Sl Appendix 1

1. Additional Methods

Measures of cell densityThe cell density is determined in two independent ways by oreasent of
the optical density at 620 nm (OD) and the dry weight (dw) @& tells. Fig. 6 illustrates the linear
relation between OD and the total dry weight-glwhich is the sum of the dry weight of the cells, dw,
and the dry weight of the buffer.
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Fig. 6. Linear relation between OD and total dry weight-@wl'he regression line is used to assign confidence
intervals to the cell density measurements in Figs. 2, 3 &nd 1

The volume ratiax = V. / V% is proportional, in the range of values we consider, to OD and dw
according tax = 0.0014 OD = 0.0022 ml per mg of dw (ref. 1 and our wet weight measurements).

Data analysis and determination of dynamical propertie$he properties of the collective dynam-
ics (amplitude and frequency of the oscillations, rate afageto the equilibrium) are determined by
processing the NAD(P)H fluorescence time series in order taimlat smooth oscillatory signal with
defined amplitude and phase.

Autonomousoscillations. For the cell densities at which spontaneous oscillationaipthe fluorescense
signal is processed according to the following steps:

1. The baseline (Fig. 7) is computed by using a running averéipeavtime window corresponding
to two periods of oscillations.

2. An initial transient is discarded. It appears as an exptaedecay of the baseline to a steady
state, and its duration is of the order of one hour.

3. To compare signals from measurements at different cekities, the signal is normalized by
subtracting the baseline and dividing by the baseline valByeusing the Hilbert Transform (2)
on trains of ten to fifty periods we obtain for each datapoistitistantaneous amplitude (Fig. 8)
and phase (Fig. 9) of the corresponding regular oscillatoegeing the observed signal.

4. Amplitude A is obtained by averaging the instantaneous, normalisedtanigs within each train.
The angulafrequency w is calculated as the mean slope of the phase time series (Figh@
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Fig. 7. Experimentally measured fluorescence time trace at a cedlityeof dw=11 mg/ml, above the critical
cell density. Each dot corresponds to one measurement iftterxwal between two measurést = 0.5 s). The

continuous line represents the baseline.
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Fig. 8. Normalised time series of Fig. 7 (black dots) and the insta@bus amplitude computed from the Hilbert
transform (gray dots).
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Fig. 9. Instantaneous phase of the signal in Fig. 7 computed frorHlibert transform.

frequencies measured soon after the exhaustion of thedramsnd at the end of the experiment
are used as a check against possible drift of the operatiimg} po

5. Amplitude and frequency are computed for about five nomtapping time windows. Figs. 2 and
3 display their averages with error bars indicating the mmaxn and minimum values.

Macroscopic steady state. When the signal is not oscillating, the dynamical propsroéthe system
cannot be determined without perturbation experimentsthig study, we force the solution with a
periodic inflow of Aca with a period of 39 seconds, close to thiathe damped oscillations of the
unforced system. For half of the period, the Aca inflow is séwvioe its unforced rate, for the other half
period it is stopped, thus maintaining the same average irdfi@ra period as in the unforced system.
This results in an approximately saw-tooth shaped variatidime mixed flow Aca concentration, which
forces the system to oscillate at a fixed amplitude (Fig. 10; dos). After such a forcing is stopped,
the collective dynamics decays back to the steady stateXBjdplack dots). The signal is processed as
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Fig. 10. NAD(P)H fluorescence signal before, during and after fayadh a non spontaneously oscillating
suspension (dw=4.1 mg/ml, below the critical density). He tibsence of external forcing (black points) the
average fluorescence of the steady state is constant upeapkremental precisiord(5%). When forced with a
period of 39 s (grey dots) the cells respond immediately gndtgonize with the external signal. When forcing
is terminated, the fluorescence displays a damped decayldtieline shows the baseline used for data cleaning
and processing. The average Aca inflow is the same througiheeixperiment.

for points 1 — 3 of the spontaneous oscillating case. Howéverfrequencw is computed only on the
decaying regime and after the baseline has recovered frelsntiall drift of the operating point (due to
the local change of Aca). The exponential fit of the amplitudsagigFig. 11 Inset) yields \.
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Fig. 11. Experimental data shown in Fig. 10 after subtraction of #heesline and normalisation (black dots) and
the relative amplitude computed from the Hilbert transfdgney dots). The dashed line represents an exponential
decay towards the origin with exponektand is displayed in a semilog plot in the inset. The amplithds a
first abrupt decay (similar for all the experimental coratis we have explored) that we explain as a displacement
of the limit cycle, due to the forcing, out of the plane of malwscillations. This is followed by an exponential
decay up to the point where noise levels the signal off. Time0 s corresponds to the interruption of the forcing.

These two quantities correspond to the imaginarypé@rig. 2, filled circles) and real pakt(Fig. 12)
of the complex Hopf eigenvalues of the Jacobian matrix ferdbilective dynamics in the stable steady
state. Figs. 2 and 12 display the average value of about fivditieps of the perturbation protocol.
The error bars correspond to the maximum and minimum obserlads. For very dilute suspensions,
the measurement of these exponents is hampered by thedimglgafast damping as the cell density
decreases. This reduces the time interval over which statisan be performed. We did not consider
density values for which the signal had less than five cleasiirdjuishable damped oscillations.



Data fit and parameter estimationThe parameters of the reduced equation @&care determined
by sequential fitting of Eqs3 — 5to the experimental data (Figs. 2 — 3 and 12). First, the derssity
expressed in terms of as described in thieleasures of the cell density. A fit of Eq. 3 to the frequency
data (Fig. 2) determinasandwy (c = 850, wy = 0.17 s~1). These parameter values can be inserted in
Eqg. 4, and the remaining parameters of this equatioar{d \) are determined by fitting to the linear
stability data (Fig. 12).

This yieldsT = 0.16 s~*, A\g = 0.015 s~! and a critical cell density of div= 5.6 mg/ml. We are
now left with only one free parameter, the nonlinearity ficefntg. Eq.5can, in turn, be used to fit the
amplitude data (Fig. 3). By substituting the previously fifpadameters, we can obtain two independent
values for the nonlinearity parameig(g = —3.6 s~ or g = —4.0 s~ !, within 12% from each other).
Alternatively, if we only introduce\, in Eq.5, we get an independent estimate of the critical cell density
dw* = 6.3 mg/ml, which is within 13, from the value obtained by fitting the first two equations. The
closeness of these estimates confirms the self-consistétivy model in explaining the experimental
data.
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Fig. 12. Decay exponent (real part of the complex eigenvalues oftdidessteady state; dots) as a function of
cell density (reported as dry weight). The continuous lgresents the best fit of E4;.

Besides the parameters obtained by means of the reducetibeqtize full system Edl depends on
additional parameters that cannot be directly inferrethftioe scaling relations. These parameters have
to be specified in the comparison of the experimental datatv@mumerical simulations, where the
intracellular oscillator is embedded into a three-dimenal chemical space (s&tathematical Model).

The anglef = 87° between the oscillation plane and the direction of the diffg species has a
complex relation with the parameters of the reduced sysWechoose its value so that the rescaling
parameter of the simulations matches that of the reduced system.

The rate of decay to the oscillations plane and the diffusimmstant are chosen large but finite,
consitent with our hypothesis of large time scale separatithe oscillatory modes and of fast diffusion.
The values we use in the numerical simulations arg;,; = 500 s~! andd,., = 300 s~ (cf. Section
2). The larger their values, the better the reduced systemozipmates Eql.

For simulations of populations of non-identical oscillstove also need to choose the features of the
frequency distribution. We assign the frequencie®f each of the oscillators according to a Gaussian
distribution centred invg. The relative standard deviation of this distribution is 158s is a larger
range of frequency variation than we observe experimsntathe bulk oscillations.



2. Estimate of Acetaldehyde Transport Kinetics

Acetaldehyde (Aca) is a small uncharged molecule that shffufreely across the cell membrane. It
is believed to be the mediator of the diffusive coupling amtre yeast cells (3). The strength of the
coupling is hence proportional to the first-order rate camsta.., which quantifies the kinetics of the
Aca transport reaction.

In order to enter the yeast cell, an Aca molecule has to crossdir unstirred boundary layer
surrounding the cell, and then the cell membrane. Basedfarsidin equations (4), we can give an
estimate ofi,.,.

We take the yeast cell as a sphere of radiysand the boundary layer as a spherical shell of inner
radiusry; and outer radius,. In doing this, we consider that the cell membrane (of theoad 10 nm)
has a negligible thickness compared to the boundary layerdiffusion flux is most readily estimated
under the assumption of a quasi-stationary concentratigfiiga With this assumption, the amount of
diffusing substance passing the cell membrane per unitisrgiren by ref. 4 (p. 84):
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whereJ is the flux of particles (molecules per unit area per tiniejs the diffusion coefficient (unit area
per unit time) and; is the concentration at = r;. Expressed in terms of intracellular concentration,
this is equivalent to:

whereV; designates the volume of a sphere of radius r;.

In order to estimatel,., we taker; = 3 um, which is the radius of a sphere with the same
volume as a typical yeast cell. We also take= 6.5 um which is the largest geometrically possible
boundary layer which can be accomodated at the typical eelsitly of 10% wet weight. Finally, we
takeD = 5- 1075 cm?/s which is a typical small-molecule diffusion coefficient. Withese values

one obtains 5D
dpca = ————— =300 s 1.
2 L1

The validity of the assumption of quasi stationarity of tha@entration profile can be assesed by means
of the time-dependent diffusion equation. From ref. 4 (p.\98&)get the smallest relaxation rate

Dn?

=400s !
(r2 —11)

krelax = 2

Both numbers are large compared to the timescales of théabsgy intracellular dynamics, whose
period is about 37 s and eigenvalue corresponding to tharlinstability typically 0.015s!. Based on
this result, we assume that the equilibration of Aca cone¢inhs inside and outside the cell is almost
instantaneous.

3. The Mathematical Model

Eqg.1inthe main text describes a population of oscillators giffaly coupled to a homogeneous external
medium. Depending on parameter values, this system catagigognumber of dynamical regimes,
which can be studied both at the individual and at the pojauidevel. Our interest for modelling at
the population level comes from practical difficulties of rei@ng the state of the individual cells in a
stirred reactor.

As pointed out in the main text, our experiments do not pre\ady indications in favour of an
incoherent regime, and in particular they do not satisfyeoirthe hallmarks of the universal transition
to coherence described by Kuramoto (5). We focus on the atterario (i.e. synchronous collective



motion), which is consistent with the available experinaédata on oscillating suspensions. Within this
framework, and based on the assumption of a separationettales, we formulate a reduced equation
describing the overall reactor dynamics, and from that winbscaling laws for the macroscopic
observables. These equations allow us to parameterise tbel g fitting it to the experimental
data. Eventually, we will check the robustness of the quatitéd model after relaxing the assumptions
introduced for deriving the reduced equation. In particulee will show the self-consistency of the
synchrony hypothesis.

Reduced equation for the synchronous dynamid#ith the aim of deriving a simple reduced equation
accounting for the macrosopic bifurcation, we assume nat &l cells are identical and that the
diffusion through the membrane is much faster than the tiratef the intracellular dynamics. In the
synchronous regime, the population described bylHmphaves as one single oscillator coupled to an
external medium: .
T = F(x)-D(x-X)
(S

X = oaD(x-X)-JX.

The dynamics of the overall concentrations is obtained byraafihe two equations in EG1, weighted
by the relative volumes occupied by the cytopladis and by the mediunt,:

dx dX
yt& + ‘/extg = ‘/cyt F(X) - ‘/Cyt D (X - X) + ‘/ext CVD(X - X) - ‘/ext JX. (52)
From the definition ofv = V. / V%, and if all substances cross the membrane very fast (so thaaw
setx ~ X), we get:

Ve

dx «

it " ari P oI (53
This equation already contains in a nutshell the qualitagiffects of a cell density change on the
synchronous dynamics of a population. In the limit of infinit&ightly packed cells), the macroscopic
dynamics is identical to the intracellular dynamitfx). If «is small, that is for very dilute suspensions,
the extracellular relaxation dynamiesIx prevails andk = 0 is a stable solution. The transition from
high to low cell densities takes place by a progressive sigWilue to the coefficient of the first term
multiplying the intracellular dynamics) and damping of thenamics.

Geometrical arguments suggest to apply E§.also to cases where not all the species diffuse,
through a rescaling of alpha. Such rescaling provides arteféecytosolic volume larger than the
real one and thus reduces the effect of the extracellulaiumedSpecifically, numerical simulations
show that a rescaled version of E83 describes the overall reactor dynamics for the case of yeast
where planar oscillators are coupled by a fast diffusingigse The rescaling facterdepends on the
geometrical relationships between the plane of osciltatind the direction along which the diffusive
coupling takes place. The validity of the rescaling is confulirees discussed below, also if there is no
complete separation of the time scales and for noniderdgzllators.

Model of the intracellular oscillator.In accordance with experimental observations (6,7), weriles
the dynamics of the individual yeast cell oscillator as aithaycle close to the onset of oscillations.
Thus, the intracellular dynamics is modelled as a Hopf aoitlconfined to a plane in concentration
space, which is tangential to the unstable manifold of tatmtary state. For the sake of simplicity, we
assume that the average concentration of intracellulaiepes not affected by cell density, and center
the limit cycle at the origin. In the plane of oscillationketintracellular dynamics is described by a

Hopf normal form (8):

dz .
T = f(2) = (Ao +iwo + g |2[?) 2, (S4
wherez is a complex variable, and +iw, are the eigenvalues associated with the eigenvectorsisggann

the plane of oscillations. In the most general formulattbe,nonlinearity parameteris complex, and



its imaginary part makes the frequency of the free-runnswllator depend on the amplitude. Previous
estimates of this parameter (7) have evidenced the smalivelvalue of the imaginary part af

(}gﬁ = = 0.2) and we have observed no frequency shift in transients fafteing. Therefore, we here
assume thaj is real-valued.

The plane of oscillations is embedded in a high-dimensiomatentration space. Close to the onset
of oscillations, however, the dynamics is essentially cafito this plane. This corresponds to a sharp
time scale separation between the oscillations and therfastverse modes. The coupling acts along
the direction(s) of the diffusing species, and these diwvastdo generally not coincide with the plane
of oscillations. This is the cause of the density rescalitigpduced above.

In the case of yeast, Aca is known to diffuse extremely fastieWthe description of the yeast

glycolytic oscillations, EqS4, is substituted into E, this takes the form:

dz ac . 9 1
a—ac_i_l()\g—l-zwo—i—gp])z—ac+172 (SH
Separation of the radial and angular parts of this equatiea R¢'?) yields:
% = ac+1 ()\0 +9g RZ) R— ac+1R
- (S6)
a a?Jcrl wo-

From these equations, we obtain the scaling laws Eg& These scaling laws allow us to parameterise
the reduced system by fitting the parametayshg, ¢, 7 andg to the experimental data, as described in
Section 1.

4. Comparison of Fitted Parameters with Independent Estimées

Estimate of the linear stability of the intracellular steady s&ah,. We have previously determined
the linear stability of the steady state by fitting the Hopfmal form with an additional stable mode to
guenching experiments where the glycolytic oscillatioreserturbed by addition of a single pulse of
either Aca or glucose (7). This analysis indicates #hat 0.014 s~! at a cell density of dw =16 mg/ml.
This is in good agreement with the value)ef = 0.015 s~! determined here.

Estimate of the relaxation time. An independent estimate of the first-order rate constanioaeel-
lular removal of Aca can be obtained from biochemical datadliterature and the flow parameters of
the reactor. The estimate is based on the observation thiaathiece of the chemical species presentin
the extracellular medium is due to three factoi¥the flow through the reactor, entirely determined by
its volume and by the rate at which chemicals are introduggdhe reaction among different chemical
species present in the reactani)(the cell-dependent contribution to the concentratiorushsspecies.
Thus, the changes in the Aca concentration is given by

AR _ i (1acal, — [Acd) — K [ON][Aca] + v,
wherek is the specific flow rate of the reactdfcal, is the mixed flow Aca concentratio, is the
second-order rate constant describing the kinetics ofdhetion between cyanide and Aca, apdis
is the cellular Aca production rate. The relaxation parameia the model corresponds to the rate of
extracellular Aca removat; = ko + k£ [CN7].

All these parameters can be estimated separately, withxtepton ofk, which we determine from
the steady-state Aca concentratidralss in the presence of oscillating yeast cells. In doing this, we
approximate the concentrations to the steady state arobiuthwhey oscillate. This is not expected to
significantly affect the result, since the amplitude of theiltagtions is small compared to their average.
For the steady state we get:

Vcells 1 kO ([AC&]O — [AC&]SS)

=k E[CN™ | = &
T 0 + [ } 0+ [AC&]SS

(S7)



The parameters of our open-flow reactor &ge= 0.062 min~—! and[Aca, = 0.75 mM. From ref.

(3) and the correction given on p. 27 in ref. (9) we estinatea]s = 20 M. At a cell density of
dw= 16 mg/ml, the Aca production is estimatechags = 100 xM/min (10). By substituting these
values in Eq.S7, one obtainsr = 7.3 min~!. This is in reasonable agreement with the value of
7 = 9.9 min~!, which we obtain by fitting the reduced equation (Ejto the experimental data.
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