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Our preceding studies indicated that thymus-derived lymphocytes (T cells) 
primed with a carrier antigen suppressed antibody responses by bone marrow- 
derived lymphocytes (B cells) against a hapten coupled to the homologous 
carrier, when they were transferred into immunized recipients (1). The degree 
of suppression in IgM and IgG antibody responses differed depending primarily 
on the time when suppressor T cells were transferred to the recipients. Thus, it 
appeared that susceptibility of B cells to the regulatory influence of T cells is 
inherently different according to the differentiation stages of B cells following 
antigenic stimulation. The results are in accordance with the widely noted dis- 
tinction between IgM and IgG antibody responses with respect to their de- 
pendency on T cells (2-4). 

Another important facet observed in the above T-cell-mediated suppression 
of antibody response is the strict specificity of both T and B cells for the im- 
munizing antigen: to elicit effective suppression T cells must be primed by the 
carrier on which haptens are coupled. These observations suggest that T cells 
would specifically influence the emergence and selection processes of B cells by 
antigen, resulting in the observed preferential suppression of certain populations 
of antibody-forming cells. It has been generally accepted that antihapten anti- 
bodies are heterogeneous with respect to their affinity for hapten, which prob- 
ably reflects the heterogeneity among B cells (5-8). It has also been noted 
that the intrinsic affinity of IgM antibodies is usually lower than that of IgG 
antibodies (9-11). In view of these immunochemical bases, the present experi- 
ments were undertaken to study what subpopulations of B cells with regards to 
the affinity of produced antibody are, in fact, selectively suppressed by the 
carrier-specific T cells. 

Materials and Methods 

Most essential experimental details have already been described in the preceding paper (1), 
and only a few points are added here. 

* This work was supported by a grant from the Ministry of Education of Japan. 
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Determination of Relative Avidity for Hapten of the Secreted Antibody by Individual Antibody- 
Forming Ce//s.--The relative avidity of the antibody produced by plaque-forming cells (PFC) t 
was determined by the inhibition of plaque formation in the presence of free hapten (8, 12, 13). 
Direct and indirect PFC were developed in the presence of varying concentrations of e-DNP- 
L-lysine ranging from 10 -4 to 10 -s  M. The percent inhibition by a given concentration of the 
free hapten was calculated in comparison with the number of PFC obtained without free 
hapten. The molar concentration of e-DNP-I.-lysine resulting in 50% reduction in the number 
of PFC (I5o) was determined by graphic plotting of percent PFC developed in the presence of 
each concentration of free llgand, and was considered to represent average avidity of the anti- 
body produced by PFC. Since the avidity values thus obtained are influenced by the valency 
of the antibody molecule, the values for indirect PFC obtained in the presence of direct PFC 
do not represent the actual binding strength in terms of energetic means. However, they are 
only operationally used as estimates of relative variables in the binding characteristics of IgG 
antibody. 

In order to learn the distribution of PFC among subpopulations of B ceils with respect to 
their avidity, the absolute frequency of PFC detected in the presence of series of hapten con- 
centrations was determined, and the difference in the number of plaques inhibited by any two 
ligand concentrations was calculated. This difference represents the number of PFC, in absolute 
terms, within the given range of avidity. By determining the incremental number of PFC 
which are inhibited by 10-fold changes in ligand concentration, the avidity distribution of PFC 
was analyzed (8, 12). 

Meoaurement of A ssociation Constant of Serum A ntibody.--When possible, the average asso- 
ciation constant (K0) of serum antibody was determined by the modified Farr test using [aH]- 
2,4-DNP-e-aminocaproic acid ([3H]DNP-EACA) according to the method described by Stupp 
et al. (14) The antibody concentration was determined by extrapolation of the value of hapten 
bound to infinite hapten concentration. 

Experimental Design.--Experiments were designed to study the effect of carrier-primed 
suppressor T cells on the relative avidity of anti-DNP antibodies produced in the primary and 
secondary antibody responses. In the primary antibody response, 5 X l0 T keyhole limpet 
hemocyanin (KLH)-primed thymocytes or spleen cells were passively transferred into recipient 
animals that  were simultaneously immunized with 100/~g of DNP-KLH and 10 s pertussis 
vaccine. Animals were killed 3 and 6 days after the immunization, at the time points when they 
were producing maximal direct and indirect PFC in the spleen. The avidity of anti-DNP anti- 
bodies produced by these PFC was examined as described above. 

The technique of adoptive secondary antibody response was utifized to study the effect of 
suppressor T cells on the avidity of antibodies produced by secondary immunization so as to 
avoid possible influence of serum antibodies to the antibody affinity. Donor mice were im- 
munized with 100 #g of DNP-B GG in complete Freund's adjuvant (CFA). 4 wk later they were 
sacrificed to obtain DNP-primed spleen cells. 5 )< l0 T primed spleen cells were adoptively 
transferred intravenously into lethally (600 R) irradiated syngeneic recipients which were then 
secondarily immunized with 100/zg of DNP-KLH and 109 pertussis vaccine. The experimental 
group was further given an intravenous injection of 5 X l0 T KLH-primed thymocytes or spleen 
cells before the secondary immunization. The avidity of anti-DNP antibodies produced by 
direct and indirect PFC was examined 7 days after the immunization at a time when maximum 
antibody response was detected. 

RESULTS 

Suppression of Relative Avidity of PFC for Hapten by Carrier-Primed T Cells 
in the Primary Antibody Response.--The effect  of s u p p r e s s o r  T cells on  t h e  

1 Abbreviations used in this paper: BGG, bovine gamma globulin; CFA, complete Freund's 
adjuvant. [*H]DNP-EACA, [~H]DNP epsilon aminocaproic acid; KLH, keyhole limpet hemo- 
cyanin; PFC, plaque-forming cells. 
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avidity of antibody produced in the primary antibody response was studied by 
passive administration of 5 X 107 KLH-primed thymocytes or spleen ceils into 
recipient animals that were concomitantly immunized with 100/~g of DNP- 
KLH plus 109 pertussis vaccine. A control group of mice was not given KLH- 
primed cells, but was immunized by the same schedule. The relative avidity of 
PFC was estimated by the plaque inhibition technique on days 3 and 6 at 
which animals were producing maximal direct and indirect PFC, respectively. 

Fig. 1 represents a plaque inhibition profile of direct PFC of the group given 
KLH-primed thymocytes in comparison with that of the control group produced 
by different concentrations of free hapten. The PFC producing high avidity 
antibody are inhibited from lysing DNP-coupled SKBC by low concentrations 
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FIG. 1. Inhibition profiles of direct PFC by different concentrations of free hapten in the 
primary antibody response. The suppressed group was given 5 X 10 7 KLH-primed thymo- 
cytes before immunization with DNP-KLH. Data obtained 3 days after the immunization. 
Each point is a mean value of six similarly treated mice. The control group was not given 
suppressor T cells. 

of ~-DNP-L-lysine, while those producing low avidity antibody require high 
concentrations of hapten for the inhibition. By comparing the inhibition profiles 
of PFC, it was noted that a large proportion (about 40%) of direct PFC in the 
control group was inhibited by relatively low concentrations (less than 10 -6 M) 
of ~-DNP-L-lysine, while only a small proportion (about 10%) of PFC in the 
suppressed group was inhibited at these low concentrations of free hapten. The 
average avidity of antibody-forming cells as expressed by the molar concentra L 
tion of hapten required for 50% inhibition oi PFC (I50) was about ten-fold 
greater in the suppressed groups than in the control, indicating that suppressor 
T cells caused a decrease in the relative avidity of the produced IgM anti-DNP 
antibody at the cellular level. 

By a similar pIocedure, the effect of KLH-primed thymocytes and spleen 
cells on the avidity of indirect PFC was estimated on day 6 (Table I). The 
average avidity of indirect PFC was slightly higher than that of direct PFC 
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TABLE I 
Numbers and Average Avidities of DNP-Specific PFC Produced in the Primary Antibody Response 

in the Mouse Given KLH-Primed Thymocytes and Spleen Cdls 

Cells* transferred 

None 
KLH-pr imed Th 
KLH-pr imed Spl 

AntI -DNP response on day 3 

Direct PFC 

47,400 X/+§1 .46  .5.0 X 10-6 
26,000 X / +  1.37 2.6 X 10 -~ 
21,3  x / ÷  1041 10 x 10-  / 

Anti -DNP response on day 6 

Direct PFC 

Number  I60, 

5,150 X / +  1.55 1.4 X 10 -6 
2,100 X / +  1.52 3.6 X 10 -6 
2,260 X / +  1.78 1.0 X 10 -s 

Indirect P F C  

Number  1.40 I50:~ 

12,000 X / +  9.0 X 10 -7 
1,310 X / ÷  1.42 2.2 X 10 -6 
1,280 X / +  1.67 3.1 X 10 -s  

* 5 X 107 thymocytes or spleen cells were passively transferred into recipients simultaneously with the pr imary im- 
munization with D N P - K L H .  

Molar concentration of e-DNP-L-lysine required for 50% reduction in the number of PFC. 
§ Standard deviation of the geometric meanImultiply and divide. 

in the control group. The passive transfer of KLH-primed thymocytes and 
spleen ceils caused a profound suppressive effect on the average avidity of both 
direct and indirect PFC. Is0 values of the suppressed groups were significantly 
higher than those of the unsuppressed control group, the difference amounting 
to one log scale in some cases. I t  was also shown that although the administra- 
tion of suppressor T cells on day 0 produced only a slight suppression in the 
direct PFC numbers, it caused a profound decrease in their avidity, indicating 
that the changes in avidity are independent variables from those of the number 
of PFC. The association constant (K0) of serum anti-DNP antibody was not 
measurable, because the concentration of antibody at this stage was insufficient 
for the precise analysis. 

Suppression of Relative Avidity of PFC for Hapten by Carrier-Primed T Cells 
in the Adoptive Secondary Antibody Response.--In the previous paper (1) we 
reported that carrier-primed T cells can also suppress secondary antihapten 
antibody response, although the degree of suppression was less than that in the 
primary antibody response. Since i t  is predicted that the antibody produced in 
the secondary antibody response is of high avidity, we studied the effect of 
suppressor T cells on the avidity of anti-DNP antibody produced by secondary 
immunization. In order to exclude possible influence of serum antibodies on the 
antibody avidity of PFC, an adoptive immune response was utilized. 

Recipient 600 R-irradiated mice were reconstituted with .5 X 107 spleen cells 
obtained from syngeneic mice immunized one month before with 100 #g of 
DNP-BGG in CFA. They were further given a cell transfer of 5 X 107 KLH- 
primed thymocytes or spleen cells. A control group of irradiated mice were only 
repopulated with DNP-BGG-primed spleen cells. Within an hour after the 
cell transfer, all mice were immunized with 100 #g of DNP-KLH together with 
109 pertussis vaccine to elicit an adoptive anti-DNP secondary antibody re- 
sponse. The numbers and average avidities of PFC were examined on day 7 at 
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a time when animals were producing the highest numbers of both direct and 
indirect PFC. 

As can be seen from Table II, the average avidity values of both direct and 
indirect PFC in the control animals were higher than those in the primary 
antibody response, indicating that the antibody response had matured both in 
IgM and IgG classes. KLH-primed thymocytes and spleen cells produced a 
moderate suppression in the number of both direct and indirect PFC. The aver- 
age avidity values of the suppressed groups were considerably lower than those 
of the control group, the difference amounting to nearly one log scale. It is 
interesting to note that the average avidity of PFC produced under the suppres- 
sive influence of carrier-primed T cells was still less than that observed in the 
normal primary antibody response, indicating that suppressor T cells caused the 
definite arrest of antibody maturation. 

TABLE II 

A nti-DN P Antibody Response in the Adoptive Secondary Antibody Response 
Measured 7 Days After the Secondary Immunization 

Direct PFC Indirect PFC Association 
Cells* transferred constant 

Number  I5o~/ Number  I50~; (K0)§ 

None 10,600 X / +  1.46 7.1 X 10 -6 46,800 X / +  1.45 2.4 X 10 -7 1.8 X 106 
KLH-primedTh 4,120 X / ÷  1.39 1.1 X 10 -5 9,000 X / ÷  1.45 2.1 X 10 -6 4.0 X 105 
KLH-pr imed Spl 1,950 X / ÷  1.41 1.8 X 10 -6 11,300 X/:-- 2.05 2.0 X 10 -6 6.0 X 105 

* 5 X 107 K.LH-primed thymocytes or spleen cells were passively transferred'into the recipients that had been 
X-irradiated and reconstituted with DNP-primed spleen cells. 

~c Molar concentration of e-DNP-L-lysine required for 50% reduction in the number of PFC. 
§ Measured by modified Farr test using [3H]DNP-EACA of the pooled antiserum. 

Figs. 2 and 3 show the representative patterns of inhibition of PFC by differ- 
ent concentrations of free hapten in the control and those given KLH-primed 
thymocytes. The inhibition profiles oi both direct and indirect PFC in the con- 
trol group exhibited steep slopes in the high concentration range of free hapten, 
indicating that PFC produced in the secondary antibody response were less 
heterogeneous with higher avidity than in the primary antibody response. 
However, the inhibition curves in the suppressed group had shallow slopes that 
were comparable to those observed in the normal primary PFC response, repre- 
senting a high degree of heterogeneity of acidities. 

The examination of the antibody affinity of the pooled antiserum disclosed a 
significant decrease in the average association constant (K0) in groups given 
KLH-primed thymocytes and spleen cells as compared to the control (Table II). 
The degree of suppression in K0 was parallel to that of I50 

Preferential Suppression of High Avidity PFC by Carrier-Primed T Cells in 
the Primary and Secondary Antibody Responses.--In order to determine the B 
cell population which was preferentially affected by suppressor T ceils absolute 
frequencies of PFC in various avidity subgroups were determined, and the 
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FIG. 2. Inhibition profiles of direct PFC by different concentrations of free hapten in the 
adoptive secondary antibody response. Irradiated recipients were reconstituted with 5 × 10 ~ 
DNP-primed spleen cells. The suppressed group was given additional 5 X 10 7 KLH-primed 
thymocytes. Data obtained 7 days after the secondary challenge with DNP-KLH. Each point 
is a mean value of six similarly treated mice. 
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FIO. 3. Inhibition profiles of indirect PFC by different concentrations of free hapten in the 

adoptive secondary antibody response. Data obtained from the same source of Fig. 2. 

values were compared between the control and suppressed groups. This  was 
achieved by determining the incremental  number  of PFC,  which were inhibited 
by  successive 10-fold increases in the concentration of e-DNP-z-lysine,  and then 
calculating the absolute number  of P F C  in the spleen which are inhibitable by  
each concentrat ion range of free ligand. The  total  PFC which had been deter- 
mined in the slide containing no free hapten was thus divided into five avid i ty  
subgroups. 

The  representat ive pa t t e rn  of av id i ty  dis tr ibut ion of direct P F C  in the pri- 
ma ry  an t ibody  response is shown in Fig. 4. In  the unsuppressed control group 
direct P F C  on day  3 were dis t r ibuted among a wide range of avidities, reflecting 
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FIG. 4. Avidity distribution of anti-DNP direct PFC produced in the primary antibody 
response. The suppressed group was given 5 X 10 7 KLH-primed thymocytes immediately 
before the primary immunization with DNP-KLH. The control group was not given suppressor 
T cells. Data obtained 3 days after the immunization. Each column and bracket are the geo- 
metric mean and standard deviation calculated from six similarly treated mice. 

the high degree of heterogeneity of responding B cells at this early stage. How- 
ever, it is clearly seen that tlie frequency of PFC in the suppressed group that 
had been given KLH-primed thymocytes on day 0 tended to distribute in low 
avidity groups, indicating that the cells producing high avidity antibody had 
been preferentially suppressed. An essentially similar pattern of distribution of 
direct PFC was observed in the group that was given KLH-primed spleen cells. 
Hence, the decrease in the average avidity of PFC in suppressed groups is con- 
sidered to be due to the selective loss of PFC with high avidity and the relatively 
stable level of low avidity PFC. An analysis of avidity distribution of indirect 
PFC on day 6 was not possible because the level of PFC in the suppressed group 
was too low. 

A similar effect of suppressor T cells on the avidity distribution of direct and 
indirect PFC was observed in the adoptive secondary antibody response. In 
this case, calculation of the number of indirect PFC in the presence of various 
concentrations of ligand was possible. Figs. 5 and 6 depict the data obtained in 
the groups that were given KLH-primed thymocytes in comparison with those 
of the control animals. The distribution profiles of both direct and indirect PFC 
in the control groups show a definite maturation represented by the shift of 
distribution of PFC frequency into high avidity subgroups. On the other hand, 
PFC in the suppressed group show a wide distribution among various avidity 
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Fz6. 5. Avidity distribution of anti-DNP direct PFC produced in the adoptive secondary 
antibody response. The suppressed group was given 5 X 10 7 KLH-primed thymocytes before 
the secondary challenge with DNP-KLH. The control group was not given suppressor T cells. 
Data obtained 7 days after the secondary immunization. Each column and bracket are the 
geometric mean and standard deviation calculated from six similarly treated mice. 

subgroups, with the lower avidity groups possessing somewhat greater number 
of PFC. This pattern of distribution is analogous to that observed in the normal 
primary antibody response. A significant difference in the frequency of PFC, 
in absolute terms, between suppressed and unsuppressed groups is observed 
among high avidity subgroups: the absolute numbers of PFC among high 
avidity subgroups are significantly lowe~ in the suppressed group than in the 
unsuppressed control group, indicating that the suppressor T cells preferentially 
affected the cells which had been destined to produce high avidity antibody. 
Essentially similar results were obtained in groups that were given KLH-primed 
spleen cells instead of thymocytes. Therefore, low average avidity values ob- 
served in suppressed animals are considered to be, in fact, due to the preferential 
loss of high av, dity PFC rather than to tile overall decrease in the magnitude of 
the immune response. 

DISCUSSION 

The present results clearly point to an important regulatory role of T cells in 
the maturation of antibody response with regard to emergence or selection of B 
cells having high aËfinity receptors for antigen. This was demonstrated by both 
the decrease in average avidity of PFC and reduction in the absolute number of 
high avidity PFC in animals given suppressor T cells. Since the affÉnity of anti- 
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FIG. 6. Avidity distribution of anti-DNP indirect PFC produced in the adoptive secondary 
antibody response. Data obtained from the same source of Fig. 5. 

body produced by a single antibody-forming cell is found to be identical or 
closely related to that of receptors of precursor B cells, ~ the decrease in the 
affinity of antibody produced by PFC should result from selective suppression 
of B-cell populations possessing high affinity receptors for antigen. The correla- 
tion between the changes in average avidity of PFC (I50) and association con- 
stant of serum antibody (K0) in the adoptive secondary antibody response also 
support this concept. 

The observations are consistent with our previous finding that IgG antibody 
response was more severely suppressed than IgM antibody response by carrier- 
primed suppressor T cells given simultaneously with primary and secondary 
immunizations (1), inasmuch as IgG antibody generally possesses a higher 
affinity for hapten than does IgM antibody (9-11). I t  has been pointed out 
that T-cell-independent IgM antibody formation, in general, does not mature 
even after repeated immunization (15, 16). Thus it is of interest to find that 
the IgM as well as IgG antibody response in the present system does mature 
and this maturation has been inhibited by suppressor T cells. These results 
suggest that the maturation of antibody response is dependent on the function 
of T cells, and that such a T cell-dependent process in the immune response is 
strongly affected by suppressor T cells. As the specificity of this T-cell-mediated 

2 Julius, M. H., and L. A. Herzenberg. 1974. Isolation of antigen-binding cells from un- 
primed mice: demonstration of antibody-forming cell precurser activity and correlation be- 
tween precurser and secreted antibody activities. 3. Exp. Med. Manuscript submitted for 
publication. 
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suppression has been firmly established (1), it seems probable that carrier- 
primed T cells exert selective pressure on the precursor population of hapten- 
specific antibody forming cells with respect to both the class and affinity of 
antibodies to be produced by the latter cell type. 

I t  is not known at the present time how such selective pressure is exerted 
by antigen-stimulated T cells. I t  is generally held that selection of precursor B 
cells to differentiate and to synthesize antibody is primarily dependent on the 
effective concentration of antigen in the micro-environment of B cells, and thus 
B cells with high affinity for antigen are more easily selected to proliferate and 
to expand their progeny (5-8). Therefore, the affinity of produced antibody is 
primarily determined by the thermodynamic relationship between antigen and 
receptor of precursor B cells. Indeed, Siskind and co-workers (5, 17i 18) and 
Harel et al. (19) have shown that mere nonspecific modifications of the magni- 
tude of antibody response by adjuvant and immunosuppressants do not signifi- 
cantly alter the affinity of the antibody produced in the rabbit, although a high 
degree of antigenic competition in guinea pigs does affect profoundly the 
affinity of the produced antibody (19, 20). However, Taniguchi and Tada (21) 
reported that affinity of produced antibody in the rabbit is influenced by the 
carrier-specific T cells. They found that a relative depletion of T cells by surgi- 
cal or chemical thymectomy caused a marked enhancement of antibody forma- 
tion accompanied by a striking increase in antibody affinity. Conversely, over- 
stimulation of T cells by pre-immunization with the carrier caused a depressed 
formation of antihapten antibodies whose affinity was considerably low. They 
interpreted these phenomena as the consequence of T cells' regulatory function 
on the selection and emergence of high affinity B cells. 

On the other hand, Gershon and Paul (22) have presented evidence using 
the adoptive cell transfer system that the affinity as well as the amount of 
antibody depends on the nature of the carrier molecule and on the number of 
T cells possessed by the immunized animal. They postulated that T cells may 
function by increasing the rate of antigen-stimulated proliferation of B cells, 
thus leading to more rapid changes in the population of B cells upon which 
selective pressure by antigen is being exerted. Therefore, the changes in the 
affinity in their experiments are largely explained by the increase in the rate of 
proliferation of B cells in the presence of adequate numbers of T cells. 

Perhaps this explanation is also applicable, though inversely, to the present 
experimental results. If we assume that T cells exert nonspecific inhibitory in- 
fluence on B cells that are undergoing antigen-stimulated proliferation, such 
inhibitory effect may preferentially be directed to the cells on which antigen- 
driven selective pressure is exerted. However, the main difficulty of this ex- 
planation lies in the facts that suppressor T cells did not inhibit the prolifera- 
tion of B cells with low affinity receptors, and that the decrease in average 
avidity did not always correlate with the reduction of PFC numbers. Also, 
the nonspecific inhibitory effect has been denied by the fact that T cells primed 
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with heterologous carrier could not suppress the hapten-specific PFC response 
even if such T cells were re-stimulated with the corresponding antigen (1). 

Another explanation may be derived from the concept of antigen presenta- 
tion and focussing by T cells (23). I t  is assumed in this theory that T cells or 
T-cell products bind antigen and present it to specific B cells. If a larger num- 
ber of carrier-primed T cells are present, these would deliver a larger amount 
of effective antigen, that ultimately cause the dose-dependent decrease in the 
average affinity. I t  has also been shown that a supraoptimal dose of T-cell 
product (IgT), that otherwise is capable of stimulating B cells, becomes inhibi- 
tory in in vitro circumstances especially when macrophages were absent (24). 

At the present time, we have no clear evidence to support the above hy- 
potheses. However, recent publications from our laboratory clearly indicated 
the existence of a subcellular component of carrier-primed T cells that specifi- 
cally suppresses an ongoing hapten-specific IgE antibody formation in the rat 
(25, 26). This subcellular component possesses specificity to the carrier deter- 
minants of immunizing antigen, and thus is capable of combining the carrier 
molecule. Although we have no conclusive data as yet on such an antigen- 
specific inhibitory component in the mouse, it is possible that such inhibitory 
T-cell component is also involved in the observed suppression of antibody 
response as well as of antibody maturation: B cells with high affinity receptors 
may more easily be selected by antigen than those with low affinity receptors, 
and thus be preferentially affected by the inhibitory T cells or their product 
which can combine to the carrier determinant of the antigen bound to such 
selected B cells. However, T-cell-independent subpopulations of B cells, which 
lack sensitivity to such T cells' influences, would proliferate under the condition 
where the competitive inhibition by high affinity antibodies is eliminated as 
the result of the suppression of T-cell-dependent antibody response. Although 
this explanation is based on the hypothetical existence of the specific suppressor 
component elaborated by T cells, which has been reported only in the rat (25, 
26), some preliminary studies in our laboratory have given affirmative evidence 
for the presence of the same kind of T cell component (manuscript in prepara- 
tion). 

The above interpretation does not contradict the selectional theory of anti- 
body maturation presented by Siskind and Benacerraf (5), and further allows 
to explain the conflicting effect of T cells on antibody affinity. I t  also offers a 
clue to the understanding of more sophisticated roles of T cells in the regula- 
tion of antibody response, namely, the selective pressure of T cells on B-cell 
response with respect to the 'shift' in the class and affinity of produced antibody 
in the time course of antibody response. Furthermore, the preferential suppres- 
sion of high affinity antibody formation caused by suppressor T cells is clearly 
analogous to the feature in the immunological tolerance produced by high 
doses of antigen (27-29). In view of the observation made by Gershon and 
Kondo (30) on the infectiousness of immunological tolerance by T cells, the 
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attribute of suppressor T cells to the induction of immunological tolerance 
should await further analysis. 

SUMMARY 

Passive transfer of thymocytes and spleen cells from donors primed with 
keyhole limpet hemocyanin (KLH) caused significant decrease in the average 
avidity of anti-DNP antibodies produced by direct and indirect PFC in the 
recipients in both primary and adoptive secondary antibody responses against 
DNP-KLH.  The analysis of the avidity distribution of antibodies produced 
by plaque-forming cells (PFC) indicated that the observed decrease in the 
average avidity is primarily due to the selective loss of high avidity subpopula- 
tion of PFC leaving low avidity subpopulation relatively unaffected. The 
degree of suppression in antibody avidity did not correlate with the reduction 
in the number of PFC, and thus causing the "shift" of avidity distribution of 
PFC to the low avidity end. These results indicate that the "maturation" of 
antibody in the T-cell-dependent antibody response is influenced by the carrier- 
specific suppressor T cells with respect to the emergence and selection of B 
cells having high affinity receptors for hapten. I t  is suggested that B cells 
binding antigen with high affinity receptors would be more easily affected 
than those with low affinity receptors by specific suppressor T cells which are 
capable of reacting the carrier portion of the same antigen. 

The authors  are grateful to Doctors A. Okabayashi ,  M. Taniguchi,  and K. Okumura  for 
their encouragements  and useful discussions. We are indebted to Dr. G. W. Siskind and his 
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