Organization and Codon Usage of the Streptomycin Operon in Micrococcus luteus, a Bacterium with a High Genomic G+C Content

TAKESHI OHAMA,* FUMIAKI YAMAO, AKIRA MUTO, AND SYOZO OSAWA

Laboratory of Molecular Genetics, Department of Biology, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464, Japan

Received 27 March 1987/Accepted 14 July 1987

The DNA sequence of the *Micrococcus luteus str* operon, which includes genes for ribosomal proteins S12 (*str* or *rpsL*) and S7 (*rpsG*) and elongation factors (EF) G (*fus*) and Tu (*tuf*), has been determined and compared with the corresponding sequence of *Escherichia coli* to estimate the effect of high genomic G+C content (74%) of *M. luteus* on the codon usage pattern. The gene organization in this operon and the deduced amino acid sequence of each corresponding protein are well conserved between the two species. The mean G+C content of the *M. luteus str* operon is 67%, which is much higher than that of *E. coli* (51%). The codon usage pattern of *M. luteus* is very different from that of *E. coli* and extremely biased to the use of G and C in silent positions. About 95% (1,309 of 1,382) of codons have G or C at the third position. Codon GUG is used for initiation of S12, EF-G, and EF-Tu, and AUG is used only in S7, whereas GUG initiates only one of the EF-Tu's in *E. coli*. UGA is the predominant termination codon in *M. luteus*, in contrast to UAA in *E. coli*.

In eubacteria, the G+C content of genomic DNA varies from about 25 to 74% (27). The phylogenetic tree of 5S rRNA has indicated that the genomic G+C contents are closely related to phylogeny (10). This suggests that G+C content is influenced by mutation pressure, the direction and magnitude of this pressure varying among the bacterial phylogenetic lines (21). Biased AT/GC pressure seems to have been exerted on the entire bacterial genome, directionally increasing or decreasing the G+C contents of various parts of the genome (21). Thus, the codon usage pattern in a bacterium seems to have been affected by the AT/GC pressure. For example, in the extremely G+C-poor bacterium *Mycoplasma capricolum* (G+C, 25%), the codon choice is strongly biased toward use of A and U in silent positions (20).

The G+C content of *Micrococcus luteus* DNA is one of the highest (74%) in eubacteria. All species belonging to the *Micrococcus* group so far reported have genomes with high G+C contents (65 to 74%). Thus, in this phylogenetic line, a strong GC pressure may have been affecting composition of the DNA during evolution. In the present study, we have cloned and sequenced the *M. luteus* streptomycin (*str*) operon, which includes the genes for ribosomal proteins S7 and S12, and elongation factors (EF) EF-G and EF-Tu to examine the effect of GC pressure on codon usage in this high-G+C-content bacterium.

MATERIALS AND METHODS

Preparation of DNA. Chromosomal DNA of *M. luteus* IFO3333 was prepared by lysozyme lysis and phenol extraction method according to the method of Godson (8) and further purified by CsCl gradient centrifugation. The genomic G+C content of this strain is 73.6% as measured by direct liquid chromatographic analysis of the component nucleotides (28).

Isolation of Sm^r mutant of *M. luteus.* A spontaneous streptomycin-resistant (Sm^r) mutant was obtained from a

streptomycin-sensitive (Sm^s) strain of *M. luteus* (IFO3333) as follows. The cells were cultured in brain heart infusion medium (Difco Laboratories, Detroit, Mich.) at 37°C with vigorous shaking until the early stationary phase. A 0.3-ml portion of the culture was spread on the brain heart infusion agar plate containing 100 μ g of streptomycin sulfate per ml. After 3 days of incubation at 37°C, four to five Sm^r colonies per plate were obtained. Chromosomal DNA was prepared from one of these colonies and used as the donor DNA.

Transformation. A Sm^s strain of M. luteus (ATCC 27141) was used as a recipient because of its high transformation efficiency (15, 26). The transformation was done by the method of Kloos (14) with the following modifications. Cells were cultured, harvested by centrifugation, and dispersed in 0.5% monosodium glutamate-0.01 M CaCl₂ buffer. The competent cells were mixed with glycerol at a final concentration of 15%. A 200-µl portion was frozen quickly in liquid nitrogen and stored at -70° C. These cells were active in transformation for at least 4 months. The competent cells $(200 \ \mu l)$ were mixed with digested chromosomal DNA (0.05 to 0.1 µg) from strain IFO3333 (Sm^r) (or recombinant plasmid DNA containing the DNA fragment from strain IFO3333 [Sm^r]) and shaken for 45 min at 30°C, followed by the addition of 2 volumes of brain heart infusion medium. The mixture was shaken at 37°C with vigorous aeration (180 rpm with a rotary shaker) for more than 7 h. A 0.3-ml portion of the culture medium was spread on a brain heart infusion agar plate containing 50 µg of streptomycin per ml and incubated for 3 days at 37°C.

Cloning and screening of M. luteus str operon. Chromosomal DNA from Sm^r M. luteus IFO3333 was digested with restriction enzyme BamHI and fractionated according to size by sucrose gradient centrifugation (10 to 40%) (17). A transformation assay for each fraction showed that a fraction containing 15- to 20-kilobase-pair (kbp) DNA fragments had the highest activity. The DNA fragments in this fraction were randomly ligated to plasmid vector pUC18 DNA and transfected to Escherichia coli HB101 cells. About 120 independent plasmids from the transformed cells were ob-

^{*} Corresponding author.

FIG. 1. (a) Construction of plasmid pNM2-21 containing *M.* luteus str operon. A 15-kbp DNA fragment of *M.* luteus was ligated to the *Hinc*II site of the vector plasmid pUC18. BamHI and KpnI sites in the pUC18 multicloning site are also shown. (b) Plasmid DNA pNM2-21 was deleted stepwise from the BamHI site to the KpnI site by exonucleases III and VII (32) and tested for transformation activity. Symbols: +, more than 100 transformants per plate; \pm , 20 to 100 transformants per plate; -, fewer than 20 transformants per plate. (c) Organization of the sequenced 5.3-kbp region that includes the *M.* luteus str operon.

tained and assayed for transformation of $Sm^s M$. luteus cells to Sm^r phenotype.

Isolation of plasmids and sequencing of DNA. The E. coli cells containing the recombinant plasmids (see above) were inoculated in 2 ml of $2 \times$ YT medium (0.8% tryptone [Difco], 0.5% yeast extracts, and 0.25% NaCl [wt/vol]) and shaken for 12 to 16 h at 37°C. Crude plasmid DNA isolated by the quick boiling method (9) was used for the transformation assay. Further restriction of the DNA fragment containing Sm^r character was made by stepwise deletion from one end by ExoIII (Takara Shuzo, Kyoto, Japan) and ExoVII (Bethesda Research Laboratories, Gaithersburg, Md.) nucleases (32). The dideoxy-chain termination method was used for DNA sequencing by these pUC plasmids (5, 16). Deoxy-7-deazaguanosine triphosphate was used in place of dGTP (18) to resolve the ladder rich in G. The sequence data were analyzed by the computer program DNASIS (Hitachi SK, Yokohama, Japan). The program was also used to align the deduced amino acid sequences with those of E. coli.

RESULTS AND DISCUSSION

Cloning of DNA containing the *str* **operon.** Since the Sm^r phenotype is caused by mutational change in ribosomal

protein S12 in many bacterial species, transformation of the Sm^s cells by Sm^r DNA was used to screen for DNA fragments that contain the str operon. The transformation assay for BamHI-digested total Sm^r DNA fractionated by sucrose gradient centrifugation revealed that the fraction containing 15- to 20-kbp DNA fragments had the highest activity. The DNA fraction was then ligated to vector plasmid pUC18 and transfected into E. coli HB101. One of the 50 plasmid DNAs tested that had a very high Sm^r transformation activity was selected. The plasmid included an approximately 15-kbp fragment of M. luteus DNA. About 200 bp were deleted from both ends of this inserted DNA by nuclease Bal 31, and the shortened DNA fragment was recloned to the HincII site of vector plasmid pUC18 (pNM2-21) (Fig. 1a). The Sm^r transformation activity of pNM2-21 DNA was more than 100 times higher than that of unfractionated total DNA. The plasmid DNA was deleted stepwise from one end of the insert by ExoIII and ExoVII digestion by using BamHI and KpnI sites, and the DNA was used for the Sm^r transformation assay to map an approximate position of the gene for S12 (Fig. 1b). To sequence the complementary strand, the inserted DNA fragment was recloned to the HincII site of pUC19 and deleted from the other end by the method used with pNM2-21. More than 98% of the sequences was determined for both strands. The results suggested that the location of this gene was at about the middle of the inserted DNA.

Organization of the *str* **operon.** The DNA sequence of a part (about 5.3 kbp) of the pNM2-21 insert, including the putative *str* locus (see below), revealed the presence of four open reading frames in the same strand (Fig. 2). Their amino acid sequences deduced from the DNA sequences showed high homologies with those of *E. coli* ribosomal proteins S12 (70%) and S7 (58%) and elongation factors EF-G (60%) and EF-Tu (71%). Thus, we conclude that this gene cluster is homologous to the *str* operon of *E. coli* (23, 33, 35). The genes were arranged in the order (5') S12, S7, EF-G, EF-Tu (3') (Fig. 1c), in agreement with the gene order in the *E. coli str* operon (23).

In Fig. 2 are shown the total DNA sequence and the deduced amino acid sequence of the 5.3-kbp fragment of pNM2-21, which included about 350 bp upstream from the 5' end of the S12 gene. The sequence of the above noncoding region was very rich in G+C (68%), and no typical "E. *coli*-type" promoter sequences were found, suggesting that the *M*. luteus promoter sequence that is supposed to exist in this region is G+C rich and different from that of E. coli. In another G+C-rich bacterium, Streptomyces coelicolor (G+C, 73%), two types of promoter, the A+T-rich "E. coli type" and the G+C-rich type, have been predicted (11). The boxed sequences, AGGATTGT (-190 to -197) and GGCAAATTG (-172 to -180), in Fig. 2 could be promoterlike sequences, because of their considerable similarity to the G+C-rich promoter like sequences of the Streptomyces plicatus endoH gene (25, 31) and also to the "sigma³⁷" promoter sequences of Bacillus subtilis (19).

The G+C content of the spacer regions was very high (68 to 70%). There was no spacer between genes for S7 and S12, where the third letter of the S7 termination codon (TAA) overlapped with the first letter of the S12 initiation codon (ATG) as $-\underline{TAATG}$. The spacers between the S7 and EF-G and between the EF-G and EF-Tu were 214 and 275 bp, respectively, which were much longer than the corresponding parts in *E. coli* (27 and 70 bp, respectively).

Since no "E. coli-type" promoter like sequences have been recognized in M. luteus, we could not decide whether

-350 -340 COULTCINGC TUGACGACAT		-310 GCGAACTTTC	-300 CGACGCCTGA	-290 TCCCGTCCAG	-280 GCCCCCCTT	OUGGCCGCTC	ACGGCGGGGG
-260 -250	-240 receccecc	-230	-220	-210 TCCTATCCTC	-200	-190	
-170 ~160		, -140 CCACATECCA		-120	-110		-90
-80 -70	-60	-50	-40	-30	-20		S12 Start
GAGGUNA AGU AGAGGAAUGA			CTC CTC AAT		COT CCC CTC	CAC CCC AAC	Met Pro Thr
Ile Gin Gin Leu Val Arg	Lys Gly Arg	Ser Pro Lys	Val Val Asn 135	Thr Asn Gly	Pro Ala Leu	Gin Giy Asn	Pro Met Arg
CGT GGC GTG TGC ACC CGT Arg Gly Val Cys Thr Arg 180	GTG·TAC ACC Val Tyr Thr 195	ACC ACG CCC Thr Thr Pro	ACG AAG CCG Thr Lys Pro 210	AAC TCG GCC Asn Ser Ala 225	GTG CGC AAG Val Arg Lys	GTC GCC CGT Val Ala Arg 240	GTG CGC CTG Val Arg Leu
AAC GGC GGC ATC GAG GTC Asn Gly Gly Ile Glu Val	ACC GCC TAC Thr Ala Tyr	Ile Pro Gly	GAG GGC CAC Glu Gly His	AAC CTG CAG Asn Leu G1n	GAG CAC TCG Glu His Ser	ATC GTG CTC 11e Val Leu	GTC CGC GGC Val Arg Gly
GGT CGT GTG AAG GAC CTG G1y Arg Val Lys Asp Leu	CCC GGC GTG Pro Gly Val	CGC TAC AAG Arg Tyr Lys	ATC GTG CGC Ile Val Arg	GGC GCC CTC Gly Ala Leu Start	GAC ACC CAG Asp Thr G1n	GGC GTG AAG Gly Val Lys 405	AAC CGC GGC Asn Arg Gly
CAG GCC CGC TCC CGC TAC Gin Ala Arg Ser Arg Tyr	GGC GCC AAG Gly Ala Lys	A <u>AG GA</u> G AAG Lys Glu Lys	AAG TA ATG Lys * Met	CCT CGT AAG Pro Arg Lys	GGT CCT GCG Gly Pro Ala	CCG AAG CGC Pro Lys Arg	CCC CTC GTC Pro Leu Val
420 GTC GAT CCC GTC TAC GGC Val Asp Pro Val Tyr Gly	435 TCC CCG CTG Ser Pro Leu	450 GTC ACG CAG Val Thr Gln	CIG ATC AAC Leu Ile Asn	465 AAG GTG CTC Lys Val Leu	GTC GAC GGC Val Asp Gly	480 AAG AAG TCC Lys Lys Ser	495 ACC GCC GAG Thr Ala Glu
CGC ATC GTG TAC GGC GCG Arg Ile Val Tyr Gly Ala	CTC GAG GGC Leu Glu Gly	GCC CGT GCC	AAG AAC GGC Lys Asn Gly	GCC CGA TCC Ala Arg Ser	CGT GGC CAC	CCC ATC AAG Pro Ile Lys	AAG GCC ATG Lys Ala Met
585 GAC AAC ATC AAG CCG GCC Asp Asp Tie Lys Pro Ala	600 CTC GAG GTG Len Glu Val	CGC TCC CGC	615 CGC GTC GGC Are Val Gly	GGC GCC ACC	TAC CAG GTG	645 CCC GTC GAG Pro Val Glu	GTC AAG CCG Val Lys Pro
GCC CCC TCC ACG CCC CTG	CCC CTC CCC	690 TGG CTG GTC	GCC TTC TCC	ANG GCC CGC	720 CGT GAG AAG	ACC ATG ACC	735 GAG CGT CTG
ATG AAC GAG WTC CTG GAC	Ala Leu Arg 765 GCC TCG AAC	GGC CTG GGC	780 GGC GCC GTG	AAG CGT CGC	795 GAG GAC ACC	810 CAC AAG ATG	GCC GAG GCC
Met Asn Glu Ile Leu Asp 825	Ala Ser Asn 840 TAC CCC TCC	Gly Leu Gly	Gly Ala Val 860 CETETECCCC	Lys Arg Arg 870	Glu Asp Thi 880	His Lys Met 890 CCCCCACCCC	Ala Glu Ala 900 TOCCCTCCTC
Asn Lys Ala Phe Ala His 910 920	Tyr Arg Trp 930	# 940		960	970	980	990
TOGGACGCGC CACCACGCAT 1000 <u>1010</u> CACCTECACA CECTECCAA		AAGTCCCCCA 1030 ATCCCTCACA	TCTCCATCCC 1040	AGACCAAGGG 1050 CCACACACCC	AGACCAACGT 1060 TCCCCACACG	EF-G St	<u>GIG</u> CCTGACT
1080 109	5	1110	1004010000	1125	114	Met Leu	Thr Asp Leu 1155
CÁC AAG GTC CGC AAC ATC His Lys Val Arg Asn Ile 1170	GGC ATC ATG Gly Ile Met 118	GCT CAC ATC Ala His Ile	GAT GCC GGC Asp Ala Gly 1200	AAG ACC ACC Lys Thr Thr	ACC ACC GAO Thr Thr Glu 1215	CGC CAT CTG Arg His Leu 123	TIC TAC ACG Phe Tyr Thr
GGT GTC AAC CAC AAG CTG Gly Val Asn His Lys Leu	GGC GAG ACC Gly Glu Thr 1260	CAC GAC GGC His Asp Gly	GGC GCG ACG Gly Ala Thr	ACG GAC TGG Thr Asp Trp 1290	ATG GAG CAG Met Glu Glr	GAG AAG GAG Glu Lys Glu 1305	GCGC GGC ATC Arg Gly Ile
ACC ATC ACC TCC GCC GCG Thr Ile Thr Ser Ala Ala	GTG ACC TGC Val Thr Cys	TTC TGG AAC Phe Trp Asn	GAC CAC CAG Asp His Gin	ATC AAC ATC Ile Asn Ile	ATC GAC AAC Ile Asp Asr	CCC GGC CAC Pro Gly His	GTG GAC TTC Val Asp Phe
ACG GTC GAG GTG GAG CGC Thr Val Glu Val Glu Arg	TCG CTG CGC Ser Leu Arg	GTG CTC GAC Val Leu Asp	GGC GCC GTC Gly Ala Val	GCC GTG TTC Ala Val Phe	GAC GGC AAC	GAG GGC GIG Glu Gly Val	GAG CCC CAG Glu Pro Gln
TCG GAG ACC GTG TGG CGT Ser Glu Thr Val Trp Arg	CAG GCG GAC Gln Ala Asp	AAG TAC GAC Lys Tyr Asp	GTC CCC CGC Val Pro Arg	ATC TGC TTC Ile Cys Phe	GTC AAC AAG Val Asn Lys	ATG GAC AAG	CTG GGC GCG Leu Gly Ala
GAC TTC TAC TTC ACC GTC Asp Phe Tyr Phe Thr Val	GAC ACG ATC Asp Thr Ile	C GTG AAG CGC Val Lys Arg	CTC GGC GCG Leu Gly Ala	CGT CCG CTT Arg Pro Leu	GTG ATG CAC	GCTGCCGATC	GGC GCC GAG Gly Ala Glu
1575 AAC GAC TTC GTG GGC GTC Asp Asp Phe Val Cly Val	GTC GAC CTG	ATC TCC ATG	1605 AAG GCC TTC	GIG TGG CCG	1620 GGC GAC GCC Gly Asp Als	163 AAT GOG ATC Asn Giv Iie	GTC ACC ATG
1650 GCC CCC TAC GAG ATC	1665 GAG ATC CGC		GAG AAG GCC	1695 GAG GAG GAG	TAC CGC AAC	1710 GAG CTC GTC	GAG GCC GTC
Gly Ala Ser Tyr Glu Ile 1740 GCC GAG ACT TCC GAG GAG	Glu Ile Arg	GIN Leu GIN 1755 AAG TAC CTC	Glu Lys Ala 177 GAG GGC GAG	Glu Glu Glu O GAG CTC ACC	Tyr Arg Asr 1785 GTC GAG GAG	Glu Leu Val ATC CAG GCC	Glu Ala Val 1800 CGCC GTG CGT
Ala Glu Thr Ser Glu Glu 1815 CAG CTG ACC GTG AAC GCC	Leu Met Glu 1830 GAG GCT TAC	Lys Tyr Leu CCG GTG TTC	Glu Gly Glu 1845 TGC GGC TCC	Glu Leu Thr 186 GCG TTC AAG	Val Glu Glu D AAC CGT GGG	I IIe Gin Aie 1875 C GTG CAG CCG	Gly Val Arg
Gin Leu Thr Val Asn Ala 1890 190	Glu Ala Tyr	Pro Val Phe 1920	Cys Gly Ser	Ala Phe Lys 1935	Asn Arg Gly	Val Gln Pro	Met Leu Asp 1965
Ala Val Val Ala Tyr Leu 1980	Pro Asn Pro 199	Leu Asp Ala	GUC CCC GIC Gly Pro Val 2010	Lys Gly His	Ala Val Asr 2025	Asp Glu Glu 204	Val Val Leu
GAG CGC GAG GTG TCG AAG Glu Arg Glu Val Ser Lys 2055	GAG GCC CCG Glu Ala Pro 2070	FITC TCG GCG Phe Ser Ala 208	CTC GCC TTC Leu Ala Phe 5	AAG ATC GCC Lys Ile Ala 2100	ACG CAC CCI Thr His Pro	TTC TTC GGC Phe Phe Gly 2115	Thr Leu Thr 2130
TTC ATC CGC GTG TAC TCC Phe Ile Arg Val Tyr Ser	GGC CGC CTG Gly Arg Leu	GAG TCC GGT Glu Ser Gly 2160	GCG CAG GTC Ala Gln Val 217	CTC AAC GCC Leu Asn Ala	ACC AAG GGC Thr Lys Gly 2190	Lys Lys Glu	CGC ATC GGC Arg Ile Gly 2205
AAG CTG TTC CAG ATG CAC Lys Leu Phe Gln Met His	GCC AAC AAG Ala Asn_Lys	GAG AAC CCG Glu Asn Pro	GTG GAC GAG Val Asp Glu	GTG GTC GCC Val Val Ala	GGC CÁC ATO Gly His Ile	TAC GCC GTC Tyr Ala Val	ATC GGC CTC 11e Gly Leu
ZZZU AAG GAC ACC ACC ACG GGC Lys Asp Thr Thr Thr G1v	GAC ACC CTG Asp Thr Leu	TGC GAT CCC Cys Asp Pro	GCG AAC CCG Ala Asn Pro	ATC ATC CTC Ile Ile Leu	GAG TCG ATC Glu Ser Met	ACC TTC CCG Thr Phe Pro	GAG CCC GTG Glu Pro Val
2295 231 ATC TCC GTG GCC ATC GAG Lie Ser Val Ala Lie Giu	CCG AAG ACC	2325 C AAG GGT GAC Lys Gly Asn	CAG GAG AAG Gin Giu Lvs	2340 CTC TCC ACC Leu Ser Thr	CCC ATC CAC Ala Ile Gir	5 5 AAG CTC GTC 1 Lys Leu Val	2370 C GCC GAG GAC Ala Glu Asp

Ile Ser Val Ala Ile Glu Pro Lys Thr Lys Gly Asp Gln Glu Lys Leu Ser Thr Ala Ile Gln Lys Leu Val Ala Glu Asp FIG. 2. DNA sequence of *M. luteus str* operon. Boxed sequences, Promoter like sequences (see the text); underlined sequences, Shine-Dalgarno-like sequences; sequences marked with arrows, two dyad-symmetrical sequences, a probable transcriptional termination signal. The third letter A of the S7 termination codon (TAA) was overlapped with the first letter of the S12 initiation codon (ATG).

2385 2400 2415 2430 2430 2445 CCC ACG TTC CGC GTG AAC CTC AAC GAG GAG ACC GT CTA GAC GAG ATC GCC GAG ATC GCC GAG GTC CAC CTG GAC GTG TTC Pro Thr Phe Arg Val Asn Leu Asn Guu Glu Thr Gly Gln Thr Glu Gle GGC GAG GTC CAC CTG GAC GTG TTC 2460 2520 2231 220 223 220 2232 CTC GAC CCC ATG AAG CCC GAG TTC AAG GTC GAG GCC AAC GTG GCC AAG GCC CAC GTC GCG GAC CAC TC AAG GCC Val Asp Arg Met Lys Arg Glu Phe Lys Val Glu Ala Asn Val Gly Lys Pro Gln Val Ala Tyr Arg Glu Thr Ile Lys Arg 2555 2550 2550 2550 AG GTC GAC AG GTC CAC GAC GAC CAC GAG GCC CAC GTC GCC CAG GTC CGC GAG GTC ATC CAG GCC Lys Val Asp Lys Val Asp Tyr Thr His Lys Lys Gln Thr Gly Gly Ser Gly Gln Phe Ala Lys Val Gln Leu Ser Phe Glu 2610 2655 CCC GTG CAC AG GTC CAG GCC CAG GTC CAG GTC CGC GTC CCG GTG CCC GTG CCC CGC GTG AAC CCC CC Pro Leu Asp Thr Pro Arg Gly Thr Val Tyr Glu Phe Glu Asn Ala 11e Thr Gly Gly Arg Val Pro Arg Glu Tyr 11e Pro 2700 2715 TCC GTG GAC CGC GGC GTC CAG GCC CATC AAG GTC CGG GTG CCG CGC GTG CCC GTG CAG GTC CCC CTC CC Ser Val Asp Ala Gly 11e Gln Asp Ala Met Lys Phe Gly Val Leu Ala Gly Tyr Pro Met Val Arg Val Lys Ala Thr Ser 2610 2775 CTC GAC GGG GGC TAC CAG GAC GCC CTC GG GAG TTC GGG GTC CGC GGC TTC AAG GAC GCT CTC 2700 2700 2705 CTC GAC GGT GG CAC CAG GAC GTC CTG GGA GTC CGG TTC AGG ATC GCC GCC TTC AAG GAC GTC TCC Ser Val Asp Gly Ala Tyr His Asp Val Asp Ser Ser Glu Met Ala Phe Arg 11e Ala Gly Ser Gln Ala Phe Lys Glu Gly Val 2805 CTC GAC GCC GGG TAC CAC GAC GTC CTG GAG ATC CAG GTC GGG GTC CGC CCC CGG GGA TTC AAG GAC GTC TC Arg Lys Ala Tyr His Asp Val Asp Ser Ser Glu Met Ala Phe Arg 11e Ala Gly Ser Gln Ala Phe Lys Glu Gly Val 2805 CGC AAC CCC GCG TAC ATC CTC GAG ATC CAG ATC CAG GTC GCA GCC CCC CAG GCG TTC AAG GCC ATC ATC Arg Lys Ala Tyr His Asp Val Asp Ser Ser Glu Met Ala Phe Arg 11e Ala Gly Ser Gln Ala Phe Lys Glu Gly Val 2805 CGC AAC CCC GCG TAC TC TC CTG GAG CTC CGC GTG GAG GTC CCC CCC GG GG TTC AAG GCC CTC TC Arg Lys Ala Tyr His Asp Val Asp Ser Ser Glu Met Ala Phe Arg Thr Pro Glu Glu Phe Met Gly Asp Val 11e CGC AAC C GATCAGGACG 3360 CGTACCATCC EF-Tu Start CTA GTG AGTECAAGTT GTEAGEACGT CECAGGEGGE TGAGEAGTET TETTGAEGAT GAACEAGTTE TTAGGAGGAA ETA GAGTAGACTC 4940 ATTAGGCAGAC

these four genes belong to one transcriptional unit or whether the long spacers mentioned before contain the promoter sequences. The sequences AGGACGTG (976 to 983) and CGCAACATC (1005 to 1114) in the spacer region between S7 and EF-G could be promoter sequences, because of some similarities to the promoter like sequences AGGATTGT and GGCAAATTG in the 5'-upstream region of S12 (see above). There existed two dyad-symmetrical

					15										45						_		_		75		
EF-G					GTG	CTG	ACT	GAC	CTG	CAC	AAG	GTC	CGC	AAC	ATC	GGC	ATC	ATG	GCT	CAC	ATC	GAT	GCC	GGC	AAG	ACC	ACC
					MET	Leu	Thr	Asp	Leu	His	Lys	Val	Arg	Asn	Ile	Gly	Ile	Met	Ala	His	Ile	Asp	Ala	G1v	Lys	Thr	Thr
EF-Tu	GTG	GCA	AAG	GCA	AAG	TTC	GAG	CGG	ACG	AAG	GCG	CAC	GTC	AAC	ATC	GGC	ACC	ATC	GGC	CAC	GTT	GAC	CAC	GGC	AAG	ACC	ACG
	Met	Ala	Lys	Ala	Lys	Phe	Glu	Arg	Thr	Lys	Ala	His	Val	Asn	Ile	Gly	Thr	Ile	GLy	His	Val	Asp	His	Gly	Lys	Thr	Thr
						105										135										165	
ACC ACC	مم	000	CAT	CTG	TTC	TAC	ACG	GGT	GTC	AAC	CAC	AAG	CTG	000	GAG	ACC	CAC	GAC	GGC	222	GCG	ACG	ACG	GAC	TGG	ATG	GAG
Thr Thr	Glu	Arg	His	Leu	Phe	Tvr	Thr	Glv	Val	Asn	His	Lvs	Leu	Glv	Glu	Thr	His	Asp	Glv	Glv	Ala	Thr	Thr	Asp	Tro	Met	Glu
CTG ACC	GCC	GCC	ATC	TCG	AAG	GTC	CTG	TAC	GAC	AAG	TAC	CCG	GAC	CTG	AAT	GAG	GCC	CGT	GAC	TTC	GCG	ACG	ATC	GAT	TCC	GCC	CCC
Leu Thr	Ala	Ala	Ile	Ser	Lys	Val	Leu	Tyr	Asp	Lys	Tyr	Pro	Asp	Leu	Asn	Glu	Ala	Arg	Asp	Phe	Ala	Thr	Ile	Asp	Ser	Ala	Pro
•	5						195										225						•				255
CACIGAG	LAG	امدها	CCC	CCC	ATC	ACC	ATC	ACC	тсс	ccc	cccl	CTC	ACC	тсс	TTC	тсс	AAC	CAC	CAC	CAG	ATC.	AAC	ATC	ATC	GAC	AAC	CCC
Gln Glu	Lvs	610	470	600 61v	Tle	Thr	TIP	Thr	Ser	Ala	Ala	Val	Thr	Cvs	Phe	Trp	Asn	Asp	His	Gln	Tle	Asn	Tle	Ile	ASD	Asn	Pro
GAG GAG	CGT	CAG	CGC	222	ATC	ACC	ATC	AAC	ATC	TCC	CAC	GTG	GAG	TAC	CAG	ACC	GAG	AAG	CGT	CAC	TAC	GCC	CAC	GTG	GAC	GCC	CCC
Glu Glu	Arg	Gln	Arg	Glv	Ile	Thr	Ile	Asn	Ile	Ser	His	Val	Glu	Tyr	Gln	Thr	Glu	Lys	Arg	His	Tyr	Ala	His	Val	Asp	Ala	Pro
	L		<u>v</u>					205					I	2				315	0							1	
	1 ·							205						,													
GGC CAC	GTG	GAC	TTC	ACG	GTC	GAG	GTG	GAG	CGC	TCG	CTG	CGC	GTG	СТС	GAC	GGC	GCC	GTC	GCC	GTG	TTC	GAC	GGC	AAG	GAG	GGC	GTG
Gly His	Val	Asp	Phe	Thr	Val	Glu	Val	Glu	Arg	Ser	Leu	Arg	Val	Leu	Asp	Gly	Ala	Val	Ala	Val	Phe	Asp	Gly	Lys	Glu	Gly	Val
GGT CAC	GCC	GAC	TAC	ATC	AAG	AAC	ATG	ATC	ACC	GGC	GCC	GCT	CAG	ATG	GAC	GGC	GCG	ATC	СТС	GTG	GTC	GCC	GCT	ACC	GAC	GGC	CCG
Gly His	Ala	Asp	Tyr	Ile	Lys	Asn	Met	Ile	Thr	Gly	Ala	Ala	Gln	Met	Asp	Gly	Ala	Ile	Leu	Val	Val	Ala	Ala	Thr	Asp	Gly	Pro
345				-					375										405								_
GAG CCC	CAG	TCG	GAG	ACC	GTG	TGG	CGT	CAG	GCG	GAC	AAG	TAC	GAC	GTC	CCC	CGC	ATC	TGC		TTC	GTC	AAC	AAG	ATG	GAC	AAG	CTG
Glu Pro	Gln	Ser	Glu	Thr	Val	Trp	Arg	Gln	Ala	Asp	Lys	Tyr	Asp	Va1	Pro	Arg	Ile	Cys		Phe	Val	Asn	Lys	Met	Asp	Lys	Leu
ATG GCC	CAG	ACC	CGT	GAG	CAC	GTG	стс	CTG	GCC	ccc	CÁG	GTC	GGC	GTG	CCG	GCČ	CTG	CTC	GTG	GCC	CTG	AAC	AAG	TCG	GAC	ATG	GTG
Met Ala	Gln	Thr	Arg	Glu	His	Val	Leu	Leu	Ala	Arg	Gln	Val	Gly	Val	Pro	Ala	Leu	Leu	Val	Ala	Leu	Asn	Lys	Ser	Asp	Met	Val

FIG. 3. Comparison of the amino acid sequences of *M. luteus* EF-G and EF-Tu. One gap was introduced to the sequence of EF-G. The sites for identical amino acids and those for conservative amino acid substitutions were boxed with solid and dotted lines, respectively.

sequences, probable transcriptional termination signals, in the 3'-downstream region of the EF-Tu gene (Fig. 2).

The amino acid sequence homology between M. luteus and E. coli was 70% in S12, 58% in S7, 60% in EF-G, and 71% in EF-Tu. The S7 protein from E. coli K-12 is 178 amino acids long, whereas that from the E. coli B strain is 154 (30), where 24 amino acids from the C terminus are deleted. The M. luteus S7 also lacked 21 amino acids from the C terminus, suggesting that these C-terminal region are not essential for ribosomal function. A partial amino acid sequence homology was observed between M. luteus EF-G and EF-Tu in the N-terminal regions (Fig. 3), as in the case of E. coli (35).

The mean G+C content of the entire DNA sequence determined in this study was 67%, which was still a few percent lower than the total genomic G+C content of this bacterium (74%). This may reflect amino acid content of the proteins in the streptomycin operon. The proteins are somewhat higher in amino acids coded by "AU" codons such as lysine (AAN) and lower in those coded by "GC" codons such as alanine (GCN) and glycine (GGN), compared with the average bacterial proteins (12). Therefore, there must be other higher-G+C regions in the *M. luteus* genome.

The facts described above show that the structure and organization of the *str* operon are well conserved between the two species. Since, phylogenetically, the gram-positive M. *luteus* and the gram-negative E. *coli* separated more than a billion years ago (6, 10), the fundamental organization of the *str* operon was established at an early time, before the separation of the gram-positive and gram-negative bacteria.

Codon usage. Since the DNA sequence of most parts of the *E. coli str* operon, except for a part of the gene for S7, has been reported (23, 33, 35), we compared the codons used in the *str* operon in *M. luteus* and *E. coli*. Reflecting the high G+C content of the genomic DNA, the G+C content of the protein-coding region of *M. luteus* was much higher (66%) than that of *E. coli* (52%). In Table 1, the codon usage in the str operon of M. luteus (total, 1,382 codons) and E. coli analyzed (1,339 codons) are compared. An outstanding feature is a very high frequency, 95% (1,309 of 1,382), of the codons that have G or C at the third codon position in M. luteus, in contrast to only 52% (698 of 1,339) in E. coli. The G+C content of the first and the second positions in M. luteus were 64.1 and 40.2%, respectively, which were almost the same as the values of 63 and 40.0% in E. coli (Table 2). The published data on G+C content of three codon positions in A+T-rich bacterium, Mycoplasma capricolum (G+C, 25%) (20) is included in Table 2 for comparison (see below). The different levels of G+C content in different codon positions can be the consequence of selective constraints that eliminate functionally deleterious mutations, as discussed previously (21). The third positions of the codons are the most variable, because most synonymous codon substitutions occur in the third position. These results support the view that the strong GC pressure replacing AT pairs with GC pairs has been exerted on the M. luteus genome during evolution. G and C bias in codon usage was also reported for several genes of Streptomyces species (2, 25, 29, 34), Pseudomonas aeruginosa (3), and Thermus thermophilus (11) which are also high in genomic G+C.

To show more details in the preferential use of G- and C-rich codons in *M. luteus*, the codon substitutions at 1,291 homologous sites in four genes of the *str* operon were compared between *M. luteus* and *E. coli* (Table 3). About 100 sites in *M. luteus* that include a large part of the S7 gene could not be compared, because of a lack of information on the DNA sequence in *E. coli*. Some gaps and deletions or additions between the two species were also omitted for comparisons. Table 3 summarizes the codon substitution patterns between the two species. A total of 375 codons were identical. Among 916 substitutions, there existed 468 synonymous (silent) codon substitutions, 112 conservative amino acid substitutions (see Table 3, footnote e), and 336 other

TABLE 1. Codon usage in str operon of M. luteus and E. coli

C III	No. us	sed by:
Codon	M. luteus	E. coli
Phe (IIIIII)	0	7
Phe (UUC)	43	37
$I = (U \cup C)$ Let $(U \cup A)$	45	2
Leu (UUG)	Ő	2
Leu (CUU)	ĩ	4
Leu (CUC)	35	5
Leu (CUA)	0	0
Leu (CUG)	54	78
Ile (AUU)	1	14
Ile (AUC)	73	72
Ile (AUA)	0	0
Met (AUG)	$38(1)^{a}$	$36(3)^a$
Val (GUU)	1	70
Val (GUC)	67	1
Val (GUA)	0	39
Val (GUG)	74 (3) ^a	$12 (1)^a$
Ser (UCU)	0	27
Ser (UCC)	36	18
Ser (UCA)	1	3
Ser (UCG)	16	0
Pro (CCU)	5	6
Pro (CCC)	27	2
Pro (CCA)	0	5
Pro (CCG)	35	52
Thr (ACU)	3	34
Thr (ACC)	68	40
Thr (ACA)	0	5
Inr (ACG)	24	0
Ala (GCC)	0 97	48
Ala (GCA)	85 3	25
Ala (GCG)	21	25
Tyr (UAU)	0	8
Tyr (UAC)	37	28
Stop (UAA)	1	3
Stop (UAG)	Ō	0
His (CAU)	1	7
His (CAC)	30	24
Gln (CAA)	0	1
Gln (CAG)	47	39
Asn (AAU)	3	2
Asn (AAC)	43	41
Lys (AAA)	0	69
Lys (AAG)	89	20
Asp (GAU)	5	16
Asp (GAC)	71	55
Glu (GAA)	0	90
Glu (GAG)	113	21
Cys (UGU)	0	4
Cys (UGC) Stor (UCA)	0	6
Stop (UGA)	3	1
	0 22	8
Arg (CGC)	23 61	0/ 14
Arg (CGA)	01	01
Arg (CGG)	1	U 1
Ser (AGU)	2	1 6
Ser (AGC)	U 1	2
Arg (AGA)	n n	, О
Arg (AGG)	3	ů N
Gly (GGU)	15	76
Gly (GGC)	100	38
Gly (GGA)	0	2
Gly (GGG)	4	2

^a Initiation codon.

substitutions. Almost all the synonymous codon substitutions (99%; 464 of 468) occurred at the third position, where 82.7% (387 of 468) of them resulted in G or C richness in M. luteus; 15% (71 of 468) were without a gain or loss of G or C and only 2.3% (10 of 468) accompanied a loss of G or C. For example, 51 GGA or GGU codons for glycine in E. coli were replaced by GGC in M. luteus, 41 CGU for arginine were replaced by CGG/C, 38 AAA for lysine were replaced by AAG, and 38 GAA for glutamic acid were replaced by GAG. A few synonymous codon substitutions occurred at the first position of the codon (three instances) and the first, second, and third positions (one instance), all of which gained G or C, compared with E. coli. By these synonymous substitutions, M. luteus gained 377 bases of G and C, compared with E. coli. Among 112 conservative amino acid substitutions, which occurred primarily by changing the codon at the first and third positions (Table 3), 60 codon changes occurred so as to cause higher G+C content in *M*. luteus. For example, many UCU codons for serine and AUC codons for isoleucine in E. coli were replaced by ACC for threonine and CUG for leucine, respectively, in M. luteus. Thirty-six substitutions were without a gain or loss of G+C, and sixteen substitutions accompanied a loss of G+C.

Among 336 other codon substitutions, a gain of G+C was observed in 156 codons of *M. luteus*, whereas a loss of G+C was observed in 75 codons.

Among 916 substituted codons of a total of 1,291 codons compared, 603 codons (66%, 603 of 916) gained G+C, and 101 (11%, 101 of 916) lost G+C. The total G+C gain and loss in all nucleotide sites (2,748) in the substituted codons was 670 and 113, respectively.

In *M. luteus*, many codons were completely absent among 1,382 codons examined. These were UUU (Phe), UUA (Leu), UUG (Leu), CUA (Leu), AUA (Ile), GUA (Val), UCU (Ser), CCA (Pro), ACA (Thr), UAU (Tyr), CAA (Gln), AAA (Lys), GAA (Glu), UGU (Cys), AGU (Ser), AGA (Arg), and GGA (Gly), all of which have U or A at the third position of codons, with one exception of UUG leucine (Table 1). A complete absence of UUA (and UUG) leucine codons leads us to speculate the deletion of the corresponding tRNA having anticodon UAA and CAA. Codon UUA and UUG were probably converted by GC pressure to CUC or CUG, for the mutation of the first nucleotide U to C is silent. The above unused codons are used in high frequencies in an A+T-rich bacterium, *Mycoplasma capricolum* (G+C, 25%; see below).

In contrast to the GC-biased codon usage in M. luteus, a strongly AU-biased codon usage has been shown in M. capricolum, in which the codons for ribosomal protein genes in the spc operon were compared with the corresponding codons in E. coli (4). Since the sequence of the str operon in Mycoplasma capricolum and that of the spc operon in M. luteus are not available at present, the homologous codon sites between these two bacteria could not be directly compared. Even so, the comparison of the codon usage tables between the two species (for the codon usage table of Mycoplasma capricolum, see reference 20) clearly shows a much sharper contrast than the comparison between M. luteus and E. coli. This is because of intermediary G+C content of E. coli (51.6%) between that of M. luteus (74%) and Mycoplasma capricolum (25%). For example, in M. luteus 97% (92 of 95) of threonine codons are ACC and ACG, whereas in Mycoplasma capricolum 99.5% of threonine codons are ACA and ACU; all codons for lysine are AAG in M. luteus, whereas 90% are AAA in Mycoplasma capricolum; the UAU (isoleucine) codon was not detected in M.

TABLE 2. Nucleotide composition at three positions of codons in M. luteus, E. coli, and Mycoplasma capricolum

Codon position		M. luteus			E. coli		Му	Mycoplasma capricolum ^a				
	No. ^b	%	G+C% ^c	No. [*]	%	G+C% ^d	No. ^b	%	G+C%"			
First			64.1			63.0			43.5			
U	151	10.9		154	11.5		51	16.6				
C	322	23.3		307	23.0		34	11.0				
Α	346	25.0		342	25.5		123	39.9				
G	563	40.8		536	40.0		100	32.5				
Second			40.2			40.0			35.7			
U	387	28.0		379	28.3		93	30.2				
С	328	23.7		306	22.8		63	20.5				
Α	440	31.8		424	31.7		105	34.1				
G	227	16.5		230	17.2		47	15.2				
Third			94.7			52.2			9.1			
U	64	4.6		396	29.5		116	37.7				
С	781	56.5		392	29.3		17	5.5				
Α	9	0.7		245	18.3		164	53.2				
G	528	38.2		306	22.9		11	3.6				

^a Mycoplasma capricolum ribosomal proteins 58 and L6 (2O).

^b Number of occurrences.

^c Total G+C%, 66.3%.

^d Total G+C%, 51.7%.

" Total G+C%, 29.4%.

luteus, whereas this codon is used abundantly in *Mycoplasma capricolum*. A similar sharp contrast can be seen in most of other codons between these two species.

In E. coli or B. subtilis (G+C, 45%), AUG is the regular initiation codon, although GUG is used rarely. In M. luteus, S12, EF-G and EF-Tu used GUG as initiation codon, although S7 starts with AUG (Fig. 2). In contrast, GUG was used for only one of the EF-Tu's (1) in E. coli, showing that the AUG initiation codon for S12 and EF-G are replaced by GUG in M. luteus. In other G+C-rich bacteria belonging to the genus Streptomyces, three genes start with GUG among seven genes so far analyzed (34). Thus, the G+C-rich bacteria including M. luteus seems to use GUG initiation codons much more frequently than E. coli or B. subtilis. Ghosh et al. (7) have shown that GUG can be an initiation codon but its efficiency is only about one-third that of AUG in E. coli in an in vitro system. Reddy et al. (24) showed that UUG can also be used for an initiation codon and the replacement TTG (UUG) of the E. coli adenylate cyclase gene (cya) by GTG doubled the cya gene expression; the replacement by ATG greatly enhanced the expression of this gene so that the cells become lethal. These facts suggest that AUG is a much more efficient initiation codon than GUG or UUG in E. coli. Since ribosomal proteins and elongation factors occur in large amounts in the cell, the initiation codon GUG must be the efficient initiation codon in M. luteus, in contrast to E. coli. In Mycoplasma capricolum and E. coli, UAA is a predominant termination codon for ribosomal protein genes, whereas M. luteus seems to use UGA predominantly as seen for S7, EF-G, and EF-Tu; only S12 terminated with UAA. The biased uses of GUG as initiation codons and UGA as termination codons in M. luteus suggest the conversion of AUG to GUG and UAA to UGA, respectively, by GC pressure.

All these facts indicate that the strong GC pressure has caused M. *luteus* to discriminate against A and U and to use

Type of substitution		No. of	substituted codons a	t:	No. of		
		Codon position	······································	Two or three	changed	Net G+C gain"	
	1	2	3	positions	codons		
Synonymous ^b							
Gain ^c	3	0	383	1	387	+387	
$+/-^{d}$	0	0	71	Ō	71	0	
Loss ^c	0	0	10	0	10	-10°	
Conservative ^e						••	
Gain ^c	7	0	8	45	60	+72	
$+/-^{d}$	11	6	5	14	36	0	
Loss ^c	1	0	0	15	16	-20	
Other						-0	
Gain ^c	12	8	2	134	156	+211	
$+/-^{d}$	12	5	5	83	105	0	
Loss ^c	13	5	0	57	75	-83	
Total	59	24	484	349	916	+ 557	

TABLE 3. Codon substitutions in str operon (916 codons) between M. luteus and E. coli

^a Net G+C gained in *M. luteus* as compared with *E. coli*.

^b Synonymous (silent) codon substitution.

^c Number of codons that gained or lost G or C, as compared with E. coli.

^d Number of codons without a gain or loss of G or C.

e Conservative amino acid substitution includes Lys/Arg, Leu/Ile, Leu/Val, Ser/Thr, Ala/Gly, Gln/Asn, Glu/Asp, and Phe/Tyr.

G and C preferentially, in sharp contrast to the preferential use of A and U in *Mycoplasma capricolum*. Thus, we conclude that the codon choice pattern in a given bacterium is largely influenced by the GC/AT-biased pressure exerted on the entire genome. The high G+C content (69%) of a thermophile bacterium, *T. thermophilus*, has been explained as an adaptation to high temperature (82°C) (13). However, *Micrococcus* spp. and other G+C-rich bacteria such as *Streptomyces* spp. and *Pseudomonas* spp. are not thermophiles.

It should be noted that the codon choice pattern of the *Acanthamoeba castellanii* actin gene (22) is very similar to that of *M. luteus*, including the absence of codons UUA (Leu), UUG (Leu), CUA (Leu), AUA (IIe), GUA (Val), UCA (Ser), CCA (Pro), ACA (Thr), AAA (Lys), GAA (Glu), AGU (Ser), and AGA (Arg). This would suggest that the GC pressure similar to that in eubacteria is also exerted on the high genomic G+C eucaryotes.

ACKNOWLEDGMENTS

We thank T. H. Jukes for valuable comments and critical reading of the manuscript. Thanks are also due to the Takara Shuzo Co., Ltd. for supply of deoxy-7-deazaguanosine triphosphate.

This work was supported by grants from the Ministry of Education, Science and Culture, Japan.

LITERATURE CITED

- 1. An, G., and F. D. Jriensen. 1980. The nucleotide sequence of *tufB* and four nearby tRNA structural genes of *Escherichia coli*. Gene 12:33-39.
- Bibb, M. J., M. J. Bibb, L. M. Word, and S. N. Cohen. 1985. Nucleotide sequences of three antibiotic resistance genes indigenous to *Streptomyces*. Mol. Gen. Genet. 199:26-36.
- Brown, N. L., S. J. Ford, R. D. Primore, and D. C. Fritzinger. 1983. Nucleotide sequence of a gene from the *Pseudomonas* transposon Tn501 encoding mercuric reductase. Biochemistry 22:4089-4095.
- 4. Cerretti, D. P., D. Dean, G. R. Davis, D. M. Bedwell, and M. Nomura. 1983. The *spc* ribosomal protein operon of *Escherichia coli*: sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res. 11:2599–2616.
- 5. Chen, E. Y., and P. H. Seeburg. 1985. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165-170.
- 6. Dekio, S., R. Yamasaki, J. Jidoi, H. Hori, and S. Osawa. 1984. Secondary structure and phylogeny of *Staphylococcus* and *Micrococcus* 5S rRNAs. J. Bacteriol. 159:233-237.
- Ghosh, H. P., D. Söll, and H. G. Khorana. 1967. Initiation of protein synthesis in vitro as studied by using ribonucleotides with repeating sequences as messengers. J. Mol. Biol. 25: 275-298.
- 8. Godsoft, G. N., and D. Vapnek. 1973. A simple method of preparing large amounts of $\phi \chi$ 174 RSI supercoiled DNA. Biochim. Biophys. Acta 299:516-520.
- Holmes, D. S., and M. Quigley. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193-197.
- Hori, H., and S. Osawa. 1986. Evolutionary change in 5S rRNA secondary structure and a phylogenic tree of 352 5S rRNA species. BioSystems 19:163-172.
- 11. Jaurin, B., and S. N. Cohen. 1985. Streptomyces contain Escherichia coli-type A+T-rich promoters. Gene 39:191-201.
- 12. Jukes, T. H., and V. Bhushan. 1986. Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes. J. Mol. Evol. 24:39-44.
- Kagawa, Y., H. Nojima, N. Nukiwa, M. Ishizuka, T. Nakajima, T. Yasuhara, T. Tanaka, and T. Oshima. 1984. High guanine

plus cytosine content in the third letter of codons of an extreme thermophile. J. Biol. Chem. 259:2956-2960.

- 14. Kloos, W. E. 1969. Factors affecting transformation of *Micrococcus lysodeikticus*. J. Bacteriol. **98**:1397–1399.
- Kloos, W. E., and L. M. Schultes. 1969. Transformation in Micrococcus lysodeikticus. J. Gen. Microbiol. 55:307-317.
- Korneluk, R. G., F. Quan, and R. A. Gravel. 1985. Rapid and reliable sequencing of double-stranded DNA. Gene 40:317-323.
- Maniatis, T., R. C. Hardison, E. Lacy, J. Lauer, C. O'Connell, D. Quon, D. K. Sim, and A. Efstratiadis. 1978. The isolation of structural genes from libraries of eucaryotic DNA. Cell 15: 687-701.
- 18. Mizusawa, S., S. Nishimura, and F. Seela. 1986. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acids Res. 14:1319–1324.
- Moran, C. P., W. C. Johnson, Jr., and R. Losick. 1982. Close contacts between sigma³⁷-RNA polymerase and a *Bacillus subtilis* chromosomal promoter. J. Mol. Biol. 162:709-713.
- Muto, A., Y. Kawauchi, F. Yamao, and S. Osawa. 1984. Preferential use of A- and U-rich codons for *Mycoplasma capricolum* ribosomal proteins S8 and L6. Nucleic Acids Res. 12: 8209–8217.
- Muto, A., and S. Osawa. 1987. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA 84:166-169.
- Nellen, W., and D. Gallwitz. 1982. Actin genes and actin messenger RNA in Acanthamoeba castellanii: nucleotide sequence of the split actin gene I. J. Mol. Biol. 159:1–18.
- Post, L. E., and M. Nomura. 1980. DNA sequences from the str operon of Escherichia coli. J. Biol. Chem. 255:4660–4666.
- 24. Reddy, P., A. Peterkofsky, and K. McKenney. 1985. Translational efficiency of the *Escherichia coli* adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc. Natl. Acad. Sci. USA 82: 5656-5660.
- Robbins, P. W., R. B. Trimble, D. F. Wirth, C. Hering, F. Maley, G. F. Maley, R. Das, B. W. Gibons, N. Royal, and K. Biemann. 1984. Primary structure of *Streptomyces* enzyme endo-β-acetylglucosaminidase H. J. Biol. Chem. 259:7577– 7583.
- 26. Smith, H. O., and D. B. Danner. 1981. Genetic transformation. Annu. Rev. Biochem. 50:41-68.
- Sueoka, N. 1962. On the genetic basis of variation and heterogeneity of DNA base composition. Proc. Natl. Acad. Sci. USA 48:582-592.
- Tamaoka, J., and K. Komagata. 1984. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol. Lett. 25:125–128.
- Thompson, C. J., and G. S. Gray. 1983. Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc. Natl. Acad. Sci. USA 80:5190-5194.
- Tritsch, D., J. Reinbolt, and B. Wittmann-Liebold. 1977. The primary structure of ribosomal proteins S7 from *Escherichia coli* strains K and B. FEBS Lett. 77:89–93.
- Westpheling, J., M. Ranes, and R. Losick. 1985. RNA polymerase heterogeneity in *Streptomyces coelicolor*. Nature (London) 313:22-27.
- 32. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.
- Yokota, T., H. Sugisaki, M. Takanami, and Y. Kaziro. 1980. The nucleotide sequence of the cloned *tufA* gene of *Escherichia coli*. Gene 12:25-31.
- 34. Zalacain, M., A. González, M. C. Guerrero, R. J. Mattaliano, F. Malpartida, and A. Jiménez. 1986. Nucleotide sequence of the hygromycine B phosphotransferase gene from *Streptomyces hygroscopicus*. Nucleic Acids Res. 14:1565–1581.
- 35. Zengel, J. M., R. H. Arch, and L. Lindahal. 1984. The nucleotide sequence of *Escherichia coli fus* gene, coding for elongation factor G. Nucleic Acids Res. 12:2181–2192.