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Abstract. We report a new method for in situ localiza- 
tion of DNA sequences that allows excellent preserva- 
tion of nuclear and chromosomal ultrastructure and 
direct, in vivo observations. 256 direct repeats of the lac 
operator were added to vector constructs used for 
transfection and served as a tag for labeling by lac re- 
pressor. This system was first characterized by visual- 
ization of chromosome homogeneously staining regions 
(HSRs) produced by gene amplification using a dihy- 
drofolate reductase (DHFR) expression vector with 
methotrexate selection. Using electron microscopy, 
most HSRs showed ~100-nm fibers, as described pre- 
viously for the bulk, large-scale chromatin organiza- 
tion in these cells, and by light microscopy, distinct, 
large-scale chromatin fibers could be traced in vivo up 

to 5 txm in length. Subsequent experiments demon- 
strated the potential for more general applications of 
this labeling technology. Single and multiple copies of 
the integrated vector could be detected in living CHO 
cells before gene amplification, and detection of a sin- 
gle 256 lac operator repeat and its stability during mito- 
sis was demonstrated by its targeted insertion into bud- 
ding yeast cells by homologous recombination. In both 
CHO cells and yeast, use of the green fluorescent pro- 
tein-lac repressor protein allowed extended, in vivo ob- 
servations of the operator-tagged chromosomal DNA. 
Future applications of this technology should facilitate 
structural, functional, and genetic analysis of chromatin 
organization, chromosome dynamics, and nuclear ar- 
chitecture. 

H 
ow chromatin is packaged into higher order struc- 
tures above the 30-nm chromatin fiber in higher 
eukaryotic cells and what this level of organiza- 

tion implies for regulation of transcription, DNA replica- 
tion, and recombination represents a major question in cell 
biology today. For the mammalian metaphase chromosome, 
the packing ratio is estimated as 10,000:1, roughly 250 
times the 30-40-fold packing ratio measured for the 30-nm 
higher order chromatin fiber (Alberts et al., 1994). A simi- 
lar estimate of the packing ratio is more difficult to obtain 
for interphase chromatids, but several experiments suggest 
a packing ratio at least an order of magnitude higher than 
the 30-nm chromatin fiber (Lawrence et al., 1990). The fold- 
ing motifs accounting for this additional compaction are 
poorly understood, to a large degree because of the lack of 
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suitable methods for visualization of chromatin structure 
at this level of organization. In particular, there is a large 
experimental gap between current electron microscopy 
approaches to the structure of 30-nm chromatin fibers and 
the larger-scale chromosome organization analyzed by flu- 
orescence in situ hybridization (FISH), 1 which can only be 
done on fixed cells after DNA denaturation. 

Most investigation has focused on the structure of maxi- 
mally condensed, metaphase chromosomes. An experi- 
mental approach based largely on unfolding chromosome 
structure through extraction of chromosomal proteins has 
led to a radial loop model of chromosome structure in 
which structural proteins, resistant to high salt and deter- 
gent extraction, anchor the bases of DNA loops to a cen- 
tral chromosome "scaffold" (Paulson and Laemmli, 1977; 
Marsden and Laemmli, 1979; Adolph, 1980), which itself 
may be helically coiled (Rattner and Lin, 1985; Boy de la 

1. Abbreviations used in this paper: CMF-PBS, calcium-, magnesium-free 
phosphate-buffered saline; DAPI, 4',6'-diamidino-2-phenylindole; DHFR, 
dihydrofolate reductase; FISH, flourescence in situ hybridization; GFP, 
green fluorescent protein; HSR, homogeneously staining region; MTX, 
methotrexate; NLS, nuclear localization signal; TEM, transmission elec- 
tron microscope. 
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Tour and Laemmli, 1988). Implications of these observa- 
tions for in vivo chromosome structure have been controver- 
sial, though, because of experimental uncertainty regarding 
the actual nature of DNA organization in such prepara- 
tions and possible artifacts produced during extraction. 

As an alternative approach, we have been examining 
interphase chromosome structure during cell cycle pro- 
gression, with the goal of identifying folding intermediates 
in the pathway of chromosome condensation or deconden- 
sation. In earlier work, large-scale chromatin domains, 
~100-130 nm in diameter, were visualized in mitotic chro- 
mosomes and early G1 interphase nuclei from Drosophila 
and mammalian somatic cells (Belmont et al., 1987, 1989). 
More recently, serial thin section reconstructions of nuclei 
from CHO cells were used to demonstrate that these 
large-scale chromatin domains in fact correspond to actual 
fibers and therefore represent a distinct level of chromatin 
folding above the 30-nm chromatin fiber. Chromatid de- 
condensation during G1 was associated with a progressive 
uncoiling and straightening of this 100-130-nm "chromo- 
nema" fiber (Belmont and Bruce, 1994). As cells ap- 
proached S phase, further chromatin decondensation led 
to formation of a 60-80-nm chromonema fiber within which 
folding of 20-30-nm chromatin fibers could be visualized. 
These chromonema fibers could be traced within the serial 
sections as distinct fibers for over 2 Ixm in length. Using 
similar methods, a similar hierarchy of large-scale chroma- 
tin folding has been observed during G2 and prophase 
chromosome condensation (Li, G., and A.S. Belmont, 
manuscript submitted for publication). 

Together, these results have suggested a folded chro- 
monema model of mitotic and interphase chromosome 
structure in which topologically complex folding/unfolding 
of chromonema fibers underlies basic mechanisms of chro- 
mosome condensation/decondensation. Evaluating the bi- 
ological significance of these experimental results, how- 
ever, will include addressing the following questions: First, 
do these chromonema fibers exist within living cells? Sec- 
ond, are there reproducible differences in chromatin fold- 
ing at this level of organization for specific chromosomal 
loci and for different transcriptional states? Third, what is 
the actual temporal sequence of condensation and decon- 
densation of these chromonema fibers for a specific chro- 
mosome region during the cell cycle, and in particular dur- 
ing mitotic chromosome condensation and before and 
during DNA replication? 

To address these questions, we need the ability to recog- 
nize specific chromosome regions without perturbing large- 
scale chromatin organization on a resolution scale appro- 
priate to our electron microscopy analysis. Ideally, we 
would also like to be able to selectively visualize these 
same regions at lower resolution by light microscopy in liv- 
ing cells. 

In this paper, we report initial results using a novel 
method for in situ localization of DNA sequences based 
on binding of sequence-specific DNA-binding proteins, 
using the lac operator/repressor as a model system. This 
method was initially used to visualize, by both light and 
electron microscopy, chromosome homogeneously stain- 
ing regions (HSRs) generated by gene amplification. 
Three methods for repressor staining--exogenous repres- 
sor staining of fixed cells, in vivo expression of repressor 

followed by immunostaining, and in vivo expression of a 
green fluorescent protein-lac repressor fusion protein--  
produced similar light microscopy results. In particular, we 
confirm the organization of chromatin into large-scale 
chromatin fibers within living cells. Additional work dem- 
onstrates the capability of this technique to visualize indi- 
vidual vector insertions in the absence of gene amplifica- 
tion. Using homologous recombination in yeast, it was 
possible to target specific chromosome sequences for la- 
beling. In both the mammalian and yeast cells, use of a 
green fluorescent protein (GFP)-lac repressor fusion pro- 
tein allows direct in vivo visualization of chromosome dy- 
namics. 

Materials and Methods 

Tissue Culture 
CHO cells with a double deletion for the dihydrofolate reductase 
(DHFR) locus (DG44 CHO cell line [Urlaub et al., 1986]) were grown at 
37°C in 5% CO2 using F12 media with 10% FCS (Hyclone Labs, Logan, 
UT). After transfection with pSV2-DHFR (see below), stable transfor- 
mants were selected using F12 media without hypoxanthine and without 
thymidine (Specialty Media, LavaUette, NJ, or GIBCO BRL, Gaithers- 
burg, MD) and dialyzed FCS (Hyclone Labs). Synchronization in late G1/ 
early S was carried out by blocking cells in G1 using a 36-h incubation in 
isoleucine-deficient F-10 media with 10% dialyzed FCS (Irvine Sci., Santa 
Ana, CA), followed by release and a second, S phase block using hydrox- 
yurea (Tobey et al., 1990; Belmont and Bruce, 1994). 

Construction of Lac Operator Tandem Repeats 
pUC 18 plasmid first was modified to allow a cloning scheme that doubled 
the number of direct repeats with each cloning cycle. The pUC 18 EcoRI 
and NarI sites each were eliminated by restriction digest, filling in of 5' 
overhangs with the Klenow fragment of Escherichia coli DNA polymerase 1, 
and ligation. The polylinker then was modified to contain SalI-XbaI-NarI- 
EcoRI-XhoI-BamHI-XmaI-KpnI sites. All cloning steps used the recA 
minus, E. coli host strain, DH5m 

Lac operator tandem repeats were made starting with a lac operator 
8-mer sequence (Sasmor and Betz, 1990). This 292-bp lac operator 8-mer 
sequence, flanked by EcoRI sites, was inserted into the EcoRI site of the 
modified pUC 18 polylinker. Using SalI, XhoI, and BamHI enzymes, as 
diagrammed in Fig. 1, doubled the number of direct repeats of the se- 
quence lying between the SalI and XhoI restriction sites with each cloning 
cycle. This strategy relied on compatible sticky ends generated by SalI and 
XhoI, which when ligated generated a site that could not be recut with ei- 
ther enzyme. Five rounds of this cloning cycle generated 32 direct repeats 
of this SalI-XhoI fragment containing the lac operator 8-mer sequence, 
and therefore generated 256 copies of the lac operator in an ~10.1-kb, 
"8.32" DNA fragment. With increasing direct repeat copy number, the 
plasmid became increasingly unstable because of recombination. 

Gene Amplification 
To carry out gene amplification using DHFR as the selectable marker, the 
lac operator repeats described above were cloned into the DHFR mam- 
malian expression vector, pSV2-DHFR (Subramani et al., 1981). The 
EcoRI site in pSV2-DHFR, 3' of the DHFR cDNA, was replaced with a 
KpnI-SalI-SphI polylinker. The 8.32 lac operator repeat was force cloned 
into the modified pSV2-DHFR vector using the KpnI-SalI sites. 

DG44 CHO cells were used for CaPO4 transfection (Chen-C. and 
Okayma-H., 1987) of pSV2-DHFR-8.32. Populations of stable transfor- 
mants were used for gene amplification. Methotrexate (MTX) concentra- 
tion was increased in 3-10-fold steps, from 0.02 p.M through 100 IxM over 
a period of months. At several MTX concentrations, cells from the pSV2- 
DHFR-8.32 transfection were subcloned by serial dilution. Alternatively, 
DG44 CHO cells were transfected using Lipofectamine (Life Technolo- 
gies, Gaithersburg, MD), or by electroporafion under conditions that fa- 
vored insertion of just one or a few copies of the vector (Boggs et al., 
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1986). After electroporation, individual clones were isolated and gene am- 
plification carried out on these clones, as described above. 

Southern Blot Analysis 
Pulse field gels (1% agarose) were run using the BioRad CHEF II PFGE 
apparatus (Hercules, CA). 10 p,g of genomic DNA was loaded per lane. 
Mol wt standards included a h KpnI partial digest, a 1-kb ladder, and lin- 
earized pSV2-DHFR-8.32 vector using salmon sperm DNA as a carrier. A 
mixture of linearized pSV2-DHFR-8.32 vector and k DNA was used as 
the probe. The probe was labeled using the Dupont/NEN (Wilmington, 
DE) Renaissance random primer fluorescein labeling kit and chemolumi- 
nescence detection was carried out using the Dupont/NEN CDP-STAR kit. 

Modifications and Expression of lac Represser 
We used the p3'SS expression vector to express in CHO cells a lac repres- 
ser-nuclear localization signal fusion protein (Fleck et al., 1992). This 
codes for the wild-type, tetramer lac represser fused at the carboxyl termi- 
nus with a short amino acid linker and the large T antigen nuclear localiza- 
tion signal. We modified this to form a truncated lac represser that associ- 
ates as a dimer only and therefore binds to only one lac operator site 
(Chen and Matthews, 1992); the carboxyl-terminal five amino acids from 
the lac represser wild-type sequence were deleted by site-directed mu- 
tagenesis. 

For expression of a GFP-Iac represser-nuclear localization signal (NLS) 
fusion protein in yeast, wild-type GFP was cloned into pDK20 (Douglas 
Kellogg, University of California, Santa Cruz, CA), a plasmid that con- 
tains the bidirectional GALl -GALl0  promoter cloned into pRS306 (Sikor- 
ski and Hieter, 1989), by PCR using oligos with overhanging XhoI 
( 5 ' C G C C T C G A G G A G A T G A G T A A A G G A G A A G A A C T r 3 ' )  and 
EcoRI (5 'GCGGAATI~CTTTGTATAGTTCATCCATGCC3 ') sites to 
yield pGAL-GFP. Oligonucleotides encoding the SV-40 nuclear localiza- 
tion sequence ( 5 ' G G G G G A T C C T G T A C T C C A C C A A A G A A G A A G -  
A G A A A G G T T G C C T A A T C T A G A G G G 3 ' )  were inserted into the 
BamHI and Xbal sites of pGAL-GFP to give an in frame fusion with 
GFP(pAFS50). The lac repressor was then cloned into the BamHI site of 
pAFS50 by PCR with oligos containing overhanging BamHl sites 
( 5 ' C G C G G A T C C A T G G T G A A A C C A G T A A C G 3 ' ,  5 'GCGGGATCC-  
CTGCCCGCTTTCCA3')  to give pAFS51. Serine 65 of GFP was then 
mutated to threonine to shift the excitation peak to 495 nm followed by 
replacement of the KpnI-Xhol G A L  promoter fragment with a KpnI- 
XhoI HIS3 promoter fragment (provided by K. Struhl, Harvard Medical 
School, Cambridge, MA) to give pAFS67. The carboxyl-terminal 11 amino 
acids were then deleted from the lac represser to prevent tetramerization 
as previously described (Chen and Mattews, 1992) resulting in pAFS78. 

To express the GFP-Iac repressor-NLS in CHO cells, the Xhol- 
EcoRV fragment from the yeast vector pAFS51 was ligated into a 
polylinker and reexcised as an XbaI-EcoRV fragment, which was then in- 
serted into p3'SS. This retains the Kozak sequence from pAFS51 while 
adding additional restriction sites. This was modified to delete the car- 
boxyl-terminal 5 amino acids of the lac represser and to mutate serine 65 
of GFP to threonine by site-directed mutagenesis. 

In Situ Hybridization 
A 36-bp single-strand lac operator probe, biotin-labeled at both ends, and 
fluorescein-labeled avidin were used for detection. For improved chromo- 
some and nuclear morphology, we used formaldehyde fixation while 
avoiding any steps involving drying of the coverslips (O'Keefe et al., 
1992). Cells grown on coverslips were washed in CMF-PBS and then fixed 
using 2.5 % paraformaldehyde in PBS with 5 mM MgClz for variable times 
at room temperature, followed by three 10-min washes in PBS + 300 mM 
glycine, permeabilization for 5 min in PBS + 0.2% Triton X-100, three 10- 
min washes in CMF-PBS, and finally incubation in 2x  SSC before in situ 
hybridization. 

FISH used a modified procedure derived from two previously de- 
scribed protocols (Trask, 1991; O'Keefe  et al., 1992). Denaturation was 
in 70% formamide, 2× SSC at g0°C for 10 min, followed by 5 rain in the 
same solution on ice and three washes in 2x  SSC at room temperature. 
Hybridization solution consisted of 50% formamide, 2× SSC, 2;< Den- 
hardt's solution, 10% dextran sulfate, and 50 mM "Iris, pH 7.5, with 2 ng/l~l 
of probe and 1 ~tg/ixl of salmon sperm DNA. 20 ~l of hybridization solu- 
tion was applied per coverslip, and the coverslip was then applied to a 
glass slide and sealed with rubber cement. Slides were placed in a wet 
chamber and incubated at 30°C overnight After incubation, coverslips 

were washed twice in 50% formamide, 2x SSC at 30°C for 25 min and 
then twice in 2x SSC at 30°C for 25 min. Hybridization and wash temper- 
atures were determined empirically by optimizing the hybridization signal. 
Coverslips were then transferred to 4× SSC, blocked with 1% BSA in 4X 
SSC for 15 rain and stained in the same solution with 5 p~g/ml FITC- 
labeled avidin for 2 h at room temperature. Washing of these coverslips 
used three 5-rain changes in 4× SSC, three 5-rain changes in 4x  SSC + 
0.1% Triton X-100, and three 5-rain washes in 4× SSC. 2 txg/ml of 4',6'- 
diamidino-2-phenylindole (DAPI) was used as a DNA counterstain. Cov- 
erslips were mounted on glass slides using nail polish. 

Lac Represser Staining of Lac Operator Repeats by 
Light and Electron Microscopy in CHO Cells 
Three methods for light microscopy visualization of lac operators by lac 
represser were used. The first used exogenous lac represser staining after 
fixation. Ceils grown on coverslips were permeabilized for 20 s in PBS* 
(PBS with 5 mM Mg, 0.1 mM EDTA) + 0.1% Triton X-100, followed by 
20 min fixation in 1.6% paraformaldehyde at room temperature in PBS*, 
and three washes in PBS* with 20 mM glycine. Incubation with 0.06 IxM 
lac represser in PBS* with 0.1% Triton X-100, 0.1 mM DTT, and 50 p.g/ml 
BSA was followed by a second 15-rain paraformaldehyde fixation and 
immunostaining, as described elsewhere (Belmont et al., 1993), using 
PBS* buffer throughout. The primary antibody was an auti-lac represser 
rabbit IgG (Fiech et al., 1992) and the secondary was a Texas Red-labeled 
goat anti-rabbit IgG (Jackson ImmunoResearch Labs, Inc., West Grove, PA). 

The second method used in vivo lac represser expression followed by 
routine immunostaining. Cells were transfected using calcium phosphate 
(Chen-C. and Okayama-H., 1987) with a eukaryotic expression vector, 
p3'SS, containing a lac repressor-NLS fusion protein (Fleck et al., 1992). 
Stable transformants were selected using hygromycin resistance. Cells 
grown on coverslips were fixed for 3 h at room temperature with 1.6% 
paraformaldehyde in CMF-PBS, followed by detergent permeabilizafion 
and immunostaining, as described above, 

The third method used in vivo expression of a GFP-lac repressor-NLS 
fusion protein, using the NH 2 terminal GFP fusion with the lac repressor/ 
NLS protein encoded by the p3'SS plasmid, described above. Transfecfion 
of CHO cells using Lipofectamine (Life Technologies, Gaithersburg, MD) 
was used to express the fusion protein. Subcloning of stable transformants 
was used to select clones with suitably high levels of expression of the fu- 
sion protein. Visualization was carried out on live cells grown on No. 1 1/2 
glass coverslips. For extended observations, cells were grown in a temper- 
ature-controlled, FCS2 chamber (Bioptechs, Inc., Butler, PA). 

For reasons still unclear, the amount of GFP-repressor-NLS protein 
expressed was significantly lower, in general, than the wild-type repres- 
sor-NLS protein after identical transfection protocols. A small number of 
ceils expressing high levels of the GFP-repressor fusion protein could be 
found after transient transfection, and in these cells the staining intensity 
was comparable to the intensity produced by the other methods. In gen- 
eral, expression levels dropped roughly an order of magnitude in the sta- 
ble transformants. However, significant increases in GFP-repressor levels 
and fluorescence were produced by growing cells at lower temperatures. 
Growing cells for 2 d at 32°C increased the percentage of stable transfor- 
mant cells that showed obvious fluorescence from a few percent to 20- 
50% in independent transformations of four different amplified cell lines. 
Cells showing relatively high fluorescence could be cloned and the result- 
ing cell lines had uniform fluorescence levels specific to the particular 
clone. 

Visualization of lac represser staining by electron microscopy used a 
modification of the second method described above (Belmont et al., 1993). 
Cells were grown on Aclar plastic coverslips (Pro-Plastics, Linden, NJ). 
For visualization of lac represser staining within intact cells, fixation for 3 h 
in PBS buffer and immunostaining with primary antibody was identical to 
the procedure used for light microscopy, but a 1.4-nm gold cluster-labeled 
secondary antibody (Nanoprobe, Stony Brook, NY) was used in place of 
the fluorescent-labeled secondary. 

After immunostaining, samples were postfixed using 2% glutaralde- 
hyde for 4 h at room temperature. Samples were then washed three times 
for 5 rain in double-deionized H20 and silver stained (Dancher, 1981). 
Dehydration, embedding in Epon, sectioning, and uranyl acetate and lead 
staining of samples were carried out as described previously (Belmont et al., 
1993). 

For light microscopy, a conventional inverted light microscope (model 
IMT-2; Olympus Corp., Success, NY) equipped with a Photometrics- 
cooled (Tucson, AZ), slow-scan CCD camera was used. This system du- 
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plicates one built by Drs. Agard and Sedat (University of California, San 
Francisco) and has been described elsewhere (Hiraoka et al., 1991). 
Briefly, it includes motorized filter wheels for excitation and emission fil- 
ters (Omega Optical, Brattleboro, VT) and a microstepping motor for 
z-focus with a Silicon Graphics 4D/35TG computer providing automated 
data collection using the Resolve3D data collection program (Applied 
Precision, Mercer Island, WA). A 60×, 1.4 NA Plan Apo oil immersion 
lens (Olympus Corp.) was used together with narrow pass filters for 
DAPI, Texas Red, or FITC excitation and emission; GFP images were ac- 
quired using the FITC filter combination. Optical sections were collected 
through entire nuclei at 0.2-~m focal intervals; pixel size was 0.074 l.zm. De- 
convolution of optical sections, to partially restore the image degradation 
resulting from out-of-focus blur, was accomplished using an enhanced ra- 
tio, iterative constrained deconvolution algorithm (Agard et al., 1989). 

Thin sections were examined at 100 kV on a transmission electron mi- 
croscope (model 100C; JEOL USA, Inc., Peabody, MA). Thick sections 
were viewed using a TEM (model CM200; Phillips Electronic Instrs., Inc., 
Mahwah, N J) at 200 kV. An Eikonix (Giesecke & Devriont Engineering, 
Inc., Bedford, MA) 1412 camera, capable of 12-bit grey scale readout of a 
4,096 pixel linear detector array, was used with a Gordon Model 5 × 5 
Plannar light source (Gordon Instruments, Orchard Park, NY) to digitize 
negatives (Belmont et al., 1993). 

A "mass normalization" procedure, to convert film optical density val- 
ues to values proportional to the integrated scattering cross section or 
electron optical density, was carried out as described previously (Belmont 
et al., 1987). Image "intensity" values then reflect the density of heavy 
metal staining, with brighter regions corresponding to higher electron 
d ~ i  s in a negative. 

splay program, NewVision (Pixton and Belmont, 1996), running 
on an SGI 4D/35 TG (Silicon Graphics, Mountain View, CA), was used to 
display images and view results. Selected images or montages were then 
assembled into figures using Adobe Photoshop. Figures were printed us- 
ing a Mitsubishi (Tokoyo, Japan) Colorstream printer. 

Visualization of Lac Repeats in Yeast 
Yeast strain AFS168, expressing the GFP-repressor, was made by integra- 
tion of pAFS78 into the HIS3 locus of yeast strain AFS34 (W303-1a deriv- 
ative) after linearization with NheI. The 256 lac operator repeat was intro- 
duced into yeast by cloning the KpnI-SphI fragment of pSV2-DHFR-8.32 
into the yeast integrating plasmid YIplac128 to yield pAFS59, pAFS59 
was linearized with EcoRV, which cuts within LEU2, and transformed 
into yeast strain AFS168, resulting in strain AFS173. Transformants were 
selected for leucine prototrophy, and integration at leu2-3,112 was veri- 
fied by Southern blotting. 

A logarithmically growing culture of AFS173 was arrested for 3 h in 
YPD at 24°C by incubation with 10 ~g/ml a-factor. Cells were then washed 
out of YPD a-factor into CSM-HIS + 10 IJ.g/ml a-factor. Expression of the 
GFPIacI fusion was induced by adding 3-aminotriazole to 10 mM to the 
arrested cells for 30 min at 24°C. Cells were then washed into CSM-HIS 
with or without 15 ~g/ml nocodazole and aliquots were put on ice every 10 
min for 2 h. Cells were imaged on a microscope (model MicrophotSA; Ni- 
kon, Inc., Melville, NY) using a 60× oil immersion lens. Fluorescence was 
visualized with a conventional FITC excitation filter and a long pass emis- 
sion filter. Images were acquired with a MTI-SIT68 Camera (Dage-MTI, 
Inc., Michigan City, IN) using MaxVision-AT software. All images were 
averages of 128 optical frames of 33 ms each. 

Results 

Experimental Design 

As an alternative to in situ hybridization, we decided to 
explore use of protein-DNA recognition for localization of 
specific chromosome sequences within interphase nuclei. 
To establish this technology, we began this work using 
gene amplification. Previous characterization of chromo- 
some HSRs produced by gene amplification has shown 
that they typically contain tens to hundreds of copies of a 
several hundred- to thousand-kb region surrounding the 
selectable marker used for amplification (Delidakis et al., 
1989). Gene amplification therefore provides an easy way 

to amplify the number of copies of the DNA sequence 
used for recognition, thereby increasing the signal to noise 
ratio for detection while the staining methodology is being 
developed. Cloning cells at different stages of gene ampli- 
fication provides a convenient method for preparing dif- 
ferent size chromosome segments that can be visualized 
selectively. 

For these initial experiments, we chose the lac operator- 
repressor system because lac repressor binds to operator 
with a K d of 10 -13, six orders of magnitude lower than non- 
specific binding (Miller and Rezinkoff, 1980), and also has 
a high affinity for operator sequences located within nu- 
cleosomes (Chao et al., 1980). In eukaryotic cells, the lac 
operator-repressor system has been used to repress tran- 
scription (Brown et al., 1987; Hu and Davidson, 1987), and 
IPTG allows regulation of lac repressor binding in vivo 
(Fieck et at., 1992). 

Fig. 1 summarizes the overall experimental approach 
used to generate HSRs containing multiple lac operators. 
A DNA segment containing eight direct repeats of a 36-bp 
lac operator sequence (Sasmor and Betz, 1990) was cloned 
between unique SalI and XhoI sites. The compatible sticky 
ends produced by SalI and XhoI allowed a doubling of di- 
rect repeats of the sequence between these two sites with 
each cloning cycle, as diagrammed in Fig. 1 A. Five cloning 
cycles generated a 256 copy lac operator repeat, which was 
then inserted into a mammalian DHFR expression vector. 
Stable transformants were selected using growth in thymi- 
dine-free media. Cells having undergone gene amplifica- 
tion were then selected using progressive increases in 
MTX levels. 

Southern dot blot analysis (data not shown) was initially 
used to confirm the presence of high levels of lac operator 
repeats in these cells. Screening by FISH, or later by lac 
repressor staining, was used to select cell clones with chro- 
mosomal, versus double minute, gene amplification. Lac 
repressor staining used three different methods: addition 
of lac repressor protein to fixed cells followed by immuno- 
staining, in vivo expression of a lac repressor-NLS fusion 
protein (Fieck et al., 1992) followed by immunostaining, or 
in vivo expression of a GFP-lac repressor-NLS fusion 
protein. Initially we used the wild-type lac repressor-NLS 
fusion protein, but later used site directed mutagenesis to 
eliminate the COOH terminal five amino acids of the re- 
pressor, which are required for tetramer formation (Chen 
and Matthews, 1992). This mutated protein forms dimers 
only (Chen and Matthews, 1992), and therefore can form a 
complex with only a single lac operator. Later experi- 
ments, including all of the GFP-repressor results, used this 
truncated form of the repressor. 

Visualization of Chromosome HSRs Containing Lac 
Operators by Three Methods of Lac Repressor Staining 

Initial visualization of lac operator repeats used a particu- 
lar cell clone, PDC, isolated from a culture that had under- 
gone high levels of gene amplification (up to 100 }xM MTX). 
Repressor staining of metaphase chromosomes showed 
that these cells contain large amplified chromosome re- 
gions, typically ~0.5 txm or longer, corresponding to tens 
of Mbp in size. Stable transformants of this cell done, which 
expressed a wild-type lac repressor-NLS fusion protein 
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plicates one built by Drs. Agard and Sedat (University of California, San 
Francisco) and has been described elsewhere (Hiraoka et al., 1991). 
Briefly, it includes motorized filter wheels for excitation and emission fil- 
ters (Omega Optical, Brattleboro, VT) and a microstepping motor for 
z-focus with a Silicon Graphics 4D/35TG computer providing automated 
data collection using the Resolve3D data collection program (Applied 
Precision, Mercer Island, WA). A 60×, 1.4 NA Plan Apo oil immersion 
lens (Olympus Corp.) was used together with narrow pass filters for 
DAPI, Texas Red, or FITC excitation and emission; GFP images were ac- 
quired using the FITC filter combination. Optical sections were collected 
through entire nuclei at 0.2-~m focal intervals; pixel size was 0.074 l.zm. De- 
convolution of optical sections, to partially restore the image degradation 
resulting from out-of-focus blur, was accomplished using an enhanced ra- 
tio, iterative constrained deconvolution algorithm (Agard et al., 1989). 

Thin sections were examined at 100 kV on a transmission electron mi- 
croscope (model 100C; JEOL USA, Inc., Peabody, MA). Thick sections 
were viewed using a TEM (model CM200; Phillips Electronic Instrs., Inc., 
Mahwah, N J) at 200 kV. An Eikonix (Giesecke & Devriont Engineering, 
Inc., Bedford, MA) 1412 camera, capable of 12-bit grey scale readout of a 
4,096 pixel linear detector array, was used with a Gordon Model 5 × 5 
Plannar light source (Gordon Instruments, Orchard Park, NY) to digitize 
negatives (Belmont et al., 1993). 

A "mass normalization" procedure, to convert film optical density val- 
ues to values proportional to the integrated scattering cross section or 
electron optical density, was carried out as described previously (Belmont 
et al., 1987). Image "intensity" values then reflect the density of heavy 
metal staining, with brighter regions corresponding to higher electron 
density as in a negative. 

The display program, NewVision (Pixton and Belmont, 1996), running 
on an SGI 4D/35 TG (Silicon Graphics, Mountain View, CA), was used to 
display images and view results. Selected images or montages were then 
assembled into figures using Adobe Photoshop. Figures were printed us- 
ing a Mitsubishi (Tokoyo, Japan) Colorstream printer. 

Visualization of Lac Repeats in Yeast 
Yeast strain AFS168, expressing the GFP-repressor, was made by integra- 
tion of pAFS78 into the HIS3 locus of yeast strain AFS34 (W303-1a deriv- 
ative) after linearization with NheI. The 256 lac operator repeat was intro- 
duced into yeast by cloning the KpnI-SphI fragment of pSV2-DHFR-8.32 
into the yeast integrating plasmid YIplac128 to yield pAFS59, pAFS59 
was linearized with EcoRV, which cuts within LEU2, and transformed 
into yeast strain AFS168, resulting in strain AFS173. Transformants were 
selected for leucine prototrophy, and integration at leu2-3,112 was veri- 
fied by Southern blotting. 

A logarithmically growing culture of AFS173 was arrested for 3 h in 
YPD at 24°C by incubation with 10 ~g/ml a-factor. Cells were then washed 
out of YPD a-factor into CSM-HIS + 10 IJ.g/ml a-factor. Expression of the 
GFPIacI fusion was induced by adding 3-aminotriazole to 10 mM to the 
arrested cells for 30 min at 24°C. Cells were then washed into CSM-HIS 
with or without 15 ~g/ml nocodazole and aliquots were put on ice every 10 
min for 2 h. Cells were imaged on a microscope (model MicrophotSA; Ni- 
kon, Inc., Melville, NY) using a 60× oil immersion lens. Fluorescence was 
visualized with a conventional FITC excitation filter and a long pass emis- 
sion filter. Images were acquired with a MTI-SIT68 Camera (Dage-MTI, 
Inc., Michigan City, IN) using MaxVision-AT software. All images were 
averages of 128 optical frames of 33 ms each. 

Results 

Experimental Design 

As an alternative to in situ hybridization, we decided to 
explore use of protein-DNA recognition for localization of 
specific chromosome sequences within interphase nuclei. 
To establish this technology, we began this work using 
gene amplification. Previous characterization of chromo- 
some HSRs produced by gene amplification has shown 
that they typically contain tens to hundreds of copies of a 
several hundred- to thousand-kb region surrounding the 
selectable marker used for amplification (Delidakis et al., 
1989). Gene amplification therefore provides an easy way 

to amplify the number of copies of the DNA sequence 
used for recognition, thereby increasing the signal to noise 
ratio for detection while the staining methodology is being 
developed. Cloning cells at different stages of gene ampli- 
fication provides a convenient method for preparing dif- 
ferent size chromosome segments that can be visualized 
selectively. 

For these initial experiments, we chose the lac operator- 
repressor system because lac repressor binds to operator 
with a K d of 10 -13, six orders of magnitude lower than non- 
specific binding (Miller and Rezinkoff, 1980), and also has 
a high affinity for operator sequences located within nu- 
cleosomes (Chao et al., 1980). In eukaryotic cells, the lac 
operator-repressor system has been used to repress tran- 
scription (Brown et al., 1987; Hu and Davidson, 1987), and 
IPTG allows regulation of lac repressor binding in vivo 
(Fieck et at., 1992). 

Fig. 1 summarizes the overall experimental approach 
used to generate HSRs containing multiple lac operators. 
A DNA segment containing eight direct repeats of a 36-bp 
lac operator sequence (Sasmor and Betz, 1990) was cloned 
between unique SalI and XhoI sites. The compatible sticky 
ends produced by SalI and XhoI allowed a doubling of di- 
rect repeats of the sequence between these two sites with 
each cloning cycle, as diagrammed in Fig. 1 A. Five cloning 
cycles generated a 256 copy lac operator repeat, which was 
then inserted into a mammalian DHFR expression vector. 
Stable transformants were selected using growth in thymi- 
dine-free media. Cells having undergone gene amplifica- 
tion were then selected using progressive increases in 
MTX levels. 

Southern dot blot analysis (data not shown) was initially 
used to confirm the presence of high levels of lac operator 
repeats in these cells. Screening by FISH, or later by lac 
repressor staining, was used to select cell clones with chro- 
mosomal, versus double minute, gene amplification. Lac 
repressor staining used three different methods: addition 
of lac repressor protein to fixed cells followed by immuno- 
staining, in vivo expression of a lac repressor-NLS fusion 
protein (Fieck et al., 1992) followed by immunostaining, or 
in vivo expression of a GFP-lac repressor-NLS fusion 
protein. Initially we used the wild-type lac repressor-NLS 
fusion protein, but later used site directed mutagenesis to 
eliminate the COOH terminal five amino acids of the re- 
pressor, which are required for tetramer formation (Chen 
and Matthews, 1992). This mutated protein forms dimers 
only (Chen and Matthews, 1992), and therefore can form a 
complex with only a single lac operator. Later experi- 
ments, including all of the GFP-repressor results, used this 
truncated form of the repressor. 

Visualization of Chromosome HSRs Containing Lac 
Operators by Three Methods of Lac Repressor Staining 

Initial visualization of lac operator repeats used a particu- 
lar cell clone, PDC, isolated from a culture that had under- 
gone high levels of gene amplification (up to 100 }xM MTX). 
Repressor staining of metaphase chromosomes showed 
that these cells contain large amplified chromosome re- 
gions, typically ~0.5 txm or longer, corresponding to tens 
of Mbp in size. Stable transformants of this cell done, which 
expressed a wild-type lac repressor-NLS fusion protein 
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Lac Repressor Lac Repressor GFP-Lac 
Staining Transformation Repressor 

Transformation 

Figure 1. Experimental ap- 
proach: (A) A pUC 18 deriv- 
ative allowed the generation 
of 32 copies of a lac operator 
8-mer direct repeat. Using 
SalI, XhoI, and BamHI en- 
zymes, as diagrammed 
above, doubled the repeat 
number with each cloning cy- 
cle. (B) DHFR-CHO cells 
(DG44) were stably trans- 
formed with a DHFR expres- 
sion vector, pSV2-DHFR, 
containing this 256 copy lac 
operator repeat. (C) MTX 
concentration was in- 
creased in 3-10-fold steps, 
from 0.02 I~M through 100 
ixM MTX. (D) Initial screen- 
ing by FISH selected cell 
clones with chromosomal, 
versus double minute, gene 

amplification. Lac repressor staining used either of three methods: addition of lac repressor protein to fixed cells followed by immu- 
nostaining, in vivo expression of a lac repressor-NLS fusion protein and immunostaining, or direct visualization of a GFP-Iac repres- 
sor-nuclear localization signal fusion protein. 

(Fieck et al., 1992), were used in these experiments. Fig. 2 
shows a representative field, after deconvolution, contain- 
ing several cells stained using a primary, anti-lac repressor 
primary antibody after formaldehyde fixation. 

The signal intensity with the repressor immunolocaliza- 
tion was quite high. A direct comparison with the signal in- 
tensity after FISH was not done since we used different 
fluorochromes for detection. However, typical exposure 
times with our CCD camera for indirect immunofluores- 
cence localization of lac repressor staining were 0.05-0.2-s 
(Texas Red) versus 5-10-s typical exposures for FISH us- 
ing FITC-labeled avidin. For comparison, these 0.05-0.2-s 
exposures were severalfold to more than 10x shorter than 
typical exposure times used for indirect immunofluores- 
cence using anti-lamin B or vimentin primary antibodies 
with the same filter sets and imaging system. 

Many nuclei show multiple HSRs in these highly ampli- 
fied cultures. As expected from previous FISH studies of 
interphase chromosome structure, regions of staining cor- 
responded to compact domains just several microns in size 
(Manuelidas, 1985; Trask, 1991; Cremer et al., 1993). Fig. 2, 
however, also reveals a prominent substructure within 
these HSR domains, suggestive of a fibrillar packing, which 
was not obvious in previous FISH results. At the edges of 
these compact regions, individual fibers can be recognized 
whose 0.2-0.3 ~m widths are similar to the expected, dif- 
fraction-limited widths measured previously for chromo- 
nema fibers by DAPI  staining (Belmont et al., 1989; Bel- 
mont and Bruce, 1994). 

Two experimental concerns led us to develop alterna- 
tive staining methods. First, we questioned whether the 
large numbers of lac operator repeats, when bound to lac 
repressor, would fold normally within interphase and mi- 
totic chromosomes. We therefore were interested in being 
able to stain fixed cells, which did not express lac repres- 
sor, with purified, exogenous lac repressor so that we 
could compare the morphology of these HSRs with and 

without in vivo expression of the repressor. Second, we 
were interested ultimately in being able to visualize chro- 
mosome conformation and dynamics in vivo, and to verify 
that our fixation and staining procedures did not perturb 
the HSR morphology. Therefore, we explored the use of a 
GFP-lac repressor fusion protein for in vivo visualization. 

Fig. 3 compares lac repressor staining of the HSRs from 
PDC cells using all three of these methods: immunofluo- 
rescence staining of cells that express lac repressor as 
shown in Fig. 2, exogenous lac repressor staining of fixed 
PDC cells followed by immunostaining, and direct, in vivo 
visualization of PDC cells stably transformed with a GFP-  
lac repressor-NLS fusion protein construct. To improve 
the intensity of the GFP-repressor signal, we used a single 
amino acid mutation in the GFP, Ser65 ~ Thr, described 
previously (Helm et al., 1995). To avoid questions of dif- 
ferential image enhancement or filtering created by the 
deconvolution process, in this figure we show the raw im- 
ages recorded from the CCD camera. (Comparison of Fig. 2 
and Fig. 3 B, top, allows a direct comparison of the original 
and deconvolved images of the same nucleus.) We note 
that because the lac repressor staining is localized to only 
small, local chromosome regions, out-of-focus blur is sig- 
nificantly less of a problem in the raw images relative to 
the visualization of general chromosomal staining by 
DAPI. 

All three methods yield similar HSR morphologies as 
viewed by light microscopy. In particular, the fibrillar sub- 
structure of the HSRs is prominent with all staining meth- 
ods, including in vivo observation. Because these results 
are similar independently of whether the cells express lac 
repressor, this substructure is not a result of an unusual 
chromatin conformation induced after in vivo lac repres- 
sor expression. Because the GFP-repressor in vivo imag- 
ing shows similar results to immunostaining of cells ex- 
pressing the repressor, this substructure is not an artifact 
of the immunostaining procedure. 
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Figure 2. Fibrillar lac repressor staining of amplified chromosome regions within interphase nuclei. Cells selected at 100 ixM MTX and 
expressing the lac repressor-NLS fusion protein were fixed and stained by indirect immunofluorescence with an anti-lac repressor pri- 
mary antibody. Majority of nuclei show what appear to be compact domains formed by tightly folded fibers. In some nuclei, segments of 
extended fibers can be visualized in addition to folded regions. A high power field showing several nuclei is shown after optical section- 
ing and deconvolution; a single optical section is displayed. (A) Combined DAPI and immunofluorescence signal. (B) DAPI staining 
alone. (C) Lac repressor staining alone. (D-F) 3 x enlargement of repressor stained regions marked by arrows in C. (G) 3 x enlargement 
of DAPI stained region marked by arrow in B. Bars: (A-C) 2 ixm; (D-G) 0.4 ~zm. 

All three staining methods yield intense and reproduc- 
ible staining. Typically, the staining of fixed specimens with 
exogenous lac repressor is roughly comparable in intensity 
with immunostaining of specimens that express lac repres- 
sor in vivo. The intensity produced by the GFP-repressor 
binding appears to be limited primarily by the expression 
levels of the fusion protein. In ceils with high levels of 
GFP-repressor expression, as estimated by the level of nu- 
clear background fluorescence, the intensity of the HSR 
staining is close to that obtained by antibody staining. 
However, in cells with low levels of GFP-repressor ex- 
pression, as estimated by low levels of nuclear background 
fluorescence, the intensity of the HSR staining can be 10- 

lO0-fold lower than that obtained by antibody staining. 
Our experience to date suggests that despite the generally 
weaker signal, the highest sensitivity is achieved using in 
vivo expression of the GFP-repressor-NLS fusion protein. 
This is because the nuclear background staining in these 
cells usually is extremely low because of lower expression 
levels of the fusion protein, resulting in a high signal to 
noise ratio for specific lac operator staining. 

Detection of Single 256 Copy Lac Operator Repeat 
without Prior Gene Amplification 

The signal generated by lac repressor staining of the chro- 
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Figure 3. Three methods for 
lac repressor staining yield 
similar results. PDC cells se- 
lected at 100 txm MTX were 
stained with three different 
methods. (A) Cells stably ex- 
pressing a GFP-lac repres- 
sor-NLS fusion protein were 
imaged live in culture media. 
(B) Cells stably expressing a 
lac repressor-NLS fusion 
protein were fixed and then 
stained by indirect immuno- 
fluorescence using an anti- 
lac repressor primary anti- 
body. (C) Cells not express- 
ing lac repressor were fixed, 
stained with purified lac re- 
pressor, and then stained by 
indirect immunofluores- 
cence using an anti-lac re- 
pressor primary antibody. 
The top panel shows the typi- 
cal HSR appearance, sugges- 
tive of coiled fibers within a 
compact domain. The bot- 
tom panel shows examples of 
cells in which extended fibers 
can be visualized and traced 
over large distances. The 
similar staining patterns 
seen in A - C  indicate that the 
HSR large-scale chromatin 
conformation is not altered, 
at light microscopy resolution, 
by in vivo lac repressor expres- 
sion, or by fixation and stain- 
ing procedures. Bar, 2 p~m. 

mosome HSRs produced by gene amplification was very 
bright. In cells selected at high amplification levels, corre- 
sponding to 100 p~M MTX, typical exposure times varied 
from 0.05-0.2 s for saturation of the CCD camera. These 
exposure times were essentially the same for two clones 
isolated at much lower level of amplification, correspond- 
ing to 0.3 I~M MTX. Presumably this reflects a similar high 
density of lac operator sites with primarily the size of the 
HSR varying at different amplification levels. 

These results raised the obvious question of how many 
copies of the 256 lac operator repeat are required for de- 
tection, and whether this general approach to in situ local- 
ization of DNA sequences could be applied in the absence 
of gene amplification. 

Initial results demonstrated that integration of multiple 
vector copies in the absence of gene amplification could be 
easily detected. Cells stably transformed using a Lipofec- 
tamine transfection procedure revealed N50% of stable 
transformants with obvious lac repressor staining, in the 
case of exogenous lac repressor staining; this transfection 
method typically produces tens of vector copies integrated 
at individual sites. The majority of these cells, ~50--70%, 
showed single spots of lac repressor staining whose size 
roughly corresponded to the diffraction limit of resolution 
of the light microscope (data not shown). However, the in- 

tensity of these spots varied significantly, with exposure 
times for the CCD camera ranging from less than 0.05 s to 
more than several seconds to obtain equivalent grey scale 
values. Small clusters of neighboring cells could be recog- 
nized that showed similar staining patterns and exposure 
values, implying that the variations in staining were clonal. 
For these reasons, the variable signal intensity is likely to 
correspond primarily to copy number of the vector se- 
quence in the chromosomal insertion. 

To provide a better estimate of the detection sensitivity, 
we next attempted to visualize repressor staining of a spe- 
cific stable clone, EP1-4, produced by electroporation 
transfection of the pSV2-DHFR-8.32 plasmid under con- 
ditions that favor single or low copy insertions of the vec- 
tor (Boggs et al., 1986). Initial experiments using exoge- 
nous lac repressor staining did not reveal clear staining of 
the cell clone. We reasoned that our detection efficiency 
was limited by the background produced by our lac repres- 
sor staining. We therefore next attempted to visualize GFP- 
repressor staining of these cells after transformation with 
the GFP-repressor vector. 

EP1-4 cells stably expressing levels of GFP-repressor 
sufficient to produce a detectable but low nuclear back- 
ground were selected for optical sectioning. The low level 
of fluorescence in these cells and the limited depth of fo- 
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Figure 4. Sensitivity of lac op/ 
repressor staining allows de- 
tection of individual copies of 
integrated vector. A - C  show in 
vivo expression of the GFP-Iac 
repressor fusion protein in 
EP1-4 cells before (A) and af- 
ter gene amplification to 0.5 
IxM MTX (B) and 5 IxM MTX 
(C). Left inset in A shows sin- 
gle spot of repressor staining 
from original image; right 
hand inset in A shows same re- 
gion after background subtrac- 
tion and contrast enhance- 
ment. Gene amplification 
results in multiple copies of the 
chromosome region surround- 
ing the original integration site 
leading to an array of similar 
intensity spots. (D) Southern 
blot shows vector insert in 
these cells is single copy. Lane 
1: h molecular weight stan- 
dards (partial KpnI digest) at 
48.5, 29.9, and 17 kb. Lanes 2 
and 3:EP1-4 genomic DNA 
digested with BstEII (lane 2) 
or DrdI (lane 3); both are fre- 
quent cutters with no sites 
within the transfected vector. 
Bands for both digests are less 
than twice the 15.1-kb vector 
size. Lane 4 :Ep l -4  genomic 
DNA digested with ApaI, a 
unique frequent cutter of the 
transfected vector. Two bands 
only are seen as expected for a 
single copy vector insertion 
(see text). Lanes 5 and 6:11 pg 
(or ~0.5 copy per genome 
equivalent) (lane 5) or 3 pg 
(lane 6) of linearized pSV2- 
DHFR-8.32 vector (15.1 kb). 
Bar, 2 ~m. 

cus prevented easy detection of discrete staining, and 
these ceils were chosen solely on the basis of the back- 
ground nuclear fluorescence. However,  in each of seven 
separate cases, complete optical sectioning revealed ex- 
actly one clearly distinguishable spot per nucleus, using 
relatively long integration times of 5-10 s with our CCD 
camera. An  example of this staining is shown in Fig. 4 A. 

As a further check to determine that these spots corre- 
sponded to real staining of lac operator repeats, this EP1-4 
clonal cell line was subjected to several rounds of gene am- 
plification. Fig. 4, B and C, shows examples of GFP-repres- 
sor fluorescence staining in cells from two different stages 
of this gene amplification. As demonstrated in this figure, 
staining of chromosome HSRs produced by this amplifica- 
tion now reveals a collection of individual spots. These 
spots are of similar intensity to the single spot visualized in 
the original EP1-4 clone before gene amplification. We in- 

terpret these spots as sites of pSV2-DHFR-8.32 vector in- 
sert(s) within the repeating units produced by gene ampli- 
fication. 

Southern blot analysis determined that the vector insert 
in these EP1-4 cells was single copy, based on two differ- 
ent criteria. Genomic D N A  was cut using two different 6-bp 
recognition restriction enzymes not present in the pSV2- 
DHFR-8.32 plasmid, therefore excising the complete vec- 
tor array plus some amount  of flanking DNA.  Fig. 4 D, 
lanes 2 and 3, shows both enzymes produced single bands 
whose size fell between the 17-and 30-kb size markers 
(lower two bands, lane 1), and therefore less than twice 
the 15.1-kb size of the transfected vector. In addition, di- 
gestion with an enzyme with a unique site within the trans- 
fected vector produced two bands only, as expected for a 
single copy insertion, as shown in lane 4; each band was 
larger (~5.5 kb and 11-15 kb, as determined by a 1-kb lad- 
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der mol wt standard [data not shown]), as expected, than 
the corresponding fragment size produced by the same di- 
gest with the Sall linearized vector used for transforma- 
tion (4.5 and 10.6 kb). Therefore, our detection sensitivity 
in a mammalian genome allows detection of single copies 
of the 256 lac operator repeat. 

The detection sensitivity appears to be primarily limited 
by the variability, or "noise," in the nuclear background 
level. Subtracting out the relatively uniform nuclear back- 
ground signal, using a local contrast enhancement algo- 
rithm (Peii et al., 1982; Belmont et aL, 1987), yields a very 
clear signal for the lac operator/repressor staining, as shown 
in the right hand inset of Fig. 4 A. We estimate that the sig- 
nal to noise ratio for this spot, as defined by the peak 
brightness of the spot relative to the intensity variations in 
the nuclear background staining, is ~12:1. 

The nuclear background level of GFP-lac repressor 
staining is determined by the level of GFP-repressor ex- 
pression together with the amount of nonspecific DNA 
binding. A reduction in the genome size, and therefore the 
amount of nonspecific DNA, should reduce the attainable 
background level. We therefore expect this detection sen- 
sitivity to carry over to cells from other species whose ge- 
nome size is equivalent or smaller than CHO cells. 

HSRs with Distinctive Variations in Large-Scale 
Chromatin Organization Can Be Isolated 

One goal of our work was to be able to construct model 
chromosome regions whose cell cycle dynamics could be 
more easily analyzed than bulk chromatin. Our results to 
date suggest that these chromosome HSRs not only show 
similar morphology to normal chromosomes but also can 
reproduce, in different HSRs, the heterogeneity of chro- 
mosome condensation observed normally for different 
chromosome regions. 

The most prevalent HSR morphology we have observed 
to date is the irregular, tightly folded appearance shown in 
Figs. 2 and 3, top. As discussed above, this appearance is 
suggestive of a fibrillar substructure with diameter less 
than or equal to the ~0.2 lxm diffraction resolution limit of 
the light microscopy. Based on previous serial thin section 
reconstructions of CHO G1 nuclei, this compactly folded 
fiber appearance is what we would expect for the irregular 
folding of chromonema fibers in a typical genomic region 
(Belmont and Bruce, 1994). 

Of the ~12 cell clones isolated after gene amplification, 
most show this morphology for their HSRs. However, we 
have also identified several clones with distinct HSR mor- 
phologies either more or less condensed than the average 
morphology. 

Fig. 5, A-C, shows staining of the A03 clone isolated at 
0.3 IxM MTX selection after amplification of a population 
of stable transformants produced by calcium phosphate 
transformation. A low power survey micrograph demon- 
strates a single, dense staining spot in most cells (Fig. 5 A); 
a few cells have paired spots, representing sister chroma- 
tids. Both the size, '-,~80 Mbp as estimated from its N1.2-1xm 
length in metaphase chromosomes, and the chromosome 
location of this HSR are highly stable (Li, G., C. Robinett, 
G. Sudlow, C. Willhelm, and A.S. Belmont, manuscript in 
preparation). Based on preliminary experiments, the HSR 

Figure 5. HSRs with distinctive folding patterns can be isolated. 
A03 clone, isolated at low MTX selection, contains a single, sta- 
ble, late replicating HSR. (A) Low power survey--all nuclei con- 
tain a single spot, or a closely spaced doublet, of lac repressor 
staining. Cells blocked with HU at late G1/early S show a highly 
condensed HSR that can be localized by repressor staining or 
even by DAPI staining alone. (B) Composite image of DNA and 
repressor staining. (C) DNA (DAPI) staining only. At this cell 
cycle stage, little substructure is evident and the compaction is 
comparable to that observed for this HSR in mitotic chromo- 
somes (data not shown). In contrast, EP1-4 cells after gene ampli- 
fication at 0.5 ~M MTX selection show an extended morphology 
with a much higher frequency of extended fibers than seen in the 
typical HSR with a tight coiled fiber morphology (see Figs. 2 and 
3 and text). Bars: (A) 10 ixm; (B-D) 2 ixm. 

in this A03 clone behaves as late replicating, heterochro- 
matin (Li, G., C. Robinett, G. Sudlow, C. Willhelm, and 
A.S. Belmont, manuscript in preparation). 

A03 cells blocked in late G1/early S phase show pre- 
dominately a condensed staining region ~0.5-1.0 txm in 
diameter, with the percentage of cells with this pattern, 
85%, close to the typical percentage of cells with 2c DNA 
content using this synchronization procedure. Moreover, 
the size of this region is similar to its size in metaphase 
chromosomes. An example of this staining is shown in Fig. 
5, B and C. In contrast to typical HSR morphology, show- 
ing a fibrillar substructure by light microscopy, this A03 
HSR instead appears at light microscopy resolution as a 
solid density. At this cell cycle stage, most of the chroma- 
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tin is highly dispersed (Belmont and Bruce, 1994); in con- 
trast, the A03 HSR appears as a condensed mass easily 
distinguished even in the DAPI-stained image. 

Fig. 5 D instead shows staining of extended HSRs in a 
representative, high-power field of cells from a cell clone 
isolated after gene amplification of EP1-4 cells (see previ- 
ous section, Fig. 4) up to a 0.5 I~M MTX concentration. 
We speculate that this extended staining pattern may be 
related to integration of the vector into an "active" chro- 
mosomal region capable of permitting significant tran- 
scription from the single copy D H F R  gene. Subsequent 
gene amplification would coamplify hundreds of kb of 
flanking DNA from this region. 

Examples of Biological Applications of lac 
Operator-Repressor Staining 

1. Visualization of Chromatin Structure Under Nonperturb- 
ing Conditions Supports Existence of Large-Scale Chroraa- 
tin FibriUar Structures. As described previously, the typi- 
cal staining pattern for PDC cells showed compact regions 
of staining with substructure suggestive of folding of a 
fibrillar structure. However, the limited resolution of light 
microscopy, particularly along the z-axis, prevents a defi- 
nite resolution of actual fibers. In contrast, several exam- 
ples in which extended, linear fibrillar staining can be 
traced for N5 I~m in length are shown in the bottom panel 
of Fig. 3. In these cases, optical sectioning demonstrates 
that these are in fact extended, continuous fibers (data not 
shown). Examples of such fibers are shown for all three 
staining methods, including in vivo observation of the 
GFP-repressor-tagged HSRs. Given the large size of the 
HSRs found in these cells, estimated as tens of Mbp or 
larger from the ~0.5 I~m or larger HSR lengths in mitotic 
chromosomes (for example, see Fig. 7 E), the inferred fi- 
ber lengths observed in interphase nuclei implies packing 
ratios of hundreds to thousands to one, well above the esti- 
mated 40:1 packing ratio of 30-nm chromatin fibers. Here 
we define the packing ratio as the ratio of the length of the 
chromatin fiber to the extended length of the B form 
DNA within these fibers. 

The extended fibers visualized in PDC clones corre- 
sponded to relatively infrequent observations appearing in 
<5% of cells. In contrast, in EP1-4 cells after gene amplifi- 
cation, a high frequency of cells show extended in vivo 
staining, including examples of linear arrays of spots, in 
Fig. 5 D. We interpret these linear arrays as resulting from 
a contiguous chromosomal DNA segment, formed from 
multiple copies of the gene amplification unit, packaged 
into an extended, linear fiber. The individual spots corre- 
spond to the lac operator repeat adjacent to the inserted 
D H F R  gene, with the separation between spots corre- 
sponding to the chromosomal flanking DNA within the 
amplification unit. Assuming that the size of these ampli- 
fied units is in the usual several hundred to thousand-kb 
range observed for gene amplification (Delidakis et al., 
1989), the observed separation between these spots again 
suggests packing ratios for these large-scale chromatin fi- 
bers of hundreds to one. 

2. Comparison of Lac Repressor Staining with Conven- 
tional In Situ Hybridization Methods. These results sugges- 
tive of the higher order organization of chromatin into spa- 

tially distinct, large-scale chromatin fibers are consistent 
with our previous electron microscopy studies of inter- 
phase chromosome structure, as discussed in the introduc- 
tion. However, the existence of such large-scale chromatin 
fibers has not generally been appreciated from previous in 
situ hybridization studies of interphase chromosome orga- 
nization. 

To reconcile our results with previous FISH results, we 
therefore compared our lac operator/repressor staining 
with conventional FISH staining using a biotin-labeled, lac 
operator oligonucleotide probe. PDC cells, selected at high 
levels of gene amplification (100 I~M MTX), were grown 
directly on the coverslip and fixed after a brief wash in 
phosphate saline. To roughly assay the extent of perturba- 
tion of nuclear and chromosome structure associated with 
the FISH procedure, we used light microscopy of DAPI-  
stained mitotic and interphase cells. 

Initial experiments revealed pronounced structural per- 
turbations induced by the DNA denaturation step of the 
hybridization procedure. This was particularly true for 
cells fixed with methanol (data not shown). Progressive 
improvement in ultrastructure after DNA denaturation 
was seen with increases in the time of formaldehyde fixa- 
tion from 10 min up to 4 h. However, the strength of the 
FISH signal dropped ~50% with an increase from 3 to 4 h 
of fixation time in formaldehyde. We therefore chose 3 h 
of fixation for our experiments. 

Fig. 6, A and B, shows FISH results obtained using these 
fixation conditions. Consistent with the prior repressor 
staining results for these cells shown in Figs. 2 and 3, most 
nuclei showed two to three compact domains of hybridiza- 
tion. Unlike the repressor staining results, however, little 
substructure was visualized within these domains; the 
fibrillar substructure apparent by repressor staining was 
not obvious in the FISH results. In a small percentage of 
nuclei, extended linear staining regions were seen; two of the 
better examples we recorded are shown in this figure. How- 
ever, these linear regions of hybridization appeared more 
diffuse than we had observed with the repressor staining. 

To better describe the changes in ultrastructure induced 
by a standard FISH protocol, we carried out a comparison of 
HSR morphology observed in vivo using the GFP-repressor 
staining versus that seen in the exact same cells after fixa- 
tion and DNA denaturation. Cells were grown on gridded 
coverslips and photographed live. They were then fixed 
for 3 h in formaldehyde and processed up through the 
DNA denaturation step according to the same protocol 
used in our previous FISH experiments. Detection of the 
HSR after DNA denaturation used immunofluorescence 
staining against the lac repressor rather than in situ hy- 
bridization because of the greater signal strength and reli- 
ability of repressor staining. 

Fig. 6, C and D, shows the images from a specific nu- 
cleus in vivo (C) versus after fixation and DNA denatur- 
ation (D). This nucleus was chosen because the HSR con- 
tained a mixture of extended fiber regions and compact 
domains. Overall the size and shape of the HSR staining is 
maintained quite well through the mock in situ hybridiza- 
tion protocol. This experiment therefore validates the use 
of FISH to study the intranuclear distribution of specific 
chromosome regions and gene loci. 

However, there is a noticeable blurring of the fine struc- 
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Figure 6. Comparison of HSR morphology in PDC cells visualized in vivo using GFP-repressor expression versus after FISH or DNA 
denaturation procedures. (A and B) FISH using extended formaldehyde fixation. Arrows point to regions which are shown at 3x en- 
largement in a and b. Compact regions show only hints of substructure (see arrow in B, b), which are obvious with lac repressor staining 
(Figs. 2 and 3). (C) In vivo visualization of HSR with compact regions and extended, linear fibers. (D) Immunostaining with anti-lac re- 
pressor antibody of same cell as in C after a mock in situ hybridization procedure. Arrow (C and D) points to compact region in which 
fibrillar substructure is evident in vivo (C) but is largely lost after DNA denaturation procedure (D) (see also c and d, 3 x enlargement). 
Bar: (A-D) 2 ~m. 

ture within the HSR; in particular, within the compact re- 
gions (marked by arrows) of the HSR, the substructure 
that is obvious within the live image is blurred within the 
mock in situ image. This is better seen in the enlarged in- 
sets of Fig. 6, c and d, which show the compact regions 
marked by arrows in the main figure. The blurred appear- 
ance of the HSR after the DNA denaturation procedure 
resembles the actual FISH results shown in A and B. This 
blurring is not a focus problem. To ensure comparison of 
the appropriate focal planes, optical sectioning in 0.2-1~m 
intervals was performed on nuclei after DNA denatur- 
ation and repressor staining. The optical section showing 
the closest similarity to the original live image was selected 
for comparison. 

We therefore conclude that previous lack of apprecia- 
tion of the fibrillar nature of large-scale chromatin organi- 
zation from FISH studies may be related to blurring of 
fibrillar substructure after typical FISH protocols (see Dis- 
cussion). Although regions of extended staining still ap- 
pear fibrillar, the compact regions lose obvious fibrillar 
substructure. 

3. Extension of Lac Operator-Repressor Detection to TEM 
Localization Further Support for Large-Scale Chromatin 
FibriIlar Organization. Using immunogold localization, lac 
repressor staining could also be used for visualization of 
the amplified chromosome regions by TEM. Immunogold 
staining was very similar to the immunofluorescence 
protocols described above, with a 1-nm Nanoprobe gold- 
labeled secondary antibody replacing the fluorochrome- 
labeled secondary. As with the immunofluorescence ex- 
periments, staining was accomplished either by expressing 
the repressor-NLS fusion protein in vivo followed by tra- 
ditional preembedding immunostaining or by staining 

fixed cells with purified wild-type repressor followed by a 
second fixation and preembedding immunostaining (data 
not shown). 

Fig. 7, A and B, shows results from staining nonex- 
tracted PDC cells that express the repressor. Cells were 
fixed 3 h with formaldehyde before detergent treatment 
and antibody staining, and postfixed in glutaraldehyde for 
several hours before silver enhancement and embedding. 
The corresponding immunofluorescence and GFP images 
for these cells was shown in Fig. 2. 

As described earlier, the HSRs in these cells formed do- 
mains typically measuring ,'-,2 ixm in width and by light mi- 
croscopy gave the appearance of being formed by tight 
folding of a fibrillar component. Fig. 7 A shows a nuclear 
cross-section at low magnification from a 0.2-1xm Epon 
section through one of these HSR domains; Fig. 7 B shows 
a higher magnification view containing the HSR. Immu- 
nogold staining is intense and reveals short, linear seg- 
ments of ~80-130-nm diameter labeled by the immu- 
nogold staining. Comparably sized regions of heavy uranyl 
and lead staining nearby the immunogold-labeled HSR 
are marked by arrows. Fig. 7, C and D, shows nuclear 
cross-sections from thicker, 0.5-txm Epon sections; the 
large-scale fibrillar chromatin structure underlying the 
HSR staining is now more apparent because of the inclu- 
sion of folded fiber lengths within the thicker section. Fig. 
7 F shows an enlarged region from a 0.5-1xm section through 
an HSR, again revealing segments of ,-~130-nm fibers. An 
example of mitotic staining of the HSR is shown in Fig. 7 E; 
an ~0.5 txm chromosome arm segment labeled by immu- 
nogold staining is contained within a 0.5-1xm thick section. 

Previous work using correlative light and electron micros- 
copy (Belmont et al., 1989) has shown that the more in- 
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Figure 7. Preembedding immunogold electron microscopy localization of lac repressor staining demonstrates ,~100-nm diameter fiber- 
like segments within nonextracted ceils. Cells selected at 100 ixM MTX and expressing the lac repressor-NLS fusion protein were fixed 
for 3 h in formaldehyde and then immunostained before glutaraldehyde fixation and embedding. Intensity is scaled as negative; whiter 
regions correspond to heavier staining: (A) 0.2-~m thick section, low magnification survey; (B) twofold higher magnification of lac repres- 
sot stained region from A. Straight arrowheads point to fiberlike segments of immunogold staining. Concave arrowheads point to simi- 
lar, uranyl-lead-stained segments of chromonema fibers recognizable above the nucleoplasmic background and distributed throughout 
the nucleus. (Contrast has been highly enhanced, preventing visualization of the cytoplasm, to allow visualization of these features.) (C 
and D) 0.5-1xm sections show longer, more extended fiber segments (arrows). (Normal contrast levels now allow visualization of cyto- 
plasm and nucleoplasmic background staining.) (E) 0.5-1xm section through mitotic plate showing labeling of HSR. Arrow points to pos- 
sible division between sister chromatids. Length of HSR within this section is ~0.5 Ixm. (F) Enlarged example of distinct fiber segments, 
~130-nm diameter, within 0,5-1xm section through HSR. Bars: (A and B) 0.5 txm; (C-E) 2.0 Ixm; (F) 250 × 120 nm. 
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tensely, heavy metal-stained regions, as marked by arrows 
in Fig. 7 B, correspond to large-scale chromatin domains, 
or chromonema fibers, which stain with DAPI. However, 
visualization of these large-scale domains by TEM is diffi- 
cult because of the heavily uranyl- and lead-stained nucleo- 
plasmic background. Using cells extracted with detergent 
in polyamine or divalent cation--containing buffers, we have 
been able to more easily visualize these large-scale chro- 
matin domains and trace them in three-dimensional recon- 
structions as extended fibers over 1-2 t~m (Belmont and 
Bruce, 1994), but there is always the question of buffer- 
induced conformational changes in chromatin structure. 

Significantly, the selective immunogold staining of the 
HSR shown in Fig. 7 now demonstrates similar diameter 
chromonema fibers within cells fixed directly in formalde- 
hyde without prior detergent permeabilization. These ul- 
trastructural results therefore strongly suggest that the 
apparent fibriUar HSR substructure visualized by light mi- 
croscopy in vivo corresponds to irregular, tightly packed 
folding of these chromonema fibers. 

4. Detection of a 256 Lac Operator Array Targeted to a 
Specific Chromosomal Location and Visualization of Sister 
Chromatid Separation during Anaphase in Yeast Cells. Ide- 
ally, use of lac operator/repressor staining as an in situ tag 
for specific chromosomal locations could be coupled with 
targeting of the lac operator array to specific chromosomal 
locations by homologous recombination. Demonstration 
of the feasibility of this approach in budding yeast is pre- 
sented in Fig. 8. A targeting vector (pAFS59) containing a 
256 lac operator direct repeat and the LEU2 gene was in- 
tegrated into Saccharomyces cerevisiae strain AFS34. Inte- 
gration was targeted to the leu2-3,112 locus approximately 
10 kb from the centromere of chromosomeIII and was ver- 
ified by Southern blotting. 

A GFP-lac repressor-NLS fusion protein under the 
control of the HIS3 promoter was used for detection. Op- 
timal detection, as described above for CHO cells, re- 
quired expression of the GFP-repressor protein at appro- 
priate levels, which produced strong specific staining but 
weak background nuclear fluorescence. Fig. 8 A shows 
haploid cells in G1 with one spot per nucleus as expected 
for cells with unreplicated DNA. Fig. 8 B shows haploid 
cells undergoing anaphase. The individual spots seen in 
G1 now have separated into two spots, one in the mother 
cell and one in the daughter cell. Fig. 8 C shows haploid 
cells arrested with nocadazole in mitosis; one spot per cell 
is seen indicating that the centromeres of sister chromatids 
have maintained their attachments to each other during 
mitotic arrest. The stability of the lac operator direct re- 
peats during mitosis was demonstrated by Southern blot 
analysis (data not shown). 

These experiments demonstrate the feasibility of local- 
izing specific chromosomal sites in living yeast cells. 

5. Following the Position of  a DNA Segment Over Time in 
Animal Cells Undergoing Mitosis. Initial experiments have 
demonstrated that multiple exposures of both CHO and 
yeast cells expressing the GFP-lac repressor fusion pro- 
tein are possible without compromising the viability of the 
cells. Fig. 9 shows results from CHO cells with the A03 
HSR that stably express the lac repressor-GFP fusion pro- 
tein. A series of images were acquired of a specific cell. 
Fig. 9 A shows the first image of the series, 4 h before cell 

Figure 8. Live yeast cells tagged on chromosome III with lac op- 
erator repeats and expressing the GFP-lacI-NLS fusion. The left 
panels show GFP-IacI-NLS fluorescence and the right panels show 
Nomarski images of the yeast cells. (A) Cells arrested in et factor 
show a single staining spot. (B) 90 min after ct factor release, cells 
have proceeded through anaphase showing separation of sister 
chromatids. (C) Cells released into nocodazole arrest in mitosis 
and block sister chromatid separation. Bar, 5 ~m. 

division; Fig. 9 B shows an image of the two daughter cells 
2 h after cell division. 1-s exposures were acquired every 
30 min; total exposure in this series was ~15 s, including 
extra exposures required for focusing. 

Discussion 

Methodology 

We have demonstrated the feasibility of using lac repres- 
sor staining of lac operator direct repeats for in situ local- 
ization of specific chromosome regions. Localization could 
be achieved by light microscopy using either staining of 
fixed cells or by direct in vivo imaging using a GFP-lac re- 
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pressor fusion protein. The ability to carry out extended in 
vivo imaging was demonstrated and the use of preembedding 
immunogold labeling methods allowed localization at the 
ultrastructural level using transmission electron microscopy. 

The capability of in vivo imaging of amplified chromo- 
some regions allowed a direct comparison of in vivo inter- 
phase chromosome structure with that observed after 
treating cells according to a fluorescence in situ hybridiza- 
tion protocol. Our results demonstrate that the overall 
morphology and intranuclear location of amplified chro- 
mosome regions was preserved quite well by the FISH 
procedure using formaldehyde fixation. This comparison 
therefore validates the use of FISH methods as a general 
tool for examining the intranuclear positions of defined 
chromosome loci. 

However, there was some blurring of fibrillar substruc- 
ture seen after FISH or DNA denaturation procedures 
relative to that observed in vivo that was particularly no- 
ticeable in closely packed regions; this in vivo fibrillar sub- 
structure was preserved using immunostaining procedures 
in conjunction with lac operator/repressor staining. We at- 
tribute the lack of obvious fibrillar substructure within 
these closely packed regions to an artifactual chromosome 
decondensation produced during the DNA denaturation 
procedure. It is possible that alternative FISH protocols 
would have produced improved results. The availability of 
in vivo images of amplified chromosome regions provides 
an excellent tool for future optimization of in situ hybrid- 
ization protocols using both light and electron microscopy. 

In ClIO cells, the sensitivity of the immunostaining 
method allowed detection of single integration sites con- 
taining multiple copies of the expression vector containing 
the lac operator repeats. In the EP1-4 CHO cell line, it was 
demonstrated that a single copy of the vector could be de- 
tected in vivo using the GFP-repressor fusion protein. In 
budding yeast, a single 256 lac operator repeat was easily 
detectable, suggesting that in this organism the detection 
sensitivity should allow detection of a smaller lac operator 
repeat size. 

The ability to target via homologous recombination 
these lac operator arrays to specific chromosome locations 
in yeast will make this a powerful system for in vivo visual- 

Figure 9. Extended in vivo 
imaging of GFP-repressor in 
CHO cells. Log phase A03 
cells (see Fig. 5, text) stably 
transformed with GFP-repres- 
sor were grown at 37°C on 
microscope stage. Images 
were collected every 30 min 
during observation. Trans- 
mitted light and GFP fluores- 
cence images were blended 
to give combined images. (A) 
Cell 4 h before cell division. 
(B) Daughter cells 2 h after 
cell division. 

ization of yeast chromosome structure and dynamics. 
Southern blot analysis indicates that these tandem lac op- 
erator arrays are stable in size through multiple mitotic cy- 
cles in both CHO cells and yeast. We suspect that this 
methodology will be generally applicable to a wide range 
of systems, which may allow analysis of specific chromo- 
somal loci in transgenic animals. In Drosophila melano- 
gaster, a 32 copy lac operator repeat has been stable in 
size, based on Southern blot analysis, for more than three 
years, which is equivalent to greater than 75 meiotic cycles 
and a much larger number of mitotic cycles; work now in 
progress has demonstrated the stability of the full 256 copy 
in Drosophila at least for several months (Sudlow, G., C. 
Robinett, C. Tolerico, A. Belmont, unpublished data). 

In summary, this new method of in situ localization of 
specific chromosome regions using lac operator-repressor 
staining presents significant advantages for analysis of 
large-scale chromatin organization, particularly in its po- 
tential for visualizing in vivo chromosome dynamics and 
for higher resolution analysis of chromatin ultrastructure. 
Future development of this methodology should allow di- 
rect in vivo incorporation of lac repressor labeled with tags 
for electron microscopy localization, eliminating the need 
for immunostaining and further improving high resolution 
analysis of nuclear and chromosome ultrastructure. 

Currently, a disadvantage of this methodology is its reli- 
ance on artificial constructs and the difficulty of multiple 
labeling. Conventional in situ hybridization at both the 
light and electron microscopy levels will therefore serve as 
a complementary and necessary tool, particularly for allow- 
ing comparisons with native chromosome structure and be- 
havior. In the future, the use of other operator-repressor 
combinations in addition to lac, as well as operator arrays 
of variable size, may allow multiple labeling schemes, ex- 
tending the range of applications of this technology, par- 
ticularly when combined with targeting of these operator 
arrays to specific chomosomal sites. 

Confirmation of  Chromonema Fibers as a Basic Unit of  
Large-Scale Chromatin Folding 

As described in the introduction, previous work described 
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~100-nm "chromonema" fibers within interphase nuclei 
as a basic unit of large-scale chromatin organization (Bel- 
mont et al., 1989; Belmont and Bruce, 1994); depending on 
cell cycle position, the actual predominant fiber diameter 
varied from 80-130 nm. In contrast, experiments using flu- 
orescence in situ hybridization with probes that "paint" an 
entire chromosome or chromosome segment have visual- 
ized compact chromosome domains but have not recog- 
nized any distinct, fibrillar substructure (Cremer et al., 
1993). Moreover, based on the statistical distribution of 
distances between chromosomal sites, measured using in 
situ hybridization, a random walk model for the folding of 
chromatin over a size scale of 100-1,000 kb and a looping 
over a 1,000-kb and larger size scale has been proposed 
(van den Engh et al., 1992; Yokota et al., 1995). 

Using the lac repressor-operator staining methodology, 
we have visualized clear examples of extended fibrillar stain- 
ing by light microscopy in living cells. At the same time, 
we have visualized what appears to be a fibrillar substruc- 
ture within more compactly folded HSRs. Based on the es- 
timated HSR sizes, this fibrillar staining corresponds to 
large-scale chromatin folding well above the 30-nm chro- 
matin fiber in packing ratio. We also have demonstrated 
that previous failures to appreciate large-scale chromatin 
substructure within chromosome domains are consistent 
with structural perturbations in chromatin structure result- 
ing from a standard in situ hybridization procedure. Al- 
though regions of extended fibers could still be visualized 
by in situ protocols, in regions where these fibers were 
tightly folded, the blurring occurring after DNA denatur- 
ation obscured the underlying fibrillar substructure. There- 
fore, appreciation of the underlying fibrillar substructure 
by in situ hybridization would normally require the appro- 
priate size probes to chromosome regions forming ex- 
tended fibers, rather than the usual tightly folded pattern. 
Based on our serial section analysis of G1 CHO nuclei, 
these extended regions are relatively rare (Belmont and 
Bruce, 1994). 

Similarly, immunogold lac repressor staining of formal- 
dehyde fixed cells revealed these HSRs were formed by 
large-scale chromatin folding with underlying fibrillar com- 
ponents well above 30-nm diameter. In thicker sections, 
extended fibrillar regions were visualized, with component 
fibers in the ~100-nm diameter range, consistent with our 
previous EM studies. 

Because of the variable HSR size in the PDC cells used 
in this work, an exact estimation of the compaction ratio 
for these fibers is not yet possible. However, a packing ra- 
tio of 10,000:1 or greater for metaphase chromosomes, to- 
gether with the ~0.5-txm or larger size of the PDC HSRs 
within metaphase chromosomes versus the estimated in- 
terphase length of tens of txm, predicts a packing ratio of 
these chromonema fibers on the order of several 100s- 
1,000s to 1. Work is now in progress to estimate the com- 
paction ratio of these fibers more accurately using cell 
clones containing HSRs of fixed size. 

What had not been absolutely certain in our previous 
studies of large-scale chromatin organization was whether 
the chromonema fibers we visualized were: (a) present in 
cells before extraction in polyamine buffer, (b) due to con- 
tinuous, linear folding of a single contiguous DNA se- 
quence versus a result of coincidental contact between 

several smaller condensed chromatin segments, or (c) typ- 
ical of most chromosomal folding, given that for technical 
reasons the ability to trace these fibers by serial sectioning 
over 1-2 p.m in length was limited to a small fraction of the 
total chromatin. 

The results discussed above demonstrate that these 
chromonema fibers are not an artifact of a particular isola- 
tion buffer and do correspond to the organized folding 
into extended fibers of contiguous DNA sequence. 

Application of this lac repressor staining technology 
should allow the detailed description of the unfolding/ 
folding pathway for specific chromosome regions during 
the mitotic and interphase cell cycle. The capability of fol- 
lowing the folding of chromosome regions of variable size 
should help to elucidate basic structural motifs underlying 
chromosome condensation and decondensation. Future 
development of this technology should allow direct visual- 
ization of the higher order chromatin folding of specific 
chromatin domains. 
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