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In  the preceding paper  (see Discussion and Fig. 12) a specific model  is 
out l ined for the na ture  of the interact ion between platelets,  ant ibody,  and  
quinidine leading to format ion of a complex which m a y  fix complement .  
Our  object  here is to derive some of the propert ies  of this model  using the 
methods  of s tat is t ical  mechanics. Equat ions  describing these propert ies  were 
used to calculate theoret ical  results for complement  fixation when appropr ia te  
values were assigned for concentrat ions of reactants  as they  were used experi- 
mental ly .  A comparison of the theoretical  and experimental  results is also 

included in the preceding paper .  
There  are two cases to consider: (1) quinidine is bound on ant ibody,  and 

the ant ibody-qninidine  complex is then bound on platelets ;  and  (2) quinidine 
is bound  on platelets,  in the neighborhood of the sites on platele ts  which then 
b ind  ant ibody.  In  ei ther case the  final ant ibody-quinidine-pla te le t  complexes 
fix complement  under  condit ions described in the model. 

Case 1: Quinidine Bound on Antibody 

We assume that each antibody molecule possesses three equivalent and independent sites 
for the binding of quinidine. Also, we assume that the platelets present in the system provide 
a total of B equivalent and independent sites for the binding of antibody; however, only 
antibody molecules with at least one quinidine attached can be bound. 

Thus, whenever an antibody molecule is bound on a platelet, one quiuidine is certainly 
attached to it and this 1-1 antibody-quinidine complex is considered a unit in counting pos- 
sible states of bound antibody molecules. Additional quinidine molecules may be bound on 
the other two sites on the antibody; this binding is assumed to be "random" (i.e. as in Lang- 
muir adsorption (reference 1)) and to have the same binding constant as for quiuidine bound 
on antibody molecules in solution (in which there are three instead of two sites for "random" 
binding). 

Antibody Molecules in Sdution.--In order to investigate the equilibrium between bound 
antibody and antibody in solution, each of these states must be considered separately. Sup- 
pose that in a solution of volume V there are n. antibody molecules with ne quiuidine mole- 
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cules bound on the 3n, sites available for such binding. The canonical ensemble partition 
function for this system is then (reference 2) 

1 (3n.) ! j~  Q ffi ~ U °. v] ~o (1) 
n~I(3no --  n~) ! 

in which j~ and j~ are internal partition functions for antibody in solution and qulnidine 
bound on antibody (including the energy of binding), respectively. We find In Q, using Stir- 
ling's approximation, and then 

k T  = ~n ,  (2) 

_ ~ _- ~ In O (3) 
k T  ~n~ 

in which zo and z~ axe chemical potentials. Equations (2) and (3) give 

e~a/kT ~ Ca(1 - -  aq )  8 
j~ (4) 

:.,., 
ffi [_1 - "dJ~ (5) 

in which aq =: n~ /3m,  and  c ,  ffi n , , / V .  T h e  conventional expression for the chemical poten- 
tial of a dilute solute in solution is 

= ~o + k T i n c  

with ~o representing a standard potential (~ ffi ~o when c -- 1). Hence in equation (4) we 
write 

• o g/kT 

and we set the right side of equation (5) equal to e~/kTcq,  in which c~ is the concentration 
of quinidine in solution, since quinidine bound on antibody is in equilibrium with quinidine in 
solution. Thus 

e%/~r f f i  c°e~°~lkT (6) 
(1 + kq cq) 8 

~ = kqc ,  (7) 
1 - -  ~¢q 

in which the "binding constant" kq ffi j ~ e  z~/kT and equation (7) has been used to eliminate 
aq in equation (6). Equation (7) is essentially a Langmuir adsorption isotherm (references 
1, 2). 

Ant ibody  Molecules B o un d  on P la l~e t s . - -Here  we have a system of B sites for the binding 
of antibody, No molecules of antibody bound, No molecules of quinidine bound as a firm 1-1 
complex, and a total of N a molecules of quinidine bound (i.e., N q - N a  molecules of quinidine 
bound "randomly"). The partition function in this case is 

3B!j~° (2N.) !j[~-N~ 
Q = N . ! ( B  --  N.)!" (Nq -- No) [(3N~ -- Nq)I (8) 
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in which j .q  refers to the firm I-I antibody-quinidine complex. Using equations (2) and (3) 
again, we find 

e~aikr ffi N . ( 3 N .  - -  N~) s (9) 
(B -- N . ) ( 2 N . ) ' ( N ~  -- N . ) j .  

e,¢/kr = Ne -- N .  (10) 
(3N. - Nq)jq 

in which j .  = J**/Ja. 
Antibody Equilibrium.--At equilibrium, the two chemical potentials in equations (9) 

and (10) must equal the same quantities in solution. Equations (6) and (9) give 

k . c .  -~ O. (1 -- 0~) s (11) 
(1 + kqc~) s 1 - -  06 (2/3)2(0e - -  1 /3)  

in which O. = N J B ,  O~ ~ffi Nq / 3N , ,  and k. ffi j~e  ~'Ukr. Equation (10) can be rewritten as 

kqc, q ~-- 1 - -  O~ ( 1 2 )  

• . t t . . , . . . .  
m which O~ --- (N~ -- N . ) / 2 N ~  (thus O~ m the fractaon of "random' qtamdine sttes filled). 

r • • • c c  

We note that aq ffi 0~, as expected from our assumption that the binding constant for ran- 
dom" binding of qulnidine on antibody is the same whether the antibody is in solution or on a 
platelet. If  we use the relations 

30~ffi 1 + 2 0 ~  

and 

equation (11) becomes 

o r  

t O~ kq Cq (13) 
1 + kq cq 

• Oo 
ka O~ ca = 

ka ~ Ca 
oo ffi 1 + k . 0 ~ c .  (14) 

This is the equation for "random" binding of antibody with an e fe~ive binding constant 

Case 2." Quinldine Bound on Plate2ets 

We assume here that there are B sites on platelets for the binding of antibody molecules 
and at each of these B sites there are also three equivalent and independent adjacent sites 
(on platelets~ for the binding of quiuldine molecules. In order for an antibody to be bound, at 
least one of the three quiuldine sites must be occupied. If an antibody is bound with one 
quinidine molecule two sites would be available for "random" binding of quinidine. The par- 
tition function is therefore 

.N a 
3B!j.~ (3B -- N . ) I j ~  q-rr~ 

0 = (15) 
N.X(B - iV.)I ( N ,  - -  ~ . ) l ( 3 B  - -  N~)t 
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in which Nq is the total number of quinidine molecules bound, Ne -- No of which are bound 
on the 3B -- N~ "random" sites. No quinidine is bound directly on antibody, either in solu- 
tion or when antibody is bound on platelets. Equation (15) leads by the same procedures as in 
Case 1 to 

O, (3 -- 0o) 
k~ e~ --- (16)  

(I - 0 . )  (30~ - so) 

30q - -  Oa 
k~ c~ -- 3(1 -- 0q) (17) 

in which 0o = N o / B  and Oe = N~/3B.  I f  we define, for "random" sites, O~ ~- (N~ - N a ) /  
( 3 B -  N°), equations (16) and (17) become 

So 
-~ (18) ko co (1 -- 0.) O, 

t 
O~ 

kq cq = ~ (19) 

These are the same as equations (14) and (12), respectively, so the two models lead to the 
same final equations (the formal definition of 0q m different but the physical significance is 
the same in the two cases). Hence we need no longer distinguish between the two cases. 

F i ~ i o n  of Complement, Case I or 2 

I t  was assumed in the model that  complement can be bound between antibodies only 
when each of two neighboring platelet sites is occupied with one antibody and two qulnidine 
molecules. The probability that  two neighboring antibody sites on a platelet are both occu- 
pied and further that  each of the two antibody molecules has associated with it exactly two 
quinidine molecules (one "firm", one "random") is 

2 t oo [20. (1 - o~)]~ 

If each antibody site has z nearest neighbor antibody sites, then the number of fixed comple- 
ment molecules is, according to the model described in the preceding paper, 

sB ~_ 
N o  = ~-  o°  [20~ (1 - 0,~)]2 (2o) 

Compu~ionat  F.qua~ions.--We rewrite here some of the above equations in a form con- 
venient for computational purposes. For example we shall use equation (13) in the form 

s~ = q (21) 
1-bq 

q ---- kq cq 

If cn is the concentration of platelet sites (a number proportional to the concentration of plate- 
0 lets) and if v~ is the initial concentration of antibody (before any is bound), we have at equi- 

librium 

c~, -.- B / V ,  c~ = c°~ -- Oo q, .  (22) 
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By substituting equation (22) in equation (14) we can obtain 

1 + o~ (p + a )  - [~ + 20~ ~, + a )  + o~ ~ (p - A),I.~ 
o. = 20~ c23) 

That is, q, p, and A are quantifies proportional to the concentrations of quinidine (initial 
and equilibrium concentrations assumed the same since quinidine is present in excess), piate- 
lets and antibody (initial), respectively. Equation (23), with use of equation (21), gives 0a 
as a function of q, p, and A. Complement fixation, in terms of these same independent vari- 
ables, is then, from equation (20), 

C = p 0~ [20~ (1 - 0~)] 2 (24) 

in which C (proportional to N,) is defined by 

C ~- 2k. N~/Vz 

The analogous expression for the amount of antibody bound (proportional to N.) is 

/~, No 
- -  = / , 0 o  ( 2 5 )  

V 

SUMMARy 

Theoretical equations have been derived, using the methods of statistical 
mechanics, for associations between platelets, antibody, quinidine, and comple- 
ment,  based on a model of an immunoreaction described in the preceding 
paper of this series. The two cases considered (i.e. the  possibilities that  quini- 
dine can at tach first to ant ibody or platelets) lead to the same final equations. 
The comparison of the theoretical results with experimental results is contained 
in the preceding paper. 

The author is indebted to Dr. Jay B. Best for reading the manuscript and for pointing 
out a serious error in an earlier version of the paper. 
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