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The specificity and magnitude of humoral antibody responses (1-8) and the 
susceptibility of mice to leukemogenic viruses (9-15) are controlled by specific 
regulator genes. The mechanisms of action of such genes are not known but 
vary, presumably, from one response to another. The processes under genetic 
influence are complex and require participation of several cell types which are 
recruited from different differentiation pathways (6, 11-15, 32). The genetic 
nomenclature reflects the present status of knowledge, and thus makes use of 
the new operational gene symbols Ir (immune response), Fv (Friend virus), 
and Rgv (resistance to Gross virus), as well as of established symbols of pleio- 
tropic genes, e.g., H (histocompatibility), W (dominant spotting), and Sl 
(steel). The most intriguing observation was the close linkage in mice and 
guinea pigs of Ir  and virus resistance genes with H genes. I t  was suggested that 
this linkage may in fact be identity and that products of the H genes play a 
role in immunological "recognition" of antigens, viruses, and cell-surface anti- 
gens (1, 4, 9, 16-18). If the hypothesis is correct, allograft reactions should also 
be subject to genetic regulation. Investigation of this topic is in the beginning 
stage; strain differences in rejection of syngeneic or parental-strain male skin 
grafts by female mice were known since 1959 (19-23), and are now ascribed to 
the effect of a regulator gene linked with H-2 or to a regulatory function of H-2 
itself (24-26). 

The studies to be described are an outgrowth of the observation that given 
H-2-incompatible bone marrow grafts do not take in irradiated hosts of a num- 
ber of mouse strains but do take in others, and that susceptible and resistant 
mice often belong to inbred strains with the same H-2 allele (27, 28). The 
earlier studies established that susceptible mice fail to reject allografts for 
being nonresponders to given H-2 alloanfigens, whereas resistant host mice of 
the same H-2 type reject the grafts for being good responders. Segregation of 
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res is tance and suscept ib i l i ty  to m a r r o w  al lograf ts  is now descr ibed among  the  

p rogeny  of an intercross  of ( C 5 7 B L / 1 0  X 129)F1 mice,  and of a backcross  of 

(B10 .BR X C3H)F1 mice  to C 3 H  parents .  T h e  results  confirm tha t  differences 

be tween  the  two  1t-2 b strains C 5 7 B L / 1 0  and 129 in r e ac t i v i t y  to D B A / 2  

(H-2 d) grafts,  and  those of the  two H-2 k strains B 1 0 . B R  and  C 3 H  in reac- 

t i v i t y  to C 5 7 B L / 1 0  (It-2 b) graf ts  are genet ica l ly  de te rmined .  Fu r the rmore ,  

the  segregat ion  ra t ios  suggest  t h a t  a m i n i m u m  of two independen t  gene loci 

cont ro l  re jec t ion  of m a r r o w  al lograf ts  in the  p rogeny  of bo th  crosses, and  t h a t  

res is tance is conferred  by  the  d o m i n a n t  alleles. 

Materials and Methods 

Mice.--All inbred, F1, F_,, and backcross mice were raised in our animal colony. Pedigreed 
breeders were supplied by G. D. Snell, the Jackson Laboratories, Bar Harbor, Maine (C57BL/ 
10ScSn, abbreviated BI0), J. H. Stimpfling, Columbus Hospital, Great Falls, Mont, (B10.A, 
B10.BR), L. B. Russell, Oak Ridge National Laboratory, Oak Ridge, Tenn. (C3H/He.SI), 
and T. S. Hauschka, Roswell Park Memorial Institute, Buffalo, N. Y. (C3H/He, DBA/2Ha, 
and 129/Rr). C3H/He.Sl mice of genotype Sl/+ were congenic with C3H/He mice; the 
former were used for outcrosses with B10.BR and for backcrosses because the coat color of 
Sl /+ segregants provided a genetic marker of linkage group IV (29). 

BlO.tf, T mice of genotype tf/tf, T /+  (phenotype, tufted hair and short tail) were ob- 
tained by outcrossing inbred mice of the B 10 strain to mice of a marker stock made available 
by L. C. Dunn, Nevis Biological Station, Columbia University, Irvington on Hudson, N. Y. 
The tufted (tf) and brachyury (T) alleles of the marker stock were transferred onto the B10 
genetic background by 10 consecutive backcrosses of t f /+, T /+  mice to B10. Heterozygotes 
of the last backcross generation were intercrossed and tf/tf, T /+  siblings were inbred there- 
after. At the time of these experiments BlO.tf, T mice were inbred for three generations and 
their erythrocytes, tested by direct hemagglutination, were positive for the II-2 alloantigens 
2 and 5, and negative for 1, 3, 4, 8, 11, 23 and 31, like B10 erythrocytes. 1 However, the B10 
and B10.tf, T lines were congenic for tf, T and some other H locus because exchanged skin 
grafts were not accepted permanently. In these experiments the mice were used for out- 
crosses with 129-strain mice and for F2 intercrosses because the tufted hair and short tails 
of tilt[, T /+  segregants provided genetic markers of linkage group IX (29). 

F1 hybrid, F2 intercross, and backcross mice were designated by listing first the female 
and then the male parental strain, e.g., (B10.BR 9 )< CSH OZ)F1 9 X C3H o z. 

Irradiation.--Mice to be grafted with marrow" cells were exposed to 800-850 R of total 
body X-irradiation as described elsewhere (30). 

Cell Suspensions, Transplantalion, and Assay for Proliferation of Donor Cells.--Nucleated 
bone marrow cells, suspended in Eagle's medium, were counted and injected into a lateral 
tail vein of irradiated mice (28, 30). 5 days later, the DNA precursor 5-iodo-2'-deoxyuridine 
(IUdR), labeled with radioactive 1251", was used to assess DNA synthesis by donor-derived 
cells in recipient spleens, as previously described (30). The values of IUdR uptake were ex- 
pressed as per cent of injected radioactivity retained in spleens of individual mice or in spleens 
of groups of mice (geometric means 4- standard errors). Negative controls were irradiated 
mice not injected with marrow ceils; the uptake values of IUdR in such spleens were not 

1 Direct hemagglutination tests in polyvinylpyrrolidone were done by Dr. Eva Lotzov~. 
of this Department using "monospecific" antisera C-lb, C-2, C-3b, C-4, C-5, C-8, C-11b, 
C-23, and C-31 obtafned from G. D. Snell through the Transplantation Immunology Branch, 
National Institute of Allergy and Infectious Dieasses, Bethesda, Md. 
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greater than 0.03%. Positive controls were irradiated mice grafted with 3-5 X 105 syngeneic 
cells; the splenic uptake values of IUdR were 0.3-0.9%. 

RESULTS 

Marrow Graft Failures and Takes in Host Mice of Identical tt-2 Type 

3-5 X 105 marrow cells were transplanted into syngeneic and allogeneic mice, 2-4 hr 
after 800-850 R of X-rays. For DBA/2 (H-2 a) donors, the allogeneic recipients were chosen 
from H-2 b strains (129 and B10 mice), and for B10 (//-2 b) donors the recipients were chosen 
from H-2 k strains (C3H and B10,BR mice). The extent of splenic repopulation was assessed 
5 days after irradiation and grafting (Table I). 

I n  both donor-host  combinations,  recipients of one strain accepted the 11-2- 
incompat ible  grafts, and those of the second strain did not, as indicated by  the 
splenic up take  values of IUdR.  The  differences in susceptibi l i ty to marrow allo- 
grafts were substant ia l  even though the 11-2 relationship between donor and 
hosts was identical  for each pair  of recipients. (B10 X 129)F1 and (B10 .BR)<  
C3H)F1 hybrids  from crosses between susceptible and resis tant  mice of identi-  
cal 1t-2 type  were resis tant  to D B A / 2  and B10 grafts, respectively. This con- 
firmed earlier experiments (28). The presence of mu tan t  alleles a t  two loci in 
l inkage groups I X  and at  one locus in l inkage group IV did not  influence the 
outcome of marrow allografts in the inbred and F1 mice used in these experi- 
ments  (Table  I) .  Likewise, the sexes of donors, recipients, and of the parents  
entering F1 crosses had  no detectable  effect. Resistance and suscept ibi l i ty  were 
specific for donor cells of given 11-2 type.  B10 mice were resis tant  to D B A / 2 ,  
bu t  par t ia l ly  susceptible to C3H grafts;  and 129-strain mice were susceptible 
to DBA/2 ,  bu t  res is tant  to B10.A (H-2 a) grafts. 

Alloantigens of donor cells specified by  h is tocompat ib i l i ty  loci other than 
t t-2 do not  cause marrow graf t  failure in i r rad ia ted  recipients (28). 

Segregation of Resistance and Susceptibility to DBA/2  Grafts in F~ Mice 

(B10 X 129)F1 and reciprocal hybrids, resistant to DBA/2 marrow grafts, were inter- 
crossed and the progeny classified as to resistance or susceptibility. Short-tail hybrids of 
genotype tf/+, T/+ were mated to normal-tail hybrids of genotype tf/+, + / +  to avoid 
the lethal effect of homozygosity for the T allele in F2 mice. A total of 252 F2 animals (117 
females and 135 males) were exposed to 850 R of X-rays a few hours before transplantation 
of 5 X 105 DBA/2 marrow cells from donors of the same sex. The F?, animals were grafted 
in four separate experiments along with mice of the parental strains (33 B10 and 24 129- 
strain mice) and 40 Ft hybrids. The parental-strain mice provided reference populations of 
resistant and susceptible animals with which to compare segregating F2 mice. Results were 
plotted, as cumulative frequencies of grafted mice with increasing values of splenic uptake of 
IUdR (Fig. 1), separately for the two sexes. 

I n  i r radia ted  B10 and (B10 X 129)F1 mice grafted with D B A / 2  cells, the 
splenic up take  of I U d R  ranged from 0.01 to 0.1%, and in i r radia ted 129-strain 
mice from 0.2 to 0.9 %. Female  and Ina]e reference populat ions did not  overlap 
for I U d R  uptake,  but  they were not  separated by  a wide gap. The range of 



284 GENETIC CONTROL OF BONE MARROW GRAFT REJECTION 

values was wider in F2 mice than in the reference populations, from 0.01 to 
0.9 %. Segregants were classifiable as resistant or susceptible, and as intermedi- 
ate, depending on the value of splenic uptake of IUdR.  The intermediate ani- 
mals were those with 0.11-0.3% uptake, a class which probably was different 
from the parental-strain and F1 hybrid mice. The observed frequencies of F2 

TABLE I 
Proliferation of Bone Marrow Cells in Irradiated Recipient Mice Estimated by Splenic Uptake 

of the DNA Precursor IUdR 

Donor 
strain 

DBA/2 

B10 

C3H 

B10.A 

qo. of 
cells 

;rafted 

X 105 

X 10 5 

5X 105 

5 X 10 5 

Recipient 

Strain Genotype* 

DBA/2 
129 
B10 
B10 M 129 
129 X B10 
B10 X 120 

BI0 
C3H 
C3H 
B10.BR 
B10.BR X C3H 
B10.BR X C3H 

C3H 
B10 

B10.A 
129 

AW/A w, cCh/c oh, pip 

gig,  r / +  
t f~+ 
t.f/ + 
t : l+,  T / +  

S l /+  

S1./ + 

Per cent splenic 
uptake of 
~2SlUdR; 
(geometric 

mean 4- sE) 

0.81 4- 0.08 
0.53 =t= 0.08 
0.01 
0.01 
0.03 
0.03 

0.46 4- 0.06 
0.50 4- 0.05 
0.52 + 0.04 
0.02 
0.02 
0.02 

0.44 4- 0.04 
0.32 4- 0.03 

0.35 4- 0.02 
0.05 

* Marker genes to be introduced in F2 intercrosses and backcrosses. + ,  wild-type allele; 
A ~°, white-bellied agouti; c oh, chinchilla; p, pink eye; t f, tufted; T, brachyury; Sl, steel. 

5 days after irradiation (800 R to inbred mice and 850 R to Fj mice) and transplanta- 
tion. Radiation control values of IUdR uptake were subtracted from experimental values of 
susceptible mice. 

mice of either sex with given values of I U d R  in the spleen were very close to 
a theoretical distribution of 56.25 % resistant, 37.5 % intermediate, and 6.25 % 
susceptible mice. Such a distribution was expected on the assumption that  re- 
sistance was due to dominant  alleles of two independent  autosomal genes, and 
susceptibility to the recessive alleles. If the two genes had additive effects, 
partial resistance of intermediate segregants was due to dominant  alleles at one 
of the two loci. The expected frequencies of splenic uptake of I U d R  in F2 mice 
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were also plotted in Fig. 1 by calculating 56.25 and 6.25 % of the frequencies 
observed in resistant and susceptible reference populations, respectively. These 
percentage values reflect the classical mendelian segregation ratio of 9: 6:1 for 
two independent  gene loci. 9 of 16 F2 segregants possess at least one dominant  
allele at both loci and 6 of 16 segregants at one locus; 1 of 16 segregants pos- 
sesses two recessive alleles at both loci. 

,oo** ..7 
t o o " "  L_ * / 

/ t 4 t ' (B IO  xl29) F I I 
• I " ~  and / 

z '/1",,--.-" (;29 x B I 0 )FI ~ )  

~, ,o / Z " 

" / - '* /  129 " / .~-,'~ 

40 / ;~) (BIJO x 129) F2 
/ IiqD and 

.~ ' (129 x BIO)F 2 , 

.o I 

lip I I I I ''"tl I I I IIIII 

0.01 0.1 1.0 

I- ~'~Z, ,,,t'~ '°x'_7.'.F',, "" 
,- j 

/ 

I I,,,, ,'-''''''°'' [ 

0.01 0.1 1.0 
SPLENIC UPTAKE OF 1251UdR (%) 

FIO. 1. Cumulative frequencies of splenic uptake values of IUdR in 33 (17 9, 16C) BI0 
and B10.tf, T mice, 40 (199,21C) (B10 X 129)F1 and reciprocal hybrids, 24 (129, 12o ~) 
129-strain mice, and 252 (117 9, 135C) F2 progeny mice. Solid lines represent observed fre- 
quencies in reference populations resistant (B10 and F1 hybrids) or susceptible (129 strain) 
to DBA/2 marrow cell grafts. The dashed lines represent calculated frequencies for F2 mice 
assuming that the segregation ratio for resistant, intermediate, and susceptible F2 mice was 
9:6:1 (i.e., 56.25, 37.5, and 6.25%). 

129-strain mice entering the F1 crosses were white-bellied agouti (AW/A w) chinchilla 
(cCh/c oh) in coat color, and pink-eyed dilute (p/p). B lO.tf, T mice were tufted (tf/tf) and short- 
tailed (T/+);  their coat was nonagouti full color, and their eyes dark. The F~ mice tested 
for resistance to DBA/2 marrow grafts were, therefore, segregating for the five marker genes. 
Segregation data for tf and T, two mutant alleles of loci lying 7 and 15 crossover units, respec- 
tively, from the K end of H-2 (29), are shown in Table II. 

The short-tail phenotype, due to the dominant  T allele, was expected in 
one-half of the 252 classified segregants and observed in 118. The tufted-hair 
phenotype, due to the recessive tf allele, was expected in one-fourth of the 
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segregants, but  observed in 42. A nonparenta l  combination of phenotypes  
specified by  the two marker  genes ( tufted hair, long tail) was noted in eight F2 
mice. The  frequency of these crossing-over segregants was compat ible  with the 
established map  distance of the two loci in l inkage group I X  (29). Resistance 
or susceptibi l i ty to D B A / 2  marrow grafts was not  associated with the pheno- 
types specified by  the t f  and T markers.  I t  was, therefore, concluded tha t  none 
of the major  genes regulating allograft  rejection lay near the H-2  region which is 

T A B L E  I I  

Independent Segregation of Resistance to DBA /g Marrow Grafts and Genetic Markers of Linkage 
Group IX  in F2 Progeny of (BIO X 129)F1 and Reciprocal Hybrids* 

Phenotypes Genotypes 

Inter- Suscep- 
Resistant mediate~C tible 

(0-0.1% IUdR) (0.11-0.3% (0,31-0.9% Total 
IUdR) IUdR) 

9 9  o~O 9 9  Oc~ 9 9  cPc~ 

Nontufted, long tail q-/q-, q-/q- or 44 54 8 10 7 3 126 
t f /+ ,  + / +  

Nontufted, short tail t f /+,  T / +  or 19 36 8 9 5 7 84 
+ / + ,  T /+§  

Tufted, short tail tf/t/, T / +  11 7 9 3 1 3 34 

Tufted, long tail tf/If, + / +  § 3 1 2 2 0 0 8 

All phenotypes 175 51 26 252 

* Of 296 Fe mice born, 44 died before the typing for resistance was completed. 
2~ Mice of the parental reference populations grafted with 5 X 10 .5 DBA/2 marrow cells 

had spleens retaining either less than 0.1% IUdR (resistant) or more than 0.31% (suscep- 
tible). The Fo mice with intermediate values of splenic uptake of IUdR were regarded as a 
distinct class of segregants rather than as an overlap group. 

§ Crossing over between tf and T loci. All other gene combinations were present in chromo- 
somes of F1 mice. 

seven cross-over units away from tf. Had  one of the regulator  genes been l inked 
with tf and T, then all resistant  segregants (possessing one dominan t  allele of 
all regulator  genes involved) should have been short- tai led and tufted, except 
for crossing overs. 

Segregation da ta  for the dominant  marker  gene A ~ in l inkage group V and 
for the recessive genes c c~ and p in linkage group I are shown in Table  I I I .  Phe-  
notypes specified by  dominant  alleles were expected in three-fourths of the F2 
segregants, and those specified by  recessive alleles in one-fourth. The frequencies 
of observed phenotypes  were compat ible  with these expectations. Resistance 
to D B A / 2  marrow grafts was not  associated with the nonagouti,  full-color, 
and dark-eye phenotypes,  thus excluding tha t  one of the major  regulator  genes 
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of graft rejection was closely linked with the marker genes segregating in this 

CROSS. 

Segregation of Resistance and Susceptibili ty to BIO Grafts in Backcross Mice  

(B10.BR X C3H)F1 hybrids of both sexes were backcrossed to C3H and the progeny were 
classified as to resistance or susceptibility. The marker gene Sl was brought into the cross 
either by the F1 hybrid or by the C3H mice. S l /+  heterozygotes were mated to wild-type+/+ 
mice to avoid the lethal effect of homozygosity for the Sl allele in backcross progeny. A total 
of 149 (76 females, 73 males) backcross animals were irradiated (850 R) and grafted with 
5 X 105 B10 marrow cells from donors of the same sex. Reference populations of 25 resistant 
B10.BR, 21 resistant (B10.BR X C3H)FI, and 51 susceptible C3H mice were grafted along 
with the segregating mice. The cumulative frequencies for given values of splenic uptake of 
IUdR, determined 5 days after transplantation, are shown in Fig. 2. 

TABLE III 
Independent Segregation of Resistance to DBA /2 Marrow Grafts and Genetic Markers o/Linkage 

Groups V and I in F2 Progeny of (BIO X 129)F1 and Reciprocal Hybrids* 

Phenotypes Genotypes 
Resistant Intermediate Susceptible 
(0-0.1% (0.11 0.3% (0.31-0.9% 
IUdR) IUdR) IUdR) Total 

Q ~ CcP c~ 9 Co* Q9 CC 

White-bellied agouti AW/A w and AWl+ 56 72 19 16 10 8 181 
Nonagouti +/-4- 21 26 8 8 3 5 71 

Full color + / +  and +/c  ~h 57 84 24 22 12 9 208 
Chinchilla cCh/c ch 20 14 3 2 1 4 44 

Dark eye + / +  and + / p  56 81 21 16 13 8 195 
Pink eye dilute p/p 20 18 6 8 0 5 57 

* Same animals as those typed for tufted hair and short tail (Table II). 

I n  irradiated B10.BR and (B10.BR X C3H)F1 mice grafted with B10 cells, 
the splenic uptake of IUdR ranged from 0.01 to 0.04 %, and in irradiated C3H 
mice from 0.21 to 1.0%. Female and male reference populations did not overlap 
for I U d R  uptake, and susceptible mice were separated from resistant mice by 
a gap. In  backcross animals the range of IUdR uptake values was much wider, 
from 0.01 to 1.0 %. As in the preceding intercross, segregants were either like 
the parental  and F1 reference animals, or intermediate with respect to splenic 
uptake of IUdR.  The observed frequencies of backcross mice with given values 
of I U d R  were close to, but  not  identical with, a theoretical distribution of 50 % 
resistant, 25 % intermediate and 25 % susceptible mice. Such a distr ibution 
could have resulted from regulation of allograft rejection by two major inde- 
pendent  autosomal genes whose dominant  alleles were additive in conferring 
resistance. The results were not compatible with other models, e.g., regulation 
by one or three independent genes. The percentages used to calculate expected 
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Fro. 2. Cumulative frequencies of splenic uptake values of IUdR in 25 (11 ? ,  14c~) B10.BR 
mice, 21 (139, 8c~) (B10.BR X C3H)F1 hybrids, 51 ( 1 9 7 , 3 2 o  ~) C3H and C3H.SI mice, 
and 149 (76 9 ,  73c~) backcross progeny mice. Solid lines represent observed frequencies in 
reference populations resistant (B10.BR and Fl hybrids) or susceptible (C3H) to B10 mar- 
row cell grafts. The dashed lines represent calculated frequencies for backcross mice assum- 
ing that  the segregation ratio for resistant, intermediate, and susceptible mice was 2:1:1 
(i.e., 50, 25, and 25%). 

TABLE IV 

Independent Segregation of Resistance to BIO Marrow Grafts and the Marker Gene Steel of 
Linkage Group IV in Progeny of (BIO.BR X C3It)F1 Hybrids Backcrossed to C3H Mice* 

Resistant Intermediate:~ Susceptible 
Phenotype Genotype 0-O.04%IUdR 0.04-O.2%IUdR 0.21-1.0%IUdR Total 

Nondiluted coat color T / q -  18 14 11 15 6 12 76 
Diluted coat color Sl/+ 25 16 9 13 7 3 73 

All phenotypes 73 48 28 149 

* Of 181 backcross mice born, 32 died before the typing for resistance was completed. 
+ Mice of the parental reference populations grafted with 5 X 105 B10 marrow cells had 

spleens retaining either less than 0.04% IUdR (resistant) or more than 0.21% (sulceptible). 
The backcross mice with intermediate values of splenic uptake of I U d k  were regarded as a 
distinct class of segregants rather than as an overlap group. 
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frequencies of IUdR uptake values in backcross mice reflect the mendelian 
segregation ratio of 2:1 : 1 for two independent gene loci. 

Segregation data for the dominant marker gene Sl in linkage group IV are 
shown in Table IV. The Sl /+  phenotype (diluted coat color) was expected in 
one-half of the 149 segregants and found in 73. Resistance to B10 marrow grafts 
was not associated with the wild-type phenotype, thus excluding close linkage 
of one of the regulator genes with the Sl locus. 

DISCUSSION" 

These studies demonstrate the existence of a genetic control for the peculiar 
mechanism of allograft rejection in heavily irradiated mice given transplants 
of H-2-incompatible marrow. The allograft response does not require induc- 
tion or proliferation of host lymphoid cells, is thymus-independent, and is 
effected by relatively radioresistant cells derived from host bone marrow (28). 
The effector cells seem to be triggered by H-2 alloantigens of hemopoietic cells 
but not by the H-2 antigens of epithelial cells. Control of this rejection process 
by a small number of genes not linked with H-2 establishes another major dif- 
ference with the reactions to H-2-incompatible epithelial grafts not influenced 
by the host's genetic background. 

The members of two pairs of mouse strains, B10-129(H-2 b) and B10.BR- 
C3H(H-2k), differed sharply from each other in their ability to reject marrow 
allografts of given H-2 type. B10 mice were resistant and 129 mice were suscep- 
tible to DBA/2 grafts; B10.BR were resistant to grafts of the congenic strain 
B10, and C3H mice were susceptible. In each pair the member strains differed 
at two independent autosomal gene loci regulating marrow graft rejection. The 
dominant alleles conferred responder status, i.e. the ability to reject, and each 
locus contributed additively to the strength of the allograft reaction. The 
recessive alleles conferred nonresponder status, i.e., susceptibility to allografts. 
Since all mice were transplanted with a relatively small number of cells, only 
the effects of major regulator genes were detected. The estimates of the number 
of regulator genes derived from the intercross and backcross described were, 
therefore, minimum estimates. As segregant mice could not be progeny-tested 
after irradiation and challenge with allografts, the estimates were also tentative. 
Likewise, the lack of sex influence on graft rejection could have been the con- 
sequence of the small size of allografts; while 5 X 105 donor cells were promptly 
rejected in these experiments by resistant animals of both sexes, a larger number 
of cells, just below the number required to override resistance, could have 
detected sex differences in reactivity. However, it was not practical to progeny- 
test and graft with graded numbers of cells large populations of segregating 
mice. An alternative approach is to determine whether mice of a series of 
congenic lines and of the appropriate background strain are resistant or suscep- 
tible. Mice of 10 different lines of the B10.129 series are being challenged with 
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DBA/2 grafts; each line is congenic with the B10 strain (resistant to DBA/2 
grafts) except for a chromosome segment from strain 129 (susceptible to DBA/2 
grafts). Preliminary data confirmed that a small number of autosomal genes not 
linked with H-2 were additive in regulating marrow graft rejection, but also 
uncovered a strong sex influence; the resistance of males was two to three times 
as strong as that of females. 

An interesting observation emerging from these and the preceding studies (28) 
is the similarity of the genetic controls of marrow graft rejection and of anti- 
body responses. The genetic influences regulating the two processes are of the 
same type in mice, i.e., polygenic with dominant alleles for responsiveness, 
determinant-specific, and expressed at the level of bone marrow and marrow- 
derived cells (1, 6, 28, 32). The last two properties of regulator genes suggest 
that they control early steps in marrow graft rejection and antibody formation, 
possibly the recognition of H-2 and other antigens. The cell type which transfers 
responder and nonresponder status is marrow derived in both systems; thus, 
marrow precursors of effector cells and of antibody-forming cells are the targets 
for the genes described in this paper and for Ir-3 (6, 28, 32). The similarities ob- 
served do not prove, however, a common mechanism of gene action, but are 
compatible with this view. Another significant similarity between Ir  genes and 
those regulating graft rejection is the close association with H genes (see below). 

I t  has been hypothesized (a) that recognition of 1t-2 alloantigens of hemo- 
poietic target cells by host effector cells is influenced by the surface patterns 
specified by so-called "minor" H genes; (b) that similarity of these patterns 
on the surface of effector and target cells favors recognition of incongruence at 
the sites specified by It-2; and (c) that incongruence of the minor H patterns 
reduces and in extreme cases prevents recognition of nonidentical H-2 sites 
(28). Some of the experimental evidence supporting this hypothesis was al- 
ready described; the study of the B10.129 lines may provide crucial evidence 
in support of the contention that minor H genes were the regulators of marrow 
graft rejection. Minor H loci or closely associated genes could be responsible 
for the reactivity to DBA/2 grafts in B10 and 129 mice. Transfer of H alleles 
from strain 129 onto the genetic background of strain B10 (31) was sufficient 
to confer susceptibility to DBA/2 grafts upon mice of at least four B10.129 
lines congenic with the resistant B10 strain. ~ The interpretation of these find- 
ings is complicated, however, by the fact that some of the congenic lines may 
carry one or more contaminating genes outside the marked chromosome seg- 
ment (G. D. Snell, personal communication). The ultimate test as to whether 
susceptibility to DBA/2 grafts is due to the introduced H alleles or to other 
genes will have to rest on appropriate outcrosses and backcrosses. 

None of the major regulators of marrow graft rejection were detectably linked 

Cudkowicz, G. Regulatory funct ion of minor H loci on rejection of H-2-incompatible 
marrow grafts? In preparation. 
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to either tt-2 or A ~, thus excluding identity with fr-1 and Ir-2 (1). Ir-3 has not 
yet been mapped (1), and it is not known whether it has any effect on reactivity 
to H-2-incompatible marrow grafts. Ir-4 (8) is of particular interest because it 
is independent of H-2 but controls humoral antibody formation to the speci- 
ficity H-2.2. I t  is not yet known whether Ir-4 also influences cell-mediated 
allograft reactions; its strain distribution makes it an unlikely candidate for 
one of the genes regulating marrow graft rejection. Since all of the latter genes 
have yet to be mapped, it is not known whether the regulator genes and alleles 
distinguishing the two pairs B10-129 and B10.BR-C3H were the same or not. 
I t  is anticipated that association of the regulatory function with minor H genes 
will enable fine analysis of the genetic control of specificity of allograft reactions 
similar to that of antibody responses to synthetic polypeptides (1, 6, 32) and to 
lysozyme (7). Moreover, it is likely that studies such as these will have im- 
plications for clinical bone marrow transplantation, particularly for the choice 
of the most appropriate donors. 

SUMMARY 

Transplantation of 5 X 105 DBA/2 (H-2 a) bone marrow cells into irradiated 
B 10 and 129-strain mice (both 11-2 b) resulted in graft failure in the first recipient 
strain and in graft take in the second. Transplantation of B10 (H-2 b) cells into 
irradiated B10.BR and C3H mice (both H-2 k) also resulted in failure in the 
congenic B10.BR recipients and take in the C3H mice. Resistance and suscep- 
tibility of B10 and 129-strain animals were specific for given H-2 alleles of 
donor cells. Transplantation of DBA/2 marrow into (]310 >( 129)F~ mice and 
of B10 marrow into (B10.BR X C3H)F1 X C3H backcross mice revealed 
definite genetic control of the graft-rejection process, presumably at the level 
of alloantigen recognition. Resistance to allografts, or responder status, was 
conferred upon segregating mice by dominant alleles of two major independent 
autosomal loci. The effects of the loci were additive. Conversely, susceptibility 
to allografts, or nonresponder status, was due to the apparently recessive alleles 
of both loci. None of the genes was closely linked with the markers tf (tufted) 
and T (brachyury) of linkage group IX, A ~ (white-bellied agouti) of linkage 
group V, Sl (steel) of linkage group IV, and c ch (chinchilla) and p (pink eye, 
dilute) of linkage group I. There were suggestions, however, that the regu- 
lator genes of marrow graft rejection are either non-H-2 histocompatibility 
genes or other genetic factors closely linked with them. 

The author is grateful to Doctors L. C. Dunn, T. S. Hauschka, G. D. Snell, J. H. Stirnp- 
fling, and L. B. Russell for kindly providing breeding pairs of the mouse strains used in this 
study. The help of Dr. E. Lotzovzl in serotyping B10.tf, T mice and the generous supply of 
antisera by the Transplantation Immunology Branch, National Institute of Allergy and In- 
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