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The basis of the immune response consists of a process of multiplication and differ- 
entiation of immunocytes induced by antigen stimulation. This process is subject to 
genetic control at two essentially different levels: antigen recognition and antibody 
synthesis. Antigen recognition constitutes the initial discriminative phase of the re- 
sponse which is followed by the productive phase of antibody synthesis. Genetic 
control of antigen recognition is generally operated by thymus-derived lymphocytes 
(T) ~ (1-3) while the phase of antibody synthesis depends on genetic regulation of the 
life cycle of bone marrow-derived lymphocytes (B) (4). The study of responsiveness 
to antigens of restricted heterogeneity, such as synthetic polypeptides, has led to the 
identification of specific immune response genes controlling antigen recognition (5). 

Genetic control of the productive phase of antibody synthesis may be successfully 
investigated by the selection of lines of animals for the character "antibody produc- 
tion," in response to optimal doses of full multideterminant immunogens. The 
phenotypic expression of this character is represented by the peak level of serum 
antibody. 

As the initial step of antigen recognition is no longer a limiting factor under this 
experimental condition, genetic regulation of the productive phase of antibody syn- 
thesis can be investigated. A "high" and a "low" responder line have been obtained 
from random Swiss mice by selective breeding for the amplitude of agglutinin produc- 
tion against heterologous erythrocytes (6, 7). The frequency distribution among the 
initial population of the character investigated and the progressive separation of the 
two lines during selective breeding indicate multiple gene control of the productive 
phase of antibody synthesis (6). The number of genes and loci involved will be de- 
termined by a study currently in progress on the d.istribution of immune responsive- 
ness among segregating F2 hybrids and F1 X parental line backcrosses. 

The group of genes segregated in each line by selective breeding regulates the 
amount of antibody produced in response to many unrelated antigens such as: sheep 
and pigeon erythrocytes, somatic (O) and flagellar (H) antigens of Salmonella typhi 
(6), hen ovalbumin (8), Limulus polyphemus hemocyanin, bovine serum albumin (4), 

1 Abbreviations used in this paper: B lymphocytes, bone marrow-derived lymphocytes; 
BSA, bovine serum albumin; PFC, plaque-forming cells; RFC, rosette-forming cells; SE, 
sheep erythrocytes; T lymphocytes, thymus-derived lymphocytes. 
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dinitrophenyl hapten, 2 pneumococcal polysaccharide 3 and T4 bacteriophage. 4 The two 
lines of mice also differ in their ability to synthesize humoral antibody against histo- 
compatibility antigens (4), antibody enhancing tumor growth, s and in the incidence 
of benzopyrene-induced tumors (9). The difference in immunoresponsiveness of the 
two lines involves the production of various classes of antibody: 19S, 7S 3'2, 7S 3"1, 
and reagins (6, 8). A marked interline difference in the serum concentration of all 
classes of immunoglobulins has been demonstrated after antigen stimulation; the 
levels are uniformly lower in the low responder than in the high responder mice (7). 
All these data suggest that selective breeding for responsiveness to multideterminant 
immunogens has resulted in the segregation of genes concerned with the general 
regulation of immunoglobulin synthesis irrespective of immunological specificity. 

The phenotypic expression of these genes may be easily and quant i ta t ively  
assessed by studying the production of agglutinins against sheep erythrocyte 
which has been the principal immunogen used during selective breeding (6). A 

reasonable hypothesis to explain all the above mentioned findings is that  the 
group of genes segregated in each line would regulate the rate of multiplication 
and differentiation of antibody-producing cells after antigen stimulation. 
Experiments were therefore undertaken to study the dynamics of the immune 
response in high and low responder mice at both cellular and humoral levels. 

The rate of differentiation of the cells involved was investigated by studying 
the morphology of rosette-forming cells at the end of the exponential phase of 
the immune response. The results reported in this paper are compatible with 

the above mentioned hypothesis. 

Materials and Methods 

Animals.--Mice used belonged to high and low responder lines separated by selective 
breeding for the character agglutinin production to heterologous erythrocytes as previously 
described (6, 7). Adult animals of both sexes from the 16th, 18th, and 20th generations of 
selection (FI6, F18, F20) were used. When not otherwise stated, each experiment was per- 
formed with groups of 10-15 mice. 

Immunization.--Antigen: Washed fresh sheep erythrocytes (SE) were injected at the 
dose and by the route indicated in each experiment. 

Adjuvants: Difco complete Freund's adjuvant (Difco Laboratories, Detroit, Mich.) and 
a saline suspension of heat-killed Corynebacterium parvum (C. parvum) were used as indicated. 

Antibody assay: Pooled sera from each experimental group were used. The antibody fiter 
was expressed either as the highest serum dilution giving a positive result or as the log2 of this 
dilution starting from 1 = 1/10 dilution. 

Agglutinin titers were determined by a microagglutination technique in standard plates: 
0.05 ml of SE suspension (2)< 10 s cells/ml) in buffered saline (pH 7.3) was added to 0.05 
ml of doubling serum dilutions. Agglutination was read 24 hr afterwards. 

2 Del Guercio, P., and H. Zola. Manuscript submitted. 
3 Howard, J. G., G. H. Christie, B. M. Courtenay, and G. Biozzi. Manuscript submitted. 
4 Howard, J. G. Personal communication. 
5 Biozzi, G., C. Stiffel, D. Mouton, Y. Bouthillier, and C. Decreusefond. Manuscript sub- 

mitted. 
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Hemolysin titrations were carried out in test tubes; 0.1 ml of doubling serum dilutions in 
saline was mixed with 0.1 ml of SE suspension containing 1 X 109 SE/ml, then 0.6 ml of a 
1/50 saline dilution of fresh guinea pig serum was added. The tubes were incubated at 37°C 
for 30 min. After centrifugation the serum dilution giving 50% hemolysis was determined. 

Enumeration of Spleen Cells Involved in the Immune Response to SE.--Two methods have 
been used: the hemolytic plaque technique for detecting the plaque-forming cells (PFC) and 
immunocytoadherence for detecting rosette-forming cells (RFC). Isolation and quantitation 
of spleen cells were carried out as previously described (10). The numbers of PFC and RFC 
were established from the means of duplicate samples. 

Enumeration of PFC: Direct PFC were detected by a modification of the Jerne method 
(11). Medium 199 was used throughout. Suitable numbers of spleen cells were mixed with a 
suspension of SE in 1% agarose kept at 45°C in a water bath. The suspension was immediately 
spread on a warm microscope slide to obtain a 2 mm thick preparation. After incubation for 1 
hr at 37°C in a humid atmosphere (4% CO2 in air), the slides were covered with a 10% dilution 
of fresh guinea pig serum (absorbed with SE and kept frozen at --70°C). Slides were then 
incubated at 37°C for a further 30 rain before PFC enumeration under slight magnification. 

Enumeration of RFC: RFC were detected by the method previously described (10, 12) 
by which less than 3% of RFC are attributable to cells passively sensitized by cytophilic 
antibody (13, 14). Higher percentages observed by other investigators are due to the use of 
methods which are less inhibitory to the participation of macrophages in rosette formation 
(15-17). 

Morphology of RFC: Cell suspensions containing RFC were spread on slides and stained 
by the May-Grunwald-Giemsa technique as previously described (14). The percentage of 
each type of RFC was established after checking at least 80-100 RFC. The very few rosette- 
forming macrophages were excluded. 

RESULTS 

Separation of High and Low Responder Lines during Selective Breeding.-  
The mice used in the present s tudy resulted from a process of genetic selection 
for the character agglutinin production against heterologous erythrocytes 

continued for 20 consecutive generations. 
Fig. 1 A shows the resultant  separation of high and low responder lines during 

selective breeding for 20 generations in terms of the peak agglutinin levels, 
induced by an optimal dose of SE. As previously described (4, 6) the antigen 
used for the first six generations was SE, leaving a 30 day interval between 
weaning and immunization.  As under  these conditions passively t ransmit ted 
maternal  ant ibody interfered with the immune response of the progeny in the 
high line, these initial results are represented by a broken line in Fig. 1 A. 
After it was found that  the selection operated also for the response to anti- 
genically unrelated pigeon erythrocytes, the two antigens were alternated from 
the 6th generation onward to eliminate the specific interference of maternal  
ant ibody (7). For simplicity only the responses to SE are represented. The 
extent of interline separation can be correctly appreciated from the 6th gener- 
ation onward when the interfering effect of maternal  ant ibody on the response 

of high responder mice was eliminated. 
The separation of the two lines has been progressive: the intensi ty of the 

response decreased in the low line unti l  the 14th generation and thereafter re- 
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mained at a minimal level, whereas the gain in responsiveness in the high line 
persisted until the 18th generation. 

Individual variations in the starting population were large and continuous 
as shown in the frequency distribution curve (Fig. 1 B). This fact, in addition 
to the progressive interline separation produced by selective breeding, indicates 
clearly that the character investigated is determined by the cumulative effect 
of several quantitative genes. Around the 16th-18th generations, the interline 
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FIG. 1. (A) Separation of high and low responder lines of mice during the selective breed- 
ing. The day of the maximal agglutinin titer is indicated at each generation. The vertical bars 
indicate standard deviation. (B) Frequency distribution of agglutinin titers in mice of the 
initial population and in F20 mice of the high and low responder lines. 

separation seems to have reached its maximal extent. The range of individual 
variability decreased progressively throughout breeding as progressive homo- 
zygosity was established ir~ the two lines with regard to the character agglutinin 
production. The frequency distribution curve of F20 mice (Fig. 1 B) shows a 
high degree of homogeneity. These data imply that all the genes determining 
the character investigated have segregated in each line by the 20th generation, 
so that the mice can therefore be considered as homozygous in this respect. 

Agglutinin Production by High and Low Responder Mice after Different Doses 
of Sheep Erythrocytes.--To undertake the dynamic study of the immune re- 
sponse it is important to determine the intensity of the responses in relation to 
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the dose of antigen administered (18). This study of dose-response relationship 
is represented in Fig. 2. The dose of 10 4 SE produced no detectable increase in 
the titer of natural agglutinins (<1/10)  in both lines and can therefore be 
considered as subimmunogenic, whereas 10 5 SE stimulated a detectable agglu- 
tinin synthesis only in the high line. 
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Fro. 2. Dynamics of agglutinin production after intravenous immunization with increas- 
ing doses of SE in F16 mice of high and low responder lines. 
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Larger doses of antigen (106) are immunogenic in both lines, although the 
immune response is far stronger in the high than in the low line. The threshold 
of antigen stimulation is therefore an order of magnitude lower in the high than 
in the low line. High responder mice show prolonged agglutinin production 
reaching peak levels between 8 and 56 days postimmunization while low re- 
sponders show a more transient response characterized by an early peak on the 
4th day. For both lines, the intensity of the immune response, as measured by 
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FIG. 3. Relationship between the immunizing dose of SE and the peak titer of anti-SE 
agglutinins produced in F16 mice of high and low responder lines. 

the peak level of agglutinin, is directly proportional to the dose of antigen until 
an optimal dose of 109 SE for the high line and of 108 SE for the low line. The 
dose-response relationships in both lines are sunlmarized by plotting the peak 
agglutinin titers against the corresponding doses of antigen (Fig. 3). 

Over the range of the dose-response relationship the magnitude of the re- 
sponse is a direct function of the amount of antigen injected, a function which is 
of the same order in both lines since the two curves have the same slope. A 
noteworthy interline difference is the greater sensitivity to antigen stimulation 
of high responder mice which also require a larger dose of antigen to give the 
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maximal response, indicating a broader dose-response relationship. I t  should be 
mentioned that 5 X 109 SE is the maximal dose that can safely be injected 
intravenously into the mouse. 

The interline difference in the peak agglutinin levels induced by optimal 
stimulation is about 125-fold. Nevertheless, it would be incorrect to assume that 
this represents a real measure of the maximal separation in immune responsive- 
ness between the two lines. In fact, it has been demonstrated that the antigen 
stimulation produced by SE injected intravenously in the mouse is of short 
duration. The ascending phase of a response at the cellular level stops at the 5th 
day postimmunization for lack of continuing antigen stimulation. If a supply of 
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FIG. 4. Dynamics of agglutinin production in Fxs mice of high and low responder lines 
after one or four intravenous injections of 5 X 10 8 SE. The arrows indicate the times of SE 
injection. 

antigen is given, the response can be prolonged until maximal responsiveness 
is attained (12). To appreciate the full responsiveness of high and low responder 
mice, agglutining production was studied after repeated antigen injections and 
compared with the effect of a single dose of antigen (Fig. 4). 

In the high line, agglutinin titers were similar in animals immunized intra- 
venously with one or several injections. In contrast, repeated injections of 
antigen induced a higher and more prolonged response in the low line. The peak 
interline difference of about 125-fold after a single immunization is reduced to 
only eightfold after repeated injections. The duration of the rapid exponential 
rise of agglutinins lasts for about 4 days in mice of both lines receiving one or 
several antigen injections. After this phase, the rise in serum agglutinin con- 
tinues at a slower rate for 20 days in low responders receiving repeated injec- 
tions. These findings indicate that the effect of antigen stimulation is of shorter 
duration in low responder mice. 
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Effect of Adjuvants on the Responsiveness of Higtz and Low Responder Mice to 
Sheep Erythrocytes.--It is well established that the immune response to particu- 
late antigens injected intravenously is localized principally in the spleen (19, 
20). Previous experiments have demonstrated that Corynebacterium parvum 
is a potent adjuvant of the immune response (21). A saline suspension of C. 
parvum injected intravenously in the mouse produces marked splenomegaly 
accompanied by a strong increase in the magnitude of responsiveness to SE 
at both humoral and cellular levels (agglutinin and rosette-forming cells) (22). 
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FIG. 5. Effect of C. parvum treatment on anti-SE agglutinin production in Fls mice of 
high and low responder lines. 0.5 mg of C. parvum was injected intravenously 4 days before 
5 X 10 s SE. 

Cytodynamic analysis revealed that this adjuvant effect is due to prolongation 
of the exponential increase in the antibody-forming cell population in the spleen 
(12). 

Fig. 5 shows the adjuvant effect of C. parvum on agglutinin production 
against SE in high and low responder mice of the 16th generation. Two groups of 
five mice of each line were immunized intravenously with 5 X 10 s SE and com- 
pared with two other equivalent groups which received 0.5 mg of C. parvum 
intravenously 4 days before the same dose of SE. The effect of the adjuvant 
was very reduced in the low line, where it only prolonged the persistence of the 
maximal agglutinin level. On the contrary, C. parvum increased markedly the 
peak level attained in the high line. The interline difference in animals treated 
by the adjuvant reached 1000-fold as compared with the normal 125-fold. 
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The difference in responsiveness between the high and the low lines is also 
observed when the immunization is performed by  a subcutaneous route as 
shown in Fig. 6. I n  this experiment SE in complete Freund's  adjuvant  were 
injected into the two hind footpads, the local persistence of antigen producing 
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FIG. 6. Dynamics of anti-SE agglutinin production in F16 mice of high and low responder 
lines after subcutaneous immunization in the two hind footpads with SE emulsified in com- 
plete Freund's adjuvant. 5 X 10 ~ SE in 0.05 ml of emulsion were injected into each footpad. 
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FIO. 7. Spleen weight (left) and total number of isolated spleen cells (right) in Fie mice 
of high and low responder lines immunized with an intravenous injection of 5 X 10 s SE. 

a prolonged stimulation of the regional lymph nodes. Initially, the agglutinin 
titers were very different in the two lines. A substantial amount  of ant ibody was 
already synthesized by  day 5 in the high line, while no significant response was 
detected in the low line until day 14. Subsequently, a rise in agglutinins oc- 
curred also in the low line mice, which eventually produced a substantial 
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amount of antibody as compared with high responders. Consequently, the 
interline difference at the peak levels was smaller than that observed after 
intravenous immunization (see Figs. 2 and 3). 

Kinetics of the Immune Response in High at~d Low Respo~der Mice.--Fl¢ 
mice were immunized intravenously with the optimal dose of 5 3< l0 s SE and 
the number of spleen cells induced into immune response was established by 
measuring the numbers of rosette-forming cells (RFC) and plaque-forming 

106 - II I 0 , 0 0 0  

105 

¢) 
G) 

104 . 

r~ 

CD 

LI_ 

o_ 

tO ~. 

10 2 

130000  
/,~. mooo: 

....... o" High ~ne 

$ III00, soo, 
I /Co.,i e 'E 

 /TDo o~ i tiUe bJing E 
] /  i II hr  ~- I/IO. 

/ 
days 

1 / 8 0 0 0  
," . . . . . . .  o ~  

P ~o  
i / High line 

Doubling l// 
time 
7hr 

g 

1/200 

l",,.,.wL o. line 

/ i Doubling 
# : time 

~ ...... ' 15hr  
R 

< III0 1 

i i 

1 2 3 4 5 
doys 

FIG. 8. Dynamics of the response measured in terms of PFC (left) and of anti-SE hemo 
lysin (right) in FI~ mice of high and low responder lines immunized with an intravenous injec 
tion of 5 X 108 SE. 

cells (PFC). RFC represent the totality of the spleen cell population engaged 
in all aspects of the immune response, whereas PFC comprise those cells engaged 
in the secretion of a large amount of hemolytic antibody (22-30). Groups of 10 
mice of each line were killed at different times after immunization and the 
spleen weight and the yield of isolated spleen cells were determined (Fig. 7). 
The isolated cells were distributed in two aliquots, one used for PFC assay 
(Fig. 8) and the other for RFC assay (Fig. 9). Agglutinin and hemolysin titra- 
tions were made on the pooled sera of each group. In  the present study only 
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the exponential phase of immune response (lasting 4-5 days postimmunization) 
is considered. At the end of this phase the interline difference is almost fully 
expressed at both humoral and cellular levels. The mean values of spleen weight 
and cellularity before and after immunization are represented in Fig. 7. 

Spleen weights before immunization are somewhat smaller in the low line 
than in the high line. Antigen stimulation produced a marked increase in the 
spleen weight in the high line where the spleen cell population doubles in 3 days. 
Such an effect was much smaller in the low line where the spleen size increased 
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by only about 40% in terms of both weight and cell number. The immune 
response measured in both lines by the mean number of PFC per spleen and 
the mean titer of serum hemolysin is represented in Fig. 8. 

The number of PFC and the hemolysin level before immunization were 
similar in both lines. The increase in PFC number and rise of serum hemolysin 
occurred faster and reached higher levels after immunization in the high than 
in the low line. The rate of the response during the exponential rise can be 
measured for PFC number and hemolysin titers by the doubling time. Com- 
parison of both of these doubling times indicates that  the rate of the response in 
the high is about twice that in the low line (see Table I and Fig. 8). 

The interline difference at the end of the exponential phase is greater at the 
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humoral than at the cellular level. This difference is about 40-fold for hemolysins 
and 20-fold for hemolysin-secreting cells (PFC). Since both methods are based 
on direct hemolysin reaction and there is no extra splenic localization of PFC 
at this period, the figures obtained can be compared directly. Such a comparison 
indicates that the mean amount of hemolysin produced by each PFC is about 
twofold larger in the high than in the low responder mice. Thus the genetic 
constitution of each line regulates both the number of PFC and the amount of 
hemolysin secreted per cell after antigenic stimulation. The immune responses 
measured in both lines by RFC per spleen and by agglutinin titers are shown in 
Fig. 9. 

TABLE I 
Comparison of Rdevant Immunological Parameters in Mice of High and Low Responder Lines 

High line/ High line Low line Low line 

Nonimmunized Natural PFC/spleen -.< 70 < 70 
mice Natural RFC/spleen 23,000 30,000 

Natural serum hemolysins < 1/10 < 1/10 
Natural serum agglutinins 1/10 1/5 

4th day postim- PFC/spleen 130,000 6,500 
munization RFC/spleen 3,000,000 270,000 

5 X l0 s SE i.v. Serum hemolysins 1/8000 1/200 
Serum agglutinins 1/3600 1/120 

Doubling time of PFC 
Doubling time of RFC 
Doubling time of serum hemolysins 
Doubling time of serum agglutinins 

20 
11 
40 
30 

5 hr 11 hr 0.45 
11 hr 19 hr 0.58 
7 hr 15 hr 0.47 
7 hr 14 hr 0.50 

The RFC levels and the agglutinin titers found before immunization were 
similar in both lines. The rate and magnitude of the response after stimulation 
are markedly greater in the high than in the low line. As in the preceding ex- 
periment (Fig. 8) the interline difference, at the peak of the response is greater 
at the humoral than the cellular level. The principal parameters resulting from 
the experiments represented in Figs. 8 and 9 are summarized in Table I. 

No significant difference was observed in the titers of natural antibodies and 
in the levels of PFC or RFC found in the two lines before immunization. 
Although the rise in the number of PFC or RFC in the spleen is not a simple 
exponential function during the ascending phase of the immune response, the 
maximal rate can be estimated from the doubling times on the steepest part of 
the curves represented in Figs. 8 and 9. The values of the ratio between the 
rates of immune responses in low and high lines measured in terms of doubling 
times of PFC, RFC, hemolysins, or agglutinins are very similar and close to 0.5 
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(0.45-0.58). This means that the speed of the immune response is twofold 
higher in the high than in the low responder mice. This kinetic factor accounts 
for the interline difference observed at the peak of the cellular response on the 
4th day. Comparison of the immune responses at this time shows that the 
interline difference is greater at the humoral (30-40-fold) than at the cellular 
(10-20-fold) level. 

In the same spleen cell population, the number of RFC is always larger than 
that of PFC, particularly in nonimmunized mice where the background of 
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Fig. 9. 

natural RFC is more than 400-fold higher than that of PFC (12, 13). This 
large background of RFC interferes with accurate determination of the initial 
phase of the immune response (12) as the number of RFC produced by antigen 
stimulation at the onset of the response is small. This interference can be 
eliminated by subtracting the natural background from the experimental points 
of the ascending phase of the response. After correction, the rise in RFC in the 
spleen follows a strict exponential function indicating a constant rate of expan- 
sion in the RFC population which provides an accurate measurement of the 
RFC doubling time. In addition the number of "target" cells initially stimu- 
lated by the antigen can be calculated by extrapolation on the ordinate to zero 
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time (12). When immunization is performed with an optimal dose of antigen, 
the number of target cells represents the number of spleen cells able to respond 
to this antigen at the time of immunization (13, 18). 

Fig. 10 shows the ascending phase of the response in high and low lines cor- 
rected for normal RFC background. The basic difference between the two lines 
concerns the doubling time of RFC which is about twofold shorter in the high 
than in the low line (4). 

Other cytodynamic parameters, such as the number of target cells and the 
duration of the exponential phase, are similar in both lines. Therefore, the 
interline difference in the number of RFC found at the peak of the response is 
attributable to a single factor : the RFC doubling time. The ascending phase of 
the response in the high line is constituted by an initial population of 3600 cells 
which, on stimulation by antigen, double every 9 hr for 10-11 times consecu- 
tively to reach the peak of the response. In the low line a similar number of 
cells (4000) are initially stimulated by the antigen but their expansion stops 
after six consecutive doubling periods of 16 hr each. The value for doubling 
time of RFC presented in Fig. 10 is in agreement with the evaluation of the 
same parameter made on the steepest part of uncorrected curves reported in 
Fig. 9. 

Morphological Study qf RFC in the High and Low Responder Lines.--The fol- 
lowing morphological types of RFC are identifiable in stained preparations by 
light microscope: small, medium-sized, and large lymphocytes, blast cells, and 
plasma cells (14). This classification has been confirmed by electron microscopy 
(14). The distribution of the different types of RFC in nonimmunized mice 
and on the 4th day postimmunization was established on aliquots of the same 
spleen cells used for the cytodynamic study represented in Fig. 9. The results 
obtained are summarized in Table II.  About 90% of natural rosettes found in 
nonimmunized mice are small lymphocytes, while the remainder are medium- 
sized lymphocytes of rather small size. No significant interline difference was 
observed in the morphology of natural RFC. By contrast, significant differences 
between the two lines were observed at the end of the exponential rise of RFC 
(4 days postimnmnization). There was a marked increase in the percentage of 
plasma RFC in the high line. The compensatory decrease in the other types was 
particularly evident for small lymphocytes. The increase in the percentage of 
plasma cells in the high line was about fourfold but allowing for the absolute 
number of RFC and the size of the spleen cell population, the total increase in 
plasma cells is 43-fold in favor of high responder mice. On the contrary, other 
cell types increased only to about the same extent as the total number of RFC 
(ll-fold). This demonstrates a preferential increase in plasma cells among 
RFC in the high line. 

The interline difference in the level of serum antibody (30-4(~fold) is of the 
same order as that of plasma cells (43-fold), suggesting that the former are 
secreted by the RFC classified as plasma cells while antibody synthesized by 
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other cell types is apparently not secreted. Comparison of the data reported in 
Tables I and I I  shows that the number of plasma RFC greatly exceeds that of 
PFC, so that not all the former secrete enough antibody to produce a hemolysis 
plaque under our experimental conditions. (A considerably larger number of 
PFC can be detected by improving the sensitivity of the method [29].) These 

TABLE II 
Morphological Study of RFC in Mice of High and Low Responder Lines before Immunization 

and 4 days after i.v. Immunization with 5 X lO s SE 

High line Low line High line/ 
Low line 

Immunized mice No. of spleen cells 344 X 106 195 X 106 1.8 
RFC/1000 spleen 8.7 1.4 6.2 

cells 
Total rosettes per 3 X 106 270 X 103 11 

spleen 
Serum hemolysins 1/8000 1/200 40 

fiter 
Serum agglufinins 1/3600 1/120 30 

titer 

Total 
Total Total high line/ 

Morphology of RFC % per spleen % per spleen Total 
low line 

Immunized mice* Small lymphocytes 10 300,000 20 54,000 5.5 
Medium-sized 28 840,000 26 70,500 12 

lymphocytes 
Large lymphocytes 16 480,000 22 59,500 8 
Blast cells 22 660,000 26 70,500 9 
Plasma cells 24 720,000 6 16,500 43 

Nonimmunized Small lymphocytes 87 19,900 88 26,200 
mice~ Medium-sized 13 3,100 12 3,800 

lymphocytes 

* Number of rosettes examined: 1070 in high line and 560 in low line. 
Number of rosettes examined: 80 in each line. 

data explain the discrepancy in the interline difference between RFC and 
serum antibody found in the experiments represented in Fig. 9. 

I t  is highly probable that the different types of RFC found during the immune 
response derive from small lymphocytes preexisting in nonimmunized mice 
through a process of morphological differentiation cumulating in the plasma 
cells. This process of cell differentiation occurs at a faster rate in high responder 
mice (Table II). The percentages of medium-sized lymphocytes, large lympho- 
cytes, and blast cells are similar in the two lines; therefore, the acceleration of 
the process of cell differentiation which characterizes the high responder mice 
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appears to involve essentially the maturation of specific immunocytes into 
plasma cells. The morphological observations are compatible with the hypothe- 
sis that the group of genes segregating in each line regulates the rate of dif- 
ferentiation of antibody-producing cells after antigen stinmlation. 

DISCUSSION 

The initial population of random-bred mice used for selective breeding pre- 
sented large and continuous variations in antibody titers of individual animals 
(Fig. 1 B). The frequency distribution curve representing this variation suggests 
polyfactorial regulation of the productive phase of the immune response. The 
genetic control of these factors is demonstrated by the progressive separation 
of high and low responder lines during selective breeding. The difference in 
responsiveness between high and low lines cannot be explained in terms of 
progressive accumulation or loss, respectively, of specific immune response 
genes each controlling the response to a single determinant present in the com- 
plex antigenic mosaic of SE, as the separation extended to other immunologi- 
cally unrelated immunogens. 

F16, F18, and F20 mice used in the present study showed a remarkable interline 
separation and small intraline variability of their imnmne responsiveness to 
SE (Fig. 1 B). The difference in the amount of antibody produced by the two 
lines was verified for a full range of antigen doses, from minimal to maximal. No 
immune tolerance could be produced by the largest doses of SE. Only a plateau 
zone of antigen excess was observed in both lines, where responsiveness is no 
longer a function of antigen dose (Fig. 3). 

Sobey et al. (31) separated by genetic selection a line of low responder mice 
to bovine serum albumin (BSA). This antigen administered in large amounts 
produces specific tolerance and the low responsiveness of Sobey's mice was, in 
fact, deternlined by a lowered tolerance threshold since they respond normally 
to lower doses of BSA (32). The difference in the amounts of agglutinins synthe- 
sized by our high and low responders was the same over the entire zone of dose- 
response relationship, so that the difference is in their ability to synthesize 
antibody rather than in their susceptibility to tolerance induction. Neverthe- 
less, a smaller amount of antigen is required by the low responders to reach art 
optimal response. These mice also show a decreased susceptibility to antigen 
stimulation as shown by the higher threshold dose of antigen. A similar differ- 
ence has been found by Howard et at? in the study of immune responsiveness 
to pneumococcal polysaccharide (SIII) in high and low responder mice. High 
responders require a far smaller dose of SIII to elicit an immune response and 
a larger dose to be rendered tolerant than low responders. These results indicate 
that both immune responsiveness and tolerance are subject to the same type 
of genetic control. 

The different susceptibility of high and low responder mice to antigen stimu- 
lation is also revealed by the duration of the ascending phase of the immune 
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response, which lasts about 2 wk in high responders whereas in low responders 
the titer of serum agglutinins drops rapidly after the 4th day (Fig. 4). This 
suggests a quicker inactivation of the antigen in the low than in the high 
responder mice as did the considerably improved responsiveness of low re- 
sponder mice (Fig. 4) after repeated antigen injections. It has been shown in 
conventional mice that the antigen stimulation produced by intravenous im- 
munization with SE or other particulate antigens is of short duration. The 
rapid phase of immune response is interrupted on the 4th-Sth day postimmuni- 
zation by lack of continuing antigen stimulation. The response may, in fact, 
be prolonged by repeating the antigen injection until other physiological 
factors intervene in limiting the immune response in vivo (12, 33). Prolonged 
stimulation of the regional lymph nodes is also produced when SE emulsified 
in complete Freund's adjuvants are injected into the footpads, due to the local 
persistence of antigen. Low line mice show a delayed but persistent agglutinin 
production (Fig. 6). The interline difference at peak levels is only 10-fold com- 
pared with over 100-fold after a single intravenous immunization (Fig. 4). 
This difference related to the route of immunization is attributable to the per- 
sistence of antigenic stimulation rather than to any biological effect of the 
Mycobaclerium contained in complete Freund's adjuvant. Results similar to 
those presented in Fig. 6 were obtained after immunization in the footpads 
with SE in incomplete Freund's adjuvant. Moreover, the interline difference in 
agglutinin production after intravenous immunization is greatly amplified 
(Fig. 5) by the adjuvant effect of C. parvum acting directly on the spleen cells. 

At the end of the ascending phase of immune response after intravenous 
immunization, the RFC are localized only in the spleen while after immuniza- 
tion in the hind footpads the number of RFC is increased only in the popliteal 
and inguinal lymph nodes. The interline difference in immune responsiveness 
observed after intravenous as well as subcutaneous immunization (Figs. 4 and 
6) shows that the genetic selection operates at the level of both spleen and 
lymph nodes. 

The above mentioned difference in susceptibility to antigen stimulation 
between high and low responder mice could result from modifications in the 
efficiency of phagocytosis and/or processing of the antigen by macrophage or 
in the responsiveness of the antibody-forming cells themselves. Eventually both 
steps of the immune response could have been modified by the selective breed- 
ing. The importance of the role of macrophages in immune response is not 
universal, in fact, it depends largely on the nature of the antigen (34, 35). As 
far as SE are concerned the data are conflicting. In vitro studies indicate that 
macrophages may be essential for initiating the immune response (36-38), 
while in vivo experiments lead to a contrary conclusion (39, 40). 

Unpublished experiments on the phagocytic function of reticuloendothelial 
macrophages measured by the rate of blood clearance of colloidal carbon (41) 
showed no difference between high and low responder mice. Moreover, radio- 



1088 GENETIC CONTROL OF ANTIBODY SYNTHESIS 

labeled SE injected intravenously in high and low responder mice were phagocy- 
tized at the same rate. After blood clearance the distribution of SE between 
liver and spleen macrophages was similar in the two lines. If any modification 
in macrophage activity is produced by the selective breeding it will concern 
the antigen processing rather than the antigen phagocytosis. 

The role of macrophages in the different immune responsiveness of the two 
lines is not yet clarified. Additional unpublished findings by Howard et alJ on 
the rate of phagocytosis of SIII-14C and on inactivation of T~ bacteriophages 
by macrophages indicate that the functions of these cells have been mgdified 
by selective breeding. Such a modification in antigen processing and/or degra- 
dation could be responsible for the different immune responsiveness Of the two 
lines. Other findings, however, indicate that the two lines differ at the level of 
immunocompetent cells. The allotypes of immunoglobulins are different in the 
two lines (7) and it has also been shown in F2 interline hybrids that :the titer 
of agglutinins is significantly correlated with allotypes. 6 ~ioreover, the two 
lines differ markedly in their response to pneumococcal polysaccharide in spite 
of the fact that macrophages do not play an essential role in the immune 
response to this antigen (42, 43). Until additional information is obtained, the 
question whether the two lines differ at the level of immunocytes or macro- 
phages (or both) should be left open. In the first hypothesis the group of genes 
segregated in each line would regulate directly the life cycle of immunocytes, 
while in the second hypothesis such a regulation would result indirectly from 
genetic modification of macrophage functions. 

All data obtained from dynamic studies at the humoral level and at the 
cellular level by both rosette and plaque methods converge on the conclusion 
that the interline difference at the peak of the response results from a different 
tempo in antibody synthesis. The study reported in this article (Figs. 8 and 9) 
covers only the exponential phase during which the greatest part of the interline 
difference in immune responsiveness is expressed (Fig. 2). This phase COrre- 
sponds with the rapid increase in the total number of spleen cells which is 
probably due to a process of cell multiplication (Fig. 7). 

The data presented in Table I show that the rate of the immune response at 
both humoral and cellular levels is about twofold higher in the high than in the 
low responder mice. This estimation is confirmed by the more precise cyto- 
dynamic study represented in Fig. 10. 

There is a good agreement between the doubling time of humoral antibody 
and the corrected doubling time of RFC (Fig. 10), while the doubling time of 
PFC is considerably shorter. Nevertheless, the interline difference in the rate of 
the response measured in terms of PFC is similar to that established by the 
other parameters (Table I). I t  was originally observed by Jerne et al. (44) that 
the exponential rise of PFC in the spleen of mice immunized with SE occurred 
at a higher rate than the concomittant increase of serum hemolysin. In con- 

6 Lieberman, R. Personal communication. 
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ventional mice the doubling time of PFC is 6-7 hr (44, 45), while that of RFC 
is 12-13 hr (12), a difference which has been repeatedly confirmed (46-48). 
The generation time of PFC studied by thymidine-aH incorporation is about 13 
hr, while the doubling time is considerably shorter (6-7 hr) (49). The doubling 
time of RFC (about 12 hr) therefore corresponds to the multiplication time of 
the cell population engaged in antibody synthesis (50-52). The shorter doubling 
time of PFC could result from a rapid process of cell differentiation inducing 
into the secretory phase a small proportion of the population of RFC which 
multiplies every 12-13 hr after antigen stimulation. 

The great majority of PFC are antibody-secreting cells of bone marrow 
origin (plasma ceils) while the majority of rosettes are formed by lymphocytes 
(16, 53). Antigen-binding cells (RFC) include a large proportion of nonsecreting 
cells many of which are of thymus origin (28, 30, 54). This difference in origin 
and function of PFC and RFC explains why the interline difference is greater as 
measured in terms of humoral antibodies or antibody-secreting cells (PFC and 
plasma RFC) than in terms of total RFC (Tables I and II). I t  has been, in 
fact, demonstrated that the selective breeding affects only bone marrow- 
derived antibody-producing ceils, while the potentiality of thymus-derived 
lymphocytes is not modified (4). 

The results shown in Fig. 10 indicate that high and low responder mice 
differ in the rate of multiplication of the population of cells induced into im- 
mune response by antigen stimulation while the duration of exponential rise 
and the number of cells initially stimulated by antigen (target cells) are similar 
in both lines. 

The background levels of natural RFC and antibody are also the Same in 
high and low responder mice. Cytodynamic studies indicate that only a fraction 
of natural RFC (about 10%) are the receptor-bearing antigen-sensitive cells 
initiating the response to SE (12, 18, 55-57) through a phenomenon of antigen 
recognition. The other portion of natural RFC are responsible for the synthesis 
of natural or cross-reacting antibodies (10, 58). 

The large majority of natural rosettes in high and low responder mice as well 
as in conventional mice are formed by small lymphocytes (16, 53, 59). After 
antigen stimulation other types of RFC appear rapidly: medium-sized lympho- 
cytes, large lymphocytes, blast cells, and plasma cells (15, 16, 53, 59, 60). 
These different cell types increase at similar rates during the exponential phase 
of the response, suggesting their interdependence (53). Moreover, a morpho- 
logical transition between lymphocytic and plasmocytic series has also been 
described (16, 61). Recently, the derivation of plasma cells from small lympho- 
cytes has been demonstrated unequivocally (62, 63). Therefore, the immune 
response consists essentially in a continuous process of cell multiplication and 
differentiation induced by antigen stimulation acting initially on the small 
lymphocyte. The data presented here indicate that both processes are modified 
in high and in low responder mice. 

The results presented in this article are compatible with the hypothesis that 
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the group of genes segregated in each line by selective breeding regulates 
directly or indirectly the rate of multiplication and differentiation of antibody- 
producing cells after antigen stimulation. Quantitative studies with both 
plaque and rosette techniques indicate that the number of cells engaged in 
specific antibody synthesis represents only a small percentage (about 3 %) of 
the over-all increase in the number of spleen cells induced by antigen stimu- 
lation (12, 64). 

This phenomenon is also observed in high and in low responder mice where 
the contribution of RFC to the total increase in the number of spleen cells is 
respectively 1.5 and 0.5 % (Fig. 7 and Table II). The marked interline difference 
in spleen enlargement produced by stimulation is therefore principally con- 
tributed by cells not actually engaged in the specific response to SE, but very 
probably producing immunoglobulins of other specificities. This would explain 
the difference in serum level of immunoglobulins found at the peak of the re- 
sponse against SE (7). These findings clearly suggest that the group of genes 
segregated in each line regulates the life cycle and differentiation of the cell 
population responsible for general immunoglobulin synthesis irrespective of 
their specificity. This interpretation would also explain the difference in re- 
sponsiveness of high and low responder mice to many unrelated immunogens. 

SUMMARY 

Two lines of mice have been separated by selective breeding for the character 
"agglutinin production to heterologous erythrocytes." Around the 18th genera- 
tion of selection the two lines could be considered as homozygous for the char- 
acter investigated. This trait is under the control of a group of additive genes. 
The interline difference in the production of anti-SE agglutinins was verified 
for the range of antigen doses from subirmnunogenic to maximal. After intra- 
venous immunization with an optimal dose of SE, the duration of the exponen- 
tial rise in serum antibody was 4-5 days in both lines. At this time most of the 
interline difference in responsiveness is already expressed. A cytodynamic study 
carried out in terms of plaque-forming cells (PFC) and rosette-forming cells 
(RFC) in the spleen during the exponential phase showed that the principal 
interline difference is found in the doubling time of cells engaged in the immune 
response. 

More precise cytodynamic analysis made in terms of RFC showed that the 
doubling time of RFC is 9 hr in high responder and 16 hr in low responder mice. 
The duration of the exponential rise and the number of target cells stimulated 
by antigen is the same in both lines. The interline difference at the end of the 
exponential rise (4 days postimmunization) is larger in terms of serum antibody 
(30-40-fold) than in terms of PFC or RFC (20- and ll-fold, respectively). 

A morphological study of RFC in nonimmunized mice showed that about 
90% of rosettes were formed by small lymphocytes in both lines. The re- 
mainder were medium-sized lymphocytes. At the peak of the cellular response 
the RFC have differentiated into large lymphocytes, blast cells, and plasma 
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cells. The contribution of plasma cells to RFC is much greater in the high than 
in the low line. The cytodynamic and morphologic results presented in this 
article are compatible with the hypothesis that  the group of genes segregated in 
each line during the selective breeding control and regulate the rate of multipli- 
cation and differentiation of the antibody-producing cells. 
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