Nucleotide Sequence of the *traI* (Helicase I) Gene from the Sex Factor F

HARVEY D. BRADSHAW, JR.,¹ BETH A. TRAXLER,²† EDWIN G. MINKLEY, JR.,³* EUGENE W. NESTER,⁴ AND MILTON P. GORDON¹

Departments of Biochemistry¹ and Microbiology⁴ University of Washington, Seattle, Washington 98195, and Department of Biological Sciences,² and Biotechnology Center, Mellon Institute,³ Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213

Received 9 March 1990/Accepted 30 April 1990

A 6.9-kilobase region of the *Escherichia coli* F plasmid containing the 3' half of the *traD* gene and the entire *traI* gene (encodes the TraI protein, DNA helicase I, and TraI^{*}, a polypeptide arising from an internal in-frame translational start in *traI*) has been sequenced. A previously unidentified open reading frame (tentatively *trbH*) lies between *traD* and *traI*.

The conjugal transfer of the Escherichia coli F plasmid is mediated by the gene products of the tra regulon (reviewed in references 9 and 21). TraI protein is required for conjugation of F, is now known to be a DNA helicase (2), and has been purified and partially characterized (1, 10). Recent genetic and biochemical studies have shown that TraI protein also plays a role in nicking at the origin of transfer (19), presumably supplying the TraZ function required for nicking at F oriT. Mapping experiments (18) have suggested that TraI* (which is probably the same as protein 2b [12], for which an independent map locus, traZ, was once postulated [5]), is the result of an internal in-frame translational start in tral. Consequently, in the revised genetic map of F there is a region between *traD* and *traI* sufficiently large to encode additional tra polypeptides (18). To facilitate a biochemical analysis of TraI and TraI* function and to investigate the possibility that an unrecognized tra gene lies between traD and tral, we have sequenced the relevant region from the F plasmid. The TraI amino acid composition and N-terminal amino acid sequence deduced from the nucleotide sequence were verified by amino acid composition and N-terminal sequence analyses performed on purified TraI protein.

The DNA to be sequenced was taken from pPD1 (18), which spans the traDI locus. Two EcoRV (all enzymes except Sequenase [United States Biochemical Corp., Cleveland, Ohio] were from Bethesda Research Laboratories, Inc., Gaithersburg, Md.) fragments (6.4 kilobases and 511 base pairs) were sequenced, and their junction was confirmed by sequencing the overlapping 1-kilobase SmaI fragment. The gel-purified fragments were electroeluted and passed over NACS columns (Bethesda Research Laboratories), self-ligated, sonicated to randomly shear the DNA (4), end repaired with T4 DNA polymerase, and cloned into SmaI-cleaved M13mp18. Sequencing was by the dideoxy method (17) by using either the Klenow fragment of DNA polymerase I or Sequenase with $[\alpha$ -³⁵S]dATP (Dupont, NEN Research Products, Boston, Mass.) and buffer gradient gels (3). We routinely used dITP in place of dGTP with Sequenase to eliminate band compression artifacts. Shotgun sequence data were assembled by using SEQMAN and SEQ- MANED software (DNASTAR, Madison, Wis.). Subsequent analysis was performed with GENEPRO (Riverside Scientific, Seattle, Wash.) or FASTP (11). TraI protein was purified as previously described (19), and its amino acid composition was determined on a Durrum D-500 automated amino acid analyzer following hydrolysis in 6 N HCl at 110°C in vacuo for 24 h. Primary sequence determination was made on a 96-kilodalton amino-terminal fragment of TraI protein purified from an *E. coli* strain harboring the TraI chainterminating derivative pEM10 (19) by using a gas-phase sequencer (model 470A; Applied Biosystems, Inc., Foster City, Calif.) and the standard Edman degradation sequencing program of Hunkapiller et al. (8).

The nucleotide sequence of a 6,881-base-pair region from the F plasmid containing the 3' half of traD (1 to 768), a previously unknown open reading frame (tentatively trbH [771 to 1487]), and tral (1487 to 6754), along with the predicted translation products, is shown in Fig. 1. The N-terminal amino acid sequence of purified TraI protein, MetMet???IleAlaGlnVal, confirms the initiation of translation derived from nucleotide sequence analysis. (The Ser in position 3 would not be expected to be recovered.) Further support for the validity of the DNA sequence comes from a comparison between the amino acid composition of TraI protein predicted by the nucleotide sequence and that determined experimentally (Table 1). The amino acid analysis is the result of a single 24-h hydrolysis, uncorrected for destruction (would increase Ser and Thr and, to a lesser extent, Tyr and Met) or incomplete hydrolysis (would increase Leu and Ile).

Inspection of the nucleotide sequence shows that the traD reading frame is terminated by consecutive opal codons, TGATGA, whose internal ATG (underlined) is the probable initiation codon for an open reading frame designated trbH. The trbH reading frame ends with two opal codons preceded by an A (ATGATGA), to form the start sequence (underlined) consistent with the two amino terminal residues of TraI protein (we have discounted the first methionine codon in the traI reading frame at 1466 to 1468 as a likely translation start because it does not agree with the experimentally determined N-terminal amino acid sequence and because it lacks a consensus ribosome-binding site [Fig. 1]). This arrangement of stop-start codons implies that traD, trbH, and traI are translationally coupled (7) and explains the polar

^{*} Corresponding author.

[†] Present address: Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115.

TraD

D I Ү GATATCTA	G E	K A A GAAAGCGGCT	A S L GCCTCGCTG1	F D V M TTGACGTCAT	INTR GAACACCCG1	A F F GCCTTTTTC	R S P CGTTCTCCCA	S H K I		A A G	E I G E	r e
	10	20	30	40	50	60	70	80	90	100	110	120
H L K CACCTGAA 1	A S AGCCAGO 30	E Q Y CGAGCAGTAT 140	S Y G TCCTACGGTG 150	A D P V CTGATCCGGT 160	R D G ACGTGACGGG 170	V S T GTATCGACC 180	G K D GGTAAGGATA 190	M E R Q TGGAGCGCCAC 200	T L V SACGCTGGTC 210	S Y S AGTTATTCCG 220	D I Q S ACATTCAGTC 230	L P TCTGCCG 240
D L T GATCTGAC	C Y	V T L	P G P CCCGGACCGT	Y P A V ATCCGGCAGT	K L S	L K Y CTG AAA TAT	Q T R CAGACACGAC	PKVA	P E F	I P R	D I N P	E M
	50	260	270	280	290	300	310	320	330	340	350	360
GAGAACCG 3	TCTGAGI 70	GCCGTACTTO 380	GCCGCAAGGG 390	E A E G AAGCAGAAGG 400	TCGTCAGATG 410	A S L GCCAGCCTC 420	F E P TTCGAACCGG 430	D V P E ATGTCCCGGAC 440	V V S GTTGTTTCC 450	G E D GGAGAAGACG 460	V T Q A TGACTCAGGC1 470	E Q IGAACAG 480
PQQ CCGCAACA 4	PV GCCGGTC 90	S P A STCTCCTGCCA 500	I N D ATCAACGATA 510	K K S D AGAAGTCAGA 520	S G V TTCAGGTGTG 530	N V P AATGTTCCG0 540	A G G GCAGGGGGGGA 550	I E Q E TCGAGCAGGAG 560	L K M CTGAAAATG/ 570	K P E AAACCGGAAG 580	E E M E AAGAGATGGAJ 590	Q Q CAGCAA 600
L P P CTGCCACC 6	G I CGGGATC 10	S E S AGTGAATCCC 620	G E V GGTGAAGTGG 630	V D M A TGGATATGGC 640	A Y E CGCTTATGAG 650	A W Q GCATGGCAAG 660	Q E N CAGGAAAATC 670	H P D I ATCCGGACATC 680	Q Q Q CAGCAGCAGA 690	M Q R ATGCAGCGTC 700	R E E V GTGAAGAGGTG 710	N I GAACATT 720
N V H	RE	RGE	D V E	PGDD	F * *							
					м	NRS 1	r p v f	N S Q	а а н 1	L F K F	PGV	IS
7	30	740	750	760	770	780	790	CAATTCTCAGG 800	CCGCCCACAC 810	B20	CCCGGGTGTTA 830	ATTAGTC 840
ACAATAAT	CAGTCCC 50	CGACTGCGGG	GCATGACCTG 870	CGATCATTTG 880	I K W ATCAAATGGC 890	PDRA CCGACAGGGG 900	A S L K CGTCCCTGAA 910	G K F GGGCAAGTTCT 920	C S Y I GCTCTTATCT 930	LAGV IGGCCGGTGT 940	C G S GTGTGGCAGCA 950	SS SCAGCG 960
V V I TCGTAATC 9	Q N CAGAACG 70	V N A C TCAATGCGGG 980	5 N K S 5 AAACAAA TC 990	L D H CCTCGATCAC 1000	S E I AGCGAGATTA 1010	T F R CGTTCAGGC/ 1020	L A F CTGGCTTT 1030	F C T TTTCTGCACCA 1040	I Y H I TATATCACCI 1050	H Q S CCATCAGAG 1060	D R T FGACCGAACTG 1070	DA ATGCAC 1080
H S P ATTCTCC	L V CCTGGTT 090	Q V K CAGGTTAAAA 1100	T F P CGTTCCCTG 1110	D T G G ACACTGGCGG 1120	F V L GTTTGTTCTT 1130	YRK TATCGTAAAA 1140	N A D ATGCAGATG 1150	V G I E TTGGTATCGAG 1160	H K L CATAAACTTC 1170	Q H Q I CAGCATCAGAN 1180	V D S L ATGACTCCCTT 1190	S C TCCTGCA 1200
I P G TACCAGG 1	C S CTGTTCC 210	L L S CTGTTATCCA 1220	I K S TAAAATCAG 1230	A L T L CGCTGACACT 1240	F P S GTTTCCGTCG 1250	N H S AACCATTCGI 1260	S H V TCCCATGTCT 1270	S P A G CTCCGGCAGGC 1280	V M I GTAATGATTC 1290	R V R E GGGTTCGTCG 1300	PTAI CGACAGCAATC 1310	T S ACTTCAA 1320
T R F CGCGTTT 1	T F TACGTTT 330	S G N TCCGGCAATG 1340	A T A CAACCGCTT 1350	F G S L TTGGCAGTCT 1360	T A W GACCGCCTGG 1370	L R L CTGCGGTTGC 1380	L R N CTGAGAAATA 1390	r v v s CGGTGGTTTCC 1400	I I C ATTATTTGCC 1410	L L M W TCCTTATGTO 1420	VICL GATATGTCTT 1430	V Y GTGTATA 1440
					Tral							
і н с	GI	DAGI	C Q R	DIR	ммs L**	IAQ	VRS	AGSA	GNY	YTD	KDNY	ΥV
TCCATTGT	GGGATTG 50	ATGCCGGGAT 1460	ATGTC <u>AAAG</u> 1470	GGATATACGT 1480	TTATGATGAG 1490	TATTGCGCAG 1500	GTCAGATCG	GCCGGAAGTGC 1520	CGGGAACTA1 1530	TATACCGAC	VAGGATAATTA 1550	CTATGT 1560
L G GCTGGGCA 15	S M G GCATGGG 70	E R W AGAACGCTGG 1580	A G R GCCGGCAGG 1590	G A E (GGGGGCTGAAC) 1600	Q L G L AGCTGGGGGCT 1610	Q G S GCAGGGGCAGT 1620	V D K GTCGATAAGO 1630	D V F T GATGTTTTTAC 1640	R L L CCGTCTTCTG 1650	E G R GAGGGCAGG0 1660	L P D G TGCCGGACGG 1670	A D AGCGGA
L S I	R M Q GCATGCA	D G S GGATGGCAGT	N R H	R P G S	DLT	F S A	PKS	V S M M	A M L GGCCATGTTA	G G D	K R L I	D A
16	90	1700	1710	1720	1730	1740	1750	1760	1770	1780	1790	1800
H N (ACATAATCI 18:	DAV AGGCCGT 10	DFA GGATTTTGCT 1820	V R Q GTCCGTCAG 1830	V E A D STGGAGGCGCC 1840	I A S T IGGCCTCCACI 1850	R V M ACGGGTGATG 1860	T D G ACGGACGGAC 1870	Q S E T CAGTCAGAAAC 1880	V L T GGTGCTGACC 1890	G N L GGTAATCTGO 1900	V M A L TGATGGCACT 1910	F N GTTTAA 1920
H D 1 CCACGACAC 193	T S R CCAGTCG 30	D Q E CGATCAGGAA 1940	P Q L CCACAGTTAC 1950	H T H A CACACGCATGO 1960	GGTGGTGGC 1970	N V T TAATGTCACG 1980	Q H N CAGCATAATO 1990	G E W K GCGAATGGAA 2000	T L S GACACTGAGC 2010	S D K AGTGACAAAG 2020	V G K T TGGGGGAAAAC 2030	G F GGGGTT 2040
I E P CATTGAGAA 205	N V Y ATGTGTA] A N Q CGCTAATCAG 2060	I A F ATTGCCTTTC 2070	G R L S GCAGGCTCT/ 2080	REK CCGGGAAAAA 2090	L K E ACTGAAAGAG 2100	Q V E CAGGTTGAGO 2110	A L G Y CCCTCGCCTA 2120	E T E IGAAACTGAA 2130	VVG GTGGTTGGTA 2140	K H G M AGCACGGTAT	W E GTGGGA 2160
мро	G V P	VEA	FSG	RSQ1	IRE	AV G	EDA	SLKS	RDV	AAL	DTRK	sк
AATGCCGGG 217	STGTACC 70	GGTGGAGGCC 2180	2190	2200	2210	2220	GAAGACGCC1 2230	2240	2250	GCGGCGCTGG 2260	ATACGCGTAA 2270	ATCCAA 2280
Q H V	/ D P	E I K GGAGATCAAA	M A E ATGGCCGAGI	W M Q 1 Iggatgcagag	L K E	T G F	D I R GACATCCGGG	A Y R D CATATCGTGA	A A D CGCGGCGGAT	Q R A CAGCGTGCGG	D L R T	L T GCTGAC
229	90	2300	2310	2320	2330	2340	2350	2360	2370	2380	2390	2400

FIG. 1. Nucleotide sequence and predicted translation products of the 6.9-kilobase EcoRV fragment containing the traDI locus. The putative translation initiation sites of *trbH* (771), *tral* (1487), and *tral** (4349) are shown. Only the 3' end of the *traD* gene is found on this EcoRV fragment. Probable ribosome-binding sites preceding trbH, traI, and traI* are underlined. DNA helicase I is a potent DNA-dependent ATPase, and two regions of TraI with amino acid sequence similarity to adenine nucleotide-binding sites (20) are boxed.

effect that nonsense mutations in traD have on the production of TraI protein (5, 18).

Although expression of tral is mostly dependent upon positive activation of the tra operon by the TraJ protein, biochemical experiments have demonstrated that there is significant traJ-independent transcription of traI that occurs separately from traD (6, 16). Based on sequence similarity to the E. coli sigma-70 promoter consensus (15), a possible location for this in vivo promoter would be approximately 350 base pairs upstream of the TraI translation startpoint (-10 region at positions 1134 to 1139). Electron microscopy has been used to map a strong RNA polymerase-binding site in this region of tra DNA (13).

If the 88-kilodalton TraI* protein derives from an internal translation start in *traI*, as has been supposed (18), the most likely initiation codon is at position 4349 (Fig. 1). There is an acceptable ribosome-binding site nearby, and the deduced TraI* polypeptide has an M_r of 88,000. The predicted TraI helicase has an M_r of 192,000, reasonably close to the 180-kilodalton estimate from sodium dodecyl sulfate-poly-

S Q D G P D V Q Q A V T Q A I A G L S E R K V Q F T Y T D V L A P T V G TCACAGGACGGGCCGGATGTGCAGCAGGCGGTGACACAGGCGATTAAGTGAACGAAAAGTGCAGTTCACGGACGTACGGCGATGACGGCGATGAGGCGG 2420 2450 2460 2470 2480 2490 2500 2510 2520 GCCCGGGCCTG 2410 TGCTTCAC I L P P E N G V I E R A R A G I D E A I S R E Q L I P L D R E K G L F T S G : H CATACTGCCGCCGGAAAATGGTGTGATTGAACGGGCACGCGCCGGTATCGATGAGGCCATCAACCGGTAGCAGCAGCTTATCCCCCTCGACCGTGAGAAAGGGGCTGTTCACGTCCGGGATCA 2530 2540 2550 2560 2570 2580 2590 2600 2610 2620 2630 2640 I A A D R R S Q M N M K Q D E R L S G E L I T G R R Q L L E G M A F T P G S T V TATCGCTGCTGACCGTCGCTCGCAGATGAACAGAAGAAGAAGAAGATGAACGGTTGTCCGGTGAGCTGATAACCGGACGGCTGCTGGAAGGCATGGCCTTCACGCCGGGCAGTACTGT 2890 2900 2910 2920 2930 2940 2950 2960 2970 2980 2990 3000 A L M A M K D A G V N T Y R W Q G G E Q R P A T I I S E P D R N V R Y A R L A G TGCACTGATGGCCATGAAGGATGCCGGGGGGAAACAGCATATCGCTGGCAGGGGGGGAGAACAGCGACCGGCCACCATCATCAGTGAACCGGACCGTAATGCCCGGCTGGCAGG 3130 3140 3150 3160 3170 3180 3190 3200 3210 3220 3230 3240 D F A A S V K A G E E S V A Q V S G V R E Q A I L T Q A I R S E L K T Q G V L G AGATTITGCGGCCAGCGTGAAAGCCGAGAAGAGAGGGTGGCACAGGTGAGGGGAGGGGGACGGGGAACAGGCCATACTGACACAGGCCATTCGCAGTGGAGTGAAAACACAGGGCGTGCTCGG 3250 3260 3270 3280 3290 3300 3310 3320 3330 3340 3350 3360 L S P V W L D S R S R Y L R D M Y R P G M V M E O W N P E МТА ACTCCCGGAGGTGACCATGACTGCCCTTTCACCGGTCGGCTGGACAGCCGGAGCCGTTATCTGCGGGATATGTACCGTCCGGGGATGGTGATGGAGCAGTGGAACCCGGAGACACCAG 3370 3380 3390 3400 3410 3420 3430 3440 3450 3460 3470 3480 3520 3530 3550 3560 3620 3630 3640 3650 3690 3700 T V V V P G R A E P A T L P V S D S P F T A L K L E N G W V E T P G H S V S D S GACGGTTGTTGTGCCGGGACGGGCTGAACCGGCCACCCTGCAGGGAGATCACCGGTCACGGCAGCGGCAGGGGAGAACGGCCGGGGCAACCGGCCATCCGTCAGCGACAG Q A I H L A L P V V E S K K L A F S M V D L L T E A K S F A A E G T G F T E L G GCAGGCCATTCATCTTGCCCTTCCGGTGGTGGAAAGTAAAAACTGGCCTTCAGCATGGTGGACCTGCTGACAGAGGGAAGCCGGTTGCTGCGGAAAGGAACCGGTTTACTGAACTGGG 4090 4100 4110 4120 4130 4140 4150 4160 4170 4180 4190 4200 G E I N A Q I K R G D L L Y V D V A K G Y G T G L L V S R A S Y E A E K S I L R AGGGGAAATCAATGCGCAGATAAAACGGGGTGATTTACTGTATGTGGATGGGCAAAAGGCCATGGGCACAAGGCTCTTCG 4260 4270 4280 4290 4300 4310 4320 TSD 4490 4500 4470 4480

FIG. 1-Continued.

L F L L D E S S M V G N T D M A R A Y A L I A A G G G R A V A S G D T D Q L Q A GCTGTTCCTGCTCGATGAGAGCTCAATGGTGGGGAATACCGACATGGCACGGGCAATGGGCCGGTGGCGGGTGGCGGTGGCGGTGGCCAGTGGGGACACGGACCAGCTGCAGG 4690 4700 4710 4720 4730 4740 4750 4760 4770 4780 4790 4800 I A P G Q P F R L Q Q T R S A A D V A I M K E I V R Q T P E L R E A V Y S L I N CATCGCCCCCGGTCAGCCTTTCCCGTCTCCAGCAGAGCGCCAGTGCTGCCCGATGTGGCCCATCATGAAGGAGATTGTGCGCCAGACGCCGGAACTGCGGGAGGCGGTATACAGCCTGATTAA 4810 4820 4830 4840 4850 4860 4870 4880 4890 4900 4910 4920 R D V E R A L S G L E S V K P S Q V P R Q E G A W A P E H S V T E F S H S Q E A CCGGGATGTGGAAAGGGCACTGTCCGGGGCTTGAGAGTGGAAACCGTCTCAGGGGCGCACGGAGGCACCGGGAGCACCGGGAGTCAGGCAGCAGGAAGC 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020 5030 5040 A E A Q Q K A M L K G E A F P D V P M T L Y E A I V R D CAGAAGCGCAGCAGAAGGGGATGCTGAAAGGCGAGGCTTTTCCGGATGTCCCCCATGACACTGTATGAAGCCATTGTCCGCGAC 50 5060 5070 5080 5090 5100 5110 5120 5130 GR TTCCGGATGTCCCCATGACACTGTATGAAGCCATTGTCCGCGACTATACCGGCAGAACACCGGGAAGCACGGGA 5170 5180 JIJU JULI T A N I R D G E L R R L S T W E T H R D A L V L V D N V Y H R I A G I S K D D G CACAGCGAATATACGTGACGGGAGCTCCCTCTCCACCTGGGAGACACATCGGGAGCACATCGGGGGATAATGTGTATCACCGGATTGCCGGATACAGTAAGGATGACG 5300 5310 5320 5330 5340 5350 5360 5370 5380 5390 5400 L I T L Q D A E G N T R L I S P R E A V A E G V T L Y T P D T I R V G T G D R M GCTGATAACCCTGCAGGATGCGGAAGGTAACACGCGGTGATTCCTCCCCGGGAGGCGGTGGCTGAAGGTGTCACACTGTACACCCCGGACACCATCAGGGTGGGGACCGGTGACCGGAT 5410 5420 5430 5440 5450 5460 5470 5480 5490 5500 5510 5520 TRVGTGDRM R F T K S D R E R G Y V A N S V W T V T A V S G D S V T L S D G Q Q T R E I R P GCCCTTCACGAACAGTGACCGGGAGCCGGGTTATGTGGCCCACAGCGCTGGACGGGACAGCAGTGTCCGGGACGGCACAGCAGACGCCGGGAGATTCGCCC 5530 5540 5550 5560 5570 5580 5590 5600 5610 5620 5630 5640 K L L T T D D G N G L R G F S G E G R V K G S G D A Q F V A L Q G S R N G E S L L A ACTGACCACGGATGACGGCACCGCGGGATCACTGCGGGAGGACGGCGGCAGCCGCAGTCGTGGCCCCGCAGGGCAGCCGGAACGGAGAGAGCCTGCTGGC 6130 6140 6150 6160 6170 6180 6190 6200 6210 6220 6230 6240 GUAGTTCGI 6200 N N O D G V R I A R D N P D S G V V R I A G E G R P W N P G A I T G G R V W D G D I P D N S V Q P G A G N G E P V T A E V L A Q R Q A E E A I R R E T E R R GGGGGATATCCCGGGACAACAGTGTCCAGCCGGGAGCCGGAAATGGCGAACCGGTCACGGCAGAGGTGCTGGCACAGCGGCAGAGGCGCAGAGGCCGAAACGGCAGCGCGG DEIVRKMAENKPDLPDGKTEQAVREIAGQERDRAAITTE AGATGAAATTGTCCGTAAAATGGCAGAGAACAAACCTGACCTGCCGGATGGCAAAACGAGCGGCTGTCAGGGAGATTGCCGGGCGGCGGCGGCGGCGCGCATAACTGAACGGGA 6490 6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600 CGÃC

TGCAGTCGTTGCTGGTCTGGTCACCCGGACAGCGGGATATC 6850 6860 6870 6880

FIG. 1-Continued.

 TABLE 1. Amino acid composition of TraI determined

 experimentally (see text) and deduced from

 the nucleotide sequence

Residue	mol% exptl	mol% deduced			
Ala	10.5	10.3			
Arg	8.8	8.6			
Asx	8.8	8.7			
Cys	ND^{a}	0			
Gİx	12.7	13.1			
Gly	8.7	8.6			
His	2.0	1.7			
Ile	3.4	3.7			
Leu	8.1	8.1			
Lvs	3.6	3.5			
Met	2.2	3.0			
Phe	2.0	2.0			
Pro	4.1	4.0			
Ser	5.6	6.6			
Thr	5.9	6.4			
Trp	ND	0.9			
Tvr	1.4	1.9			
Val	7.9	8.2			

^a ND, Not determined.

acrylamide gel electrophoresis analysis of the authentic protein (1). The predicted TrbH polypeptide has an M_r of 26,000 and is therefore unlikely to be a 12-kilodalton membrane protein which has been observed and is thought to map in this region (12, 14).

Protein analyses were performed at the Protein Primary Structure Determination Facility at Carnegie-Mellon University, William E. Brown, Director.

This work was supported by a postdoctoral fellowship from the Helen Hay Whitney Foundation (H.D.B.), American Cancer Society grant NP336D (M.P.G.), and Public Health Service grants 2RO1 GM32618-17 (E.W.N.) and GM28925 (E.G.M.) from the National Institute of General Medical Sciences.

LITERATURE CITED

- 1. Abdel-Monem, M., and H. Hoffman-Berling. 1976. Enzymic unwinding of DNA. I. Purification and characterization of a DNA-dependent ATPase from *Escherichia coli*. Eur. J. Biochem. 65:431-440.
- Abdel-Monem, M., G. Taucher-Scholz, and M.-Q. Klinkert. 1983. Identification of *Escherichia coli* helicase I as the *traI* gene product of the F sex factor. Proc. Natl. Acad. Sci. USA 80:4659–4663.
- Biggin, M. D., T. J. Gibson, and G. F. Hong. 1983. Buffer gradient gels and ³⁵S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963-3965.
- 4. Deininger, P. L. 1983. Random cloning of sheared DNA: applications to shotgun sequence analysis. Anal. Biochem. 129:

216-223.

- Everett, R., and N. Willetts. 1980. Characterization of an in vivo system for nicking at the origin of conjugal DNA transfer of the sex factor F. J. Mol. Biol. 136:129–150.
- 6. Gaffney, D., R. Skurray, and N. Willetts. 1983. Regulation of the F conjugation genes studied by hybridization and *tra-lacZ* fusion. J. Mol. Biol. 168:103-122.
- Gold, L., and G. Stormo. 1987. Translational initiation, p. 1302–1307. In F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington, D.C.
- Hunkapiller, M. W., R. M. Hewick, W. J. Dreyer, and L. E. Hood. 1983. High-sensitivity sequencing with a gas-phase sequenator. Methods Enzymol. 91:399-413.
- Ippen-Ihler, K. A., and E. G. Minkley, Jr. 1986. The conjugation system of F, the fertility factor of *Escherichia coli*. Annu. Rev. Genet. 20:593-624.
- Lahue, E. E., and S. W. Matson. 1988. Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J. Biol. Chem. 263:3208–3215.
- 11. Lipman, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity searches. Science 227:1435-1441.
- 12. Manning, P. A., B. Kusecek, G. Morelli, C. Fisseau, and M. Achtman. 1982. Analysis of the promoter-distal region of the *tra* operon of the sex factor of *Escherichia coli* K-12 encoded by *Eco*RI restriction fragments f17, f19, and f2. J. Bacteriol. 150:76-88.
- 13. Manning, P. A., G. Morelli, and C. Fisseau. 1984. RNApolymerase binding sites within the *tra* region of the F factor of *Escherichia coli* K-12. Gene 27:121–123.
- Moore, D., B. A. Sowa, and K. Ippen-Ihler. 1982. A new activity in the F tra operon which is required for F-pilin synthesis. Mol. Gen. Genet. 188:459–464.
- Mulligan, M. E., and W. R. McClure. 1986. Analysis of the occurrence of promoter-sites in DNA. Nucleic Acids Res. 14:109–126.
- Mullineaux, P., and N. Willetts. 1985. Promoters in the transfer region of plasmid F, p. 605–614. *In* D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender (ed.), Plasmids in bacteria. Plenum Publishing Corp., New York.
- Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467.
- Traxler, B. A., and E. G. Minkley, Jr. 1987. Revised genetic map of the distal end of the F transfer operon: implications for DNA helicase I, nicking at *oriT*, and conjugal DNA transport. J. Bacteriol. 169:3251-3259.
- Traxler, B. A., and E. G. Minkley, Jr. 1988. Evidence that DNA helicase I and *oriT* site-specific nicking are both functions of the F TraI protein. J. Mol. Biol. 204:205-209.
- Walker, J. E., M. Saraste, M. J. Runswick, and N. J. Gay. 1982. Distantly related sequences in the *a*- and *B*- subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1:945-951.
- Willetts, N., and B. Wilkins. 1984. Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48:24-41.