'J~./'ence$ 

Bailly, E, M. Dor6e, P. Nurse, and M. Bomens. 1989. p34 ~a~2 is located in both 
the nucleus and cytoplasm; part is centrosomaUy associated at G2/M and en- 
ters vesicles at anaphase. EMBO (Eur. Mot. Biol. Organ.) I. 8:3985-3995. 

BaiUy, E., and M. Bornens. 1992. Centrosome and cell division. Nature (Lond.).i 
355:300-301. 

Bailly, E., J. Pines, T. Hunter, and M. Bornens. 1992. Cytoplasmic accumulation 
of eyelin B1 in human cells: association with a detergent-resistent compart- 
ment within the centrosome. J. Cell Sci. 101:529-545. 

Blangy, A., H.A. Lane, P. d'Hdrin, M. Harper, M. Kress, and E.A. Nigg. 1995. 
Phosphorylation by p34 ~c2 regulates the spindle association of human Eg5, a 
kinesin-related motor protein essential for bipolar spindle formation in vivo. 
Cell. 83:1159-1169. 

Buendia, B., G. Draetta, and E. Karsenti. 1992. Regulation of the microtubule 
nucleating activity of centrosornes in Xenopus egg extracts: role of cyclin 
A-associated protein kinase. J. Cell Biol. 116:1431-1442. 

Byers, B., and L. Goetsch. 1974. Duplication of spindle plaques and integration 
of the yeast cell cycle. Cold Spring Harbor Syrup. Quant. Biol. 38:123-131. 

Centonze, V.E., and G.G. Borisy. 1990. Nucleation of microtubules from mi- 
totic centrosomes is modulated by a phosphorylated epitope. J. Cell Sci. 95: 
405-411. 

Clay, F.J., S.J. McEwen, I. Bertoncello, A.F. Wilks, and A.R. Dunn. 1993. Iden- 
tification and cloning of a protein kinase-encoding mouse gene, Plk, related 
to the polo gene of Drosophila. Proc. Natl. Acad. Sci. USA. 90:4882--4886. 

Davis, F.M., T.Y. Tsao, S.K. Fowler, and P.N. Rao. 1983. Monoclonal antibod- 
ies to mitotic cells. Proc. Natl. Acad. Sci. USA. 80:2926-2930. 

Donohue, P.J., G.F. Alberts, Y. Guo, and J.A. Winkles. 1995. Identification by 
targeted differential display of an immediate early gene encoding a putative 
serine/threonine kinase. J. Biol. Chem, 270:10351-10357~ 

F61ix, M.-A., C. Antony, M. Wright, and B. Maro. i994. Centrosome assembly 
in vitro: role of 3,-tubulin recruitment in Xenopus sperm aster formation. J. 
Cell BioL 124:19-31. 

Fenton, B., and D.M. Glover. 1993. A conserved mitotic kinase active at late 
anaphase-telophase in syncytial Drosophila embryos. Nature (Lond.). 363: 
637-640. 

Fode, C., B. Motro, S. Yousefi, M. Heffernan, and J.W. Dennis. 1994. Sak, a 
routine protein serine/threonine kinase that is related to the Drosophila polo 
kinase and involved in cell proliferation. Proc. Natl. Acad. Sci. USA. 91: 
6388~6392. 

Galaktionov, K., A.K. Lee, J. Eckstein, G, Draetta, J. Meckler, M. Loda, and 
D. Beach. 1995. CDC25 phosphatases as potential human oncogenes. Sci- 
ence (Wash. DC). 269:1575-1577. 

Gallant, P., and E.A. Nigg. 1992. Cyclin B2 undergoes cell cycle-dependent nu- 
clear translocation and, when expressed as a nondestructable mutant, causes 
mitotic arrest in HeLa cells, J. Cell Biol. 117:213-224. 

Golsteyn, R.M., S.J. Schultz, J. Bartek, A. Ziemiecki, T. Ried, and E,A. Nigg. 
1994. Cell cycle analysis and chromosomal localization of human Plkl, a pu- 
tative homologue of the mitotic kinases Drosophila polo and Saccharomyces 
eerevi~iae Cdc5. J. Cell Sci. 107:1509-1517. 

Golsteyn, R.M., K.E. Mundt, A.M. Fry, and E.A. Nigg. 1995. Cell cycle regula- 
tion of the activity and subcellular localization of Plkl, a human protein ki- 
nase implicated in mitotic spindle function. Z Cell Biol. 129:1617-1628. 

Golsteyn, R.M., H.A. Lane, K.M. Mundt, L. Arnaud, and E.A. Nigg. 1996. The 
family of polo-like kinases. In Progress in Cell Cycle Research, Vol 2. Ple- 
num Press, New York. In press. 

Hamanaka, R., S. Maloid, M.R. Smith, C.D. O'Connell, D.L. Longo, and D.K. 
Ferris. 1994. Cloning and characterization of human and murine homologues 
of the Drosophila polo serinetthreonine kinase. Cell Growth Diff. 5:249-257. 

Hamanaka, R., M.R. Smith, P.M. O'Connor, S~ Maloid, K. Mihalic, J.L. Spivak~ 
D.L. Longo, D.K. Ferris. 1995. Polo-like kinase is a cell cycle-regulated ki- 
nase activated during mitosis. Z Biol. Chem. 270:21086-21091. 

Hartwell, L.H., and T.A. Weinert. 1989. Checkpoints: controls that ensure the 
order of cell cycle events. Science (Wash. DC). 246:629~34. 

The Joumat of Ceil Biology, Volume 135, 1996 1712 



Hartwell, L.H., and M.B. Kastan. 1994. Cell cycle control and cancer. Science 
(Wash. DC). 266:1821-1828. 

Hartwell, L.H., R.K. Mortimer, J. Culotti, and M. Culotti. 1973. Genetic control 
of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genet- 
ics. 74:267-286. 

Heck, M.M.S., A. Pereira, P. Pesavento, Y. Yannoni, A.C. Spradling, and 
L.S.B. Goldstein. 1993. The kinesin-like protein KLP61F is essential for mi- 
tosis in Drosophila. J. Cell Biol. 123:665-679. 

Holtrich, U., G. Wolf, A. Br~iuninger, T. Karn, B. B6hme, H. Rttbsamen-Waig- 
mann, and K. Strebhardt. 1994. Induction and down-regulation of PLK, a 
human serine/threonine kinase expressed in proliferating cells and tumors. 
Proc. Natl. Acad. Sci. USA. 91:1736-1740. 

Hunter, T., and J. Pines. 1994. Cyclins and cancer II: cyclin D and CDK inhibi- 
tors come of age. Cell 79:573-582. 

Irniger, S., S. Piatti, C. Michaelis, and K. Nasmyth. 1995. Genes involved in sis- 
ter chromatid separation are needed for B-type cyclin proteolysis in budding 
yeast. Cell. 81:269-278. 

Joshi, H.C., M.J. Palacios, L McNamara, and D.W. Cleveland. 1992. -y-Tubulin 
is a centrosomal protein required for cell cycle-dependent microtubule nu- 
cleation. Nature (Lond.). 356:80-83. 

Kalt, A., and M. Schliwa. 1993. Molecular components of the centrosome. 
Trends Cell Biol. 3:118-128. 

Karsenti, E. 1991. Mitotic spindle morphogenesis in mammalian cells. Semin. 
Cell Biol. 2:251-260. 

Kellogg, D.R., M. Moritz, and B.M. Alberts. 1994. The centrosome and cellular 
organization. Annu. Rev. Biochem. 63:639-674. 

Kimble, M., and R. Kuriyama. 1992. Functional components of microtubule- 
organizing centers. Int. Rev. Cytol. 136:1-50. 

King, R.W., J.-M. Peters, S. Tugendreich, M. Rolfe, P. Hieter, and M.W. Kirsch- 
ner. 1995. A 20s complex containing CDC27 and CDC16 catalyzes the mito- 
sis-specific conjugation of ubiquitin to cyclin B. Cell. 81:279-288. 

Kitada, K., A.L. Johnson, L.H. Johnston, and A. Sugino. 1993. A multicopy 
suppressor gene of the Saccharomyces cerevisiae GI cell cycle mutant gene 
dbf4 encodes a protein kinase and is identified as CDC5. Mol. Cell. Biol. 13: 
4445-4457. 

Krek, W., and E.A. Nigg. 1991. Differential phosphorylation of vertebrate 
p34 cdcz kinase at the G1/S and G2/M transitions of the cell cycle: identifica- 
tion of major phosphorylation sites. EMBO (Eur. Mot. Biol. Organ.) J. 10: 
305-316. 

Kuang, J., C.L. Ashorn, M. Gonzalez-Kuyvenhoven, and J.E. Penkala. 1994. 
cdc25 is one of the MPM-2 antigens involved in the activation of maturation- 
promoting factor. Mot. Biol. Cell. 5:135-145. 

Kumagai, A., and W.G. Dunphy. 1996. Purification and molecular cloning of 
Plxl, a cdc25-stimulatory kinase from Xenopus egg extracts. Science (Wash. 
DC). 273:1377-1380. 

Kuriyama, R., and G.G. Borisy. 1981. Microtubule-nucleating activity of cen- 
trosomes in Chinese Hamster Ovary cells is independent of the centriole cy- 
cle but coupled to the mitotic cycle. J. Cell Biol. 91:822-826. 

Lajoie-Mazene, I., Y. Tollon, C. Detraves, M. Julian, A. Moisand, C. Gueth- 
Hallonet, A. Debec, I. Salles-Passador, A. Puget, H. Mazarguil, et al. 1994. 
Recruitment of antigenic 3,-tubulin during mitosis in animal cells: presence 
of "y-tubulin in the mitotic spindle. Z Cell Sci. 107:2825-2837. 

Lake, R.J., and W.R. Jetinek. 1993. Cell cycle- and terminal differentiation- 
associated regulation of the mouse mRNA encoding a conserved mitotic 
protein kinase. Mol. Cell. Biol. 13:7793-7801. 

Lange, B.M.H., and K. Gull. 1995. A molecular marker for centriole maturation 
in the mammalian cell cycle. J. Cell Biol. 130:91%927. 

Lee, K.S., Y-L.O. Yuan, R. Kuriyama, and R.L.Erikson. 1995. Plkl is an M-phase- 
specific protein kinase and interacts with a kinesin-like protein, CHO1/ 
MKLP-1. Mol. Cell. Biol. 15:7143-7151. 

Llamazares, S., A. Moreira, A. Tavares, C. Girdham, B.A. Spruce, C. Gonzalez, 
R.E. Karess, D.M. Glover, and C.E. Sunkel. 1991. polo encodes a protein k i- 
nase homologue required for mitosis in Drosophila. Genes Dev. 5:2153-2165. 

MacRae, T.H., B.M.H. Lange, and K. Gull. 1990. Production and characterisa- 
tion of monoclonal antibodies to the mammalian sperm cytoskeleton. Mol. 
Repro& Dev. 25:384-392. 

Maniotis, A.. and M. Schliwa. 1991. Microsurgical removal of centrosomes 
blocks cell reproduction and centriole generation in BSC-1 cells. Cell. 67: 
495-504. 

Morgan, D.O. 1995. Principles of CDK regulation. Nature (Lond). 374:131-134. 
Moritz, M., M.B. Braunfeld, J.C. Fung, J.W. Sedat, B.M. Alberts, and D.A. 

Agard. 1995a. Three-dimensional structural characterisation of centrosomes 
from early Drosophila embryos. J. Cell Biol. 130:1149-1159. 

Moritz, M., M.B. Braunfeld, J.W. Sedat, B.M. Alberts, and D.A. Agard. 1995b. 
Microtubule nucleation by ~/-tubulin-containing rings in the centrosnme. Na- 
ture (Lond.). 378:638-640. 

Mueller, P.R., T.R. Coleman. and W.G. Dunphy. 1995a. Cell cycle regulation of 
a Xenopus Weel-like kinase. Mol. Biol. Cell. 6:119-134. 

Mueller, P.R., T.R. Coleman, A. Kumagai, and W.G. Dunphy. 1995b. Mytl: a 
membrane-associated inhibitory kinase that phosphorylates Cdc2 on both 
threonine-14 and tyrosine-15. Science (Wash. DC). 270:86-90. 

Murray, A.W. 1992. Creative blocks cell cycle checkpoints and feedback con- 
trols. Nature ( Lond.). 359:599-604. 

Nigg, E.A. 1995. Cyclin-dependent protein kinases: key regulators of the eu- 
karyotic cell cycle. BioEssays. 17:471-480. 

Norbury, C., and P. Nurse. 1992. Animal cell cycles and their control. Annu. 
Rev. Biochem. 61:441-4-470. 

Oakley, C.E., and B.R. Oakley. 1989. Identification of ~-tubulin, a new member 
of the tubulin superfamily encoded by the mipA gene of Aspergillus nidu- 
lans. Nature (Lond.). 338:662-663. 

Oakley, B.R., C.E. Oakley, Y.S. Yoon, and M.K. Jung. 1990. ~/-tubulin is a com- 
ponent of the spindle pole body that is essential for microtubule nucleation 
in Aspergillus nidulans. Cell. 61:1289-130t. 

Ohkura, H., I.M. Hagan, and D.M. Glover. 1995. The conserved Schizosaccha- 
romyces pombe kinase plol  +, required to form a bipolar spindle, the actin 
ring, and the septum, can drive septum formation in G1 and G2 cells. Genes 
Dev. 9:105%1073. 

Pines, J., and T. Hunter. 1991. Human cyclins A and B1 are differentially lo- 
cated in the cell and undergo cell-cycle dependent nuclear transport. J. Cell 
BioL 115:1-17. 

Riabowol, K., G. Draetta, L. Brizuela, D. Vandr& and D. Beach. 1989. The 
cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian 
cells. Cell 57:393-401. 

Sawin, K.E., and S.A. Endow. 1993. Meiosis, mitosis and microtubule motors. 
BioEssays. 15:399-407. 

Schild, D., and B. Byers. 1980. Diploid spore formation and other meiotic ef- 
fects of two cell-division-cycle mutations of Saccharomyces cerevisiae. Ge- 
netics. 96:859-876. 

Sharon, G., and G. Simchen. 1990. Mixed segregation of chromosomes during 
single-division meiosis of Saccharomyces cerevisiae. Genetics. 125:475-485. 

Shu, H.B., and H.C. Josh[. 1995. 3,-Tubulin can both nucleate microtubule as- 
sembly and self-assemble into novel tubular structures in mammalian cells. J. 
Cell Biol. 130:1137-1147. 

Simmons, D.L., B.G. Neel, R. Stevens, G. Evett, and R.L. Erikson. 1992. Iden- 
tification of an early-growth-response gene encoding a novel putative pro- 
tein kinase. Mot. Cell. Biol. 12:4164-4169. 

Snyder, J.A., and J.R. Mclntosh. 1975. Initiation and growth of microtubules 
from mitotic centres in lysed mammalian cells. J. Cell Biol. 67:744-760. 

Stearns, T., and M.W. Kirschner. 1994. In vitro reconstitution of centrosome as- 
sembly and function: the central role of ~/-tubulin. Cell. 76:623-637. 

Stearns, T., L. Evans, and M.W. Kirschner. 1991. ~#Tubulin is a highly con- 
served component of the centrosome. Cell. 65:825-836. 

Sunkel, C.E., and D.M. Glover. 1988. polo, a mitotic mutant of Drosophila dis- 
playing abnormal spindle poles. J. Cell Sci. 89:25-38. 

Sunkel, C.E., R. Gomes, P. Sampaio, J. Perdigao, and C. Gonzalez. 1995. ~-Tubu- 
lin is required for the structure and function of the microtubule organizing 
centre in Drosophila neuroblasts. EMBO (Eur. Mol. Biol. Organ.) J. 14: 
28-36. 

Tugendreich, S., J. Tomkiel, W. Earnshaw, and P. Hieter. t 995. CDC27Hs colo- 
calizes with CDC16Hs to the centrosome and mitotic spindle and is essential 
for the metaphase to anaphase transition. Cell. 81:261-268. 

Vandr6, D.D. 1986. Distribution of cytoskeletal proteins sharing a conserved 
phosphorylated epitope. Eur. J. Cell Biol. 41:72-81. 

Vandr6, D.D., F.M. Davis, P.N. Rao, and G.G. Borisy. 1984. Phosphoproteins 
are components of mitotic microtubule organising centres. Proc. Natl. Acad. 
Sci. USA. 81:4439-4443. 

Vandr& D.D., V.E. Centonze. J. Peloquin, R.M. Tombes, and G.G. Borisy. 
1991. Proteins of the mammalian mitotic spindle: phosphorylation/dephos- 
phorylation of MAP-4 during mitosis. J. Cell Sci. 98:57%588. 

Verde, F., M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler. 1992. Control 
of microtubule dynamics and length by cyclin A -  and cyclin B~dependent ki- 
nases in Xenopus egg extracts. J. Cell Biol. 118:1097-1108. 

Vorobjev, I.A., and E.S. Nadehzdina. 1987. The centrosome and its role in the 
organization of microtubules. Int. Rev. Cytol. 106:227-284. 

Ye, X.S., G. Xu, R.T. Pu, R.R. Fincher, S.L. McGuire, A.H. Osmani, and S.A. 
Osmani. 1995. The NIMA protein kinase is hyperphosphorylated and acti- 
vated downstream of p34Ca@cyclin B: coordination of two mitosis promoting 
kinases. EMBO (Eur. MoL Biol. Organ.) J. 14:986-994. 

Zheng, Y.X., M.K. Jung, and B.R. Oakley. 1991. "/-Tubulin is present in Drosoph- 
ila melanogaster and Homo sapiens and is associated with the centrosome. 
Cell. 65:817-823. 

Lane and Nigg Mitotic Function of  Human Polo-like Kinase 1 1713 


