
SI Appendix 1

1. Additional Methods

Measures of cell density.The cell density is determined in two independent ways by measurement of
the optical density at 620 nm (OD) and the dry weight (dw) of the cells. Fig. 6 illustrates the linear
relation between OD and the total dry weight dwT which is the sum of the dry weight of the cells, dw,
and the dry weight of the buffer.
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Fig. 6. Linear relation between OD and total dry weight dwT. The regression line is used to assign confidence
intervals to the cell density measurements in Figs. 2, 3 and 12.

The volume ratioα = Vcyt/Vx is proportional, in the range ofα values we consider, to OD and dw
according toα = 0.0014 OD = 0.0022 ml per mg of dw (ref. 1 and our wet weight measurements).

Data analysis and determination of dynamical properties.The properties of the collective dynam-
ics (amplitude and frequency of the oscillations, rate of decay to the equilibrium) are determined by
processing the NAD(P)H fluorescence time series in order to obtain a smooth oscillatory signal with
defined amplitude and phase.

Autonomous oscillations. For the cell densities at which spontaneous oscillations occur, the fluorescense
signal is processed according to the following steps:

1. The baseline (Fig. 7) is computed by using a running average with a time window corresponding
to two periods of oscillations.

2. An initial transient is discarded. It appears as an exponential decay of the baseline to a steady
state, and its duration is of the order of one hour.

3. To compare signals from measurements at different cell densities, the signal is normalized by
subtracting the baseline and dividing by the baseline value. By using the Hilbert Transform (2)
on trains of ten to fifty periods we obtain for each datapoint the instantaneous amplitude (Fig. 8)
and phase (Fig. 9) of the corresponding regular oscillator generating the observed signal.

4. Amplitude A is obtained by averaging the instantaneous, normalised amplitudes within each train.
The angularfrequency ω is calculated as the mean slope of the phase time series (Fig. 9). The
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Fig. 7. Experimentally measured fluorescence time trace at a cell density of dw=11 mg/ml, above the critical
cell density. Each dot corresponds to one measurement (timeinterval between two measures∆t = 0.5 s). The
continuous line represents the baseline.
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Fig. 8. Normalised time series of Fig. 7 (black dots) and the instantaneous amplitude computed from the Hilbert
transform (gray dots).
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Fig. 9. Instantaneous phase of the signal in Fig. 7 computed from theHilbert transform.

frequencies measured soon after the exhaustion of the transient and at the end of the experiment
are used as a check against possible drift of the operating point.

5. Amplitude and frequency are computed for about five non-overlapping time windows. Figs. 2 and
3 display their averages with error bars indicating the maximum and minimum values.

Macroscopic steady state. When the signal is not oscillating, the dynamical properties of the system
cannot be determined without perturbation experiments. Inthis study, we force the solution with a
periodic inflow of Aca with a period of 39 seconds, close to thatof the damped oscillations of the
unforced system. For half of the period, the Aca inflow is set totwice its unforced rate, for the other half
period it is stopped, thus maintaining the same average inflowover a period as in the unforced system.
This results in an approximately saw-tooth shaped variationof the mixed flow Aca concentration, which
forces the system to oscillate at a fixed amplitude (Fig. 10, grey dots). After such a forcing is stopped,
the collective dynamics decays back to the steady state (Fig.10, black dots). The signal is processed as
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Fig. 10. NAD(P)H fluorescence signal before, during and after forcing of a non spontaneously oscillating
suspension (dw=4.1 mg/ml, below the critical density). In the absence of external forcing (black points) the
average fluorescence of the steady state is constant up to theexperimental precision (0.5%). When forced with a
period of 39 s (grey dots) the cells respond immediately and synchronize with the external signal. When forcing
is terminated, the fluorescence displays a damped decay. Theblack line shows the baseline used for data cleaning
and processing. The average Aca inflow is the same throughoutthe experiment.

for points 1 – 3 of the spontaneous oscillating case. However, the frequencyω is computed only on the
decaying regime and after the baseline has recovered from the small drift of the operating point (due to
the local change of Aca). The exponential fit of the amplitude decay (Fig. 11,Inset) yieldsλ.

Fig. 11. Experimental data shown in Fig. 10 after subtraction of the baseline and normalisation (black dots) and
the relative amplitude computed from the Hilbert transform(grey dots). The dashed line represents an exponential
decay towards the origin with exponentλ and is displayed in a semilog plot in the inset. The amplitudehas a
first abrupt decay (similar for all the experimental conditions we have explored) that we explain as a displacement
of the limit cycle, due to the forcing, out of the plane of natural oscillations. This is followed by an exponential
decay up to the point where noise levels the signal off. Timet = 0 s corresponds to the interruption of the forcing.

These two quantities correspond to the imaginary partω (Fig. 2, filled circles) and real partλ (Fig. 12)
of the complex Hopf eigenvalues of the Jacobian matrix for the collective dynamics in the stable steady
state. Figs. 2 and 12 display the average value of about five repetitions of the perturbation protocol.
The error bars correspond to the maximum and minimum observedvalues. For very dilute suspensions,
the measurement of these exponents is hampered by the increasingly fast damping as the cell density
decreases. This reduces the time interval over which statistics can be performed. We did not consider
density values for which the signal had less than five clearly distinguishable damped oscillations.
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Data fit and parameter estimation.The parameters of the reduced equation (Eq.2) are determined
by sequential fitting of Eqs.3 – 5 to the experimental data (Figs. 2 – 3 and 12). First, the densityis
expressed in terms ofα as described in theMeasures of the cell density. A fit of Eq. 3 to the frequency
data (Fig. 2) determinesc andω0 (c = 850, ω0 = 0.17 s−1). These parameter values can be inserted in
Eq.4, and the remaining parameters of this equation (τ andλ0) are determined by fitting to the linear
stability data (Fig. 12).

This yieldsτ = 0.16 s−1, λ0 = 0.015 s−1 and a critical cell density of dw∗ = 5.6 mg/ml. We are
now left with only one free parameter, the nonlinearity coefficientg. Eq.5 can, in turn, be used to fit the
amplitude data (Fig. 3). By substituting the previously fittedparameters, we can obtain two independent
values for the nonlinearity parameterg (g = −3.6 s−1 or g = −4.0 s−1, within 12% from each other).
Alternatively, if we only introduceλ0 in Eq.5, we get an independent estimate of the critical cell density
dw∗ = 6.3 mg/ml, which is within 13% from the value obtained by fitting the first two equations. The
closeness of these estimates confirms the self-consistency of the model in explaining the experimental
data.

3 4 5 6

−15

−10

−5

0

x 10
−3

cell density  (mg/mL)

λ 
  (

s−
1 )

Fig. 12. Decay exponent (real part of the complex eigenvalues of the stable steady state; dots) as a function of
cell density (reported as dry weight). The continuous line represents the best fit of Eq.4.

Besides the parameters obtained by means of the reduced equation, the full system Eq.1 depends on
additional parameters that cannot be directly inferred from the scaling relations. These parameters have
to be specified in the comparison of the experimental data withthe numerical simulations, where the
intracellular oscillator is embedded into a three-dimensional chemical space (seeMathematical Model).

The angleθ = 87◦ between the oscillation plane and the direction of the diffusing species has a
complex relation with the parameters of the reduced system.We choose its value so that the rescaling
parameterc of the simulations matches that of the reduced system.

The rate of decay to the oscillations plane and the diffusion constant are chosen large but finite,
consitent with our hypothesis of large time scale separation of the oscillatory modes and of fast diffusion.
The values we use in the numerical simulations are:−λfast = 500 s−1 anddaca = 300 s−1 (cf. Section
2). The larger their values, the better the reduced system approximates Eq.1.

For simulations of populations of non-identical oscillators, we also need to choose the features of the
frequency distribution. We assign the frequenciesωj of each of the oscillators according to a Gaussian
distribution centred inω0. The relative standard deviation of this distribution is 15%; this is a larger
range of frequency variation than we observe experimentally in the bulk oscillations.
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2. Estimate of Acetaldehyde Transport Kinetics

Acetaldehyde (Aca) is a small uncharged molecule that diffuses freely across the cell membrane. It
is believed to be the mediator of the diffusive coupling among the yeast cells (3). The strength of the
coupling is hence proportional to the first-order rate constant daca, which quantifies the kinetics of the
Aca transport reaction.

In order to enter the yeast cell, an Aca molecule has to cross first an unstirred boundary layer
surrounding the cell, and then the cell membrane. Based on diffusion equations (4), we can give an
estimate ofdaca.

We take the yeast cell as a sphere of radiusr1, and the boundary layer as a spherical shell of inner
radiusr1 and outer radiusr2. In doing this, we consider that the cell membrane (of the order of 10 nm)
has a negligible thickness compared to the boundary layer. The diffusion flux is most readily estimated
under the assumption of a quasi-stationary concentration profile. With this assumption, the amount of
diffusing substance passing the cell membrane per unit timeis given by ref. 4 (p. 84):

J =
4πD

1
r1

− 1
r2

(c2 − c1),

whereJ is the flux of particles (molecules per unit area per time),D is the diffusion coefficient (unit area
per unit time) andci is the concentration atr = ri. Expressed in terms of intracellular concentration,
this is equivalent to:

J

V1
= 3D

c2 − c1

r2
1 −

r3

1

r2

= daca (c2 − c1),

whereV1 designates the volume of a sphere of radiusr = r1.
In order to estimatedaca we taker1 = 3 µm, which is the radius of a sphere with the same

volume as a typical yeast cell. We also taker2 = 6.5 µm which is the largest geometrically possible
boundary layer which can be accomodated at the typical cell density of 10% wet weight. Finally, we
takeD = 5 · 10−6 cm2/s which is a typical small-molecule diffusion coefficient. With these values
one obtains

daca =
3 D

r2
1 −

r3

1

r2

= 300 s−1.

The validity of the assumption of quasi stationarity of the concentration profile can be assesed by means
of the time-dependent diffusion equation. From ref. 4 (p. 95)we get the smallest relaxation rate

krelax =
Dπ2

(r2 − r1)2
= 400 s−1.

Both numbers are large compared to the timescales of the oscillatory intracellular dynamics, whose
period is about 37 s and eigenvalue corresponding to the linear instability typically 0.015 s−1. Based on
this result, we assume that the equilibration of Aca concentrations inside and outside the cell is almost
instantaneous.

3. The Mathematical Model

Eq.1 in the main text describes a population of oscillators diffusively coupled to a homogeneous external
medium. Depending on parameter values, this system can display a number of dynamical regimes,
which can be studied both at the individual and at the population level. Our interest for modelling at
the population level comes from practical difficulties of measuring the state of the individual cells in a
stirred reactor.

As pointed out in the main text, our experiments do not provide any indications in favour of an
incoherent regime, and in particular they do not satisfy some of the hallmarks of the universal transition
to coherence described by Kuramoto (5). We focus on the otherscenario (i.e. synchronous collective
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motion), which is consistent with the available experimental data on oscillating suspensions. Within this
framework, and based on the assumption of a separation of time scales, we formulate a reduced equation
describing the overall reactor dynamics, and from that we obtain scaling laws for the macroscopic
observables. These equations allow us to parameterise the model by fitting it to the experimental
data. Eventually, we will check the robustness of the quantitative model after relaxing the assumptions
introduced for deriving the reduced equation. In particular, we will show the self-consistency of the
synchrony hypothesis.

Reduced equation for the synchronous dynamics.With the aim of deriving a simple reduced equation
accounting for the macrosopic bifurcation, we assume now that all cells are identical and that the
diffusion through the membrane is much faster than the time scale of the intracellular dynamics. In the
synchronous regime, the population described by Eq.1 behaves as one single oscillator coupled to an
external medium:

dx
dt

= F(x) − D(x − X)

dX
dt

= αD (x − X) − JX.
(S1)

The dynamics of the overall concentrations is obtained by a sum of the two equations in Eq.S1, weighted
by the relative volumes occupied by the cytoplasmsVcyt and by the mediumVx:

Vcyt
dx

dt
+ Vext

dX

dt
= Vcyt F(x) − Vcyt D (x − X) + Vext αD(x − X) − Vext JX. (S2)

From the definition ofα = Vcyt/Vx, and if all substances cross the membrane very fast (so that we can
setx ∼ X), we get:

dx

dt
=

α

α + 1
F(x) −

1

α + 1
Jx. (S3)

This equation already contains in a nutshell the qualitativeeffects of a cell density change on the
synchronous dynamics of a population. In the limit of infiniteα (tightly packed cells), the macroscopic
dynamics is identical to the intracellular dynamicsF(x). If α is small, that is for very dilute suspensions,
the extracellular relaxation dynamics−Jx prevails andx = 0 is a stable solution. The transition from
high to low cell densities takes place by a progressive slowing (due to the coefficient of the first term
multiplying the intracellular dynamics) and damping of thedynamics.

Geometrical arguments suggest to apply Eq.S3 also to cases where not all the species diffuse,
through a rescaling of alpha. Such rescaling provides an effective cytosolic volume larger than the
real one and thus reduces the effect of the extracellular medium. Specifically, numerical simulations
show that a rescaled version of Eq.S3 describes the overall reactor dynamics for the case of yeast,
where planar oscillators are coupled by a fast diffusing species. The rescaling factorc depends on the
geometrical relationships between the plane of oscillations and the direction along which the diffusive
coupling takes place. The validity of the rescaling is confirmed, as discussed below, also if there is no
complete separation of the time scales and for nonidenticaloscillators.

Model of the intracellular oscillator.In accordance with experimental observations (6,7), we describe
the dynamics of the individual yeast cell oscillator as a limit-cycle close to the onset of oscillations.
Thus, the intracellular dynamics is modelled as a Hopf oscillator confined to a plane in concentration
space, which is tangential to the unstable manifold of the stationary state. For the sake of simplicity, we
assume that the average concentration of intracellular species is not affected by cell density, and center
the limit cycle at the origin. In the plane of oscillations, the intracellular dynamics is described by a
Hopf normal form (8):

dz

dt
= f(z) =

(

λ0 + iω0 + g |z|2
)

z, (S4)

wherez is a complex variable, andλ0±iω0 are the eigenvalues associated with the eigenvectors spanning
the plane of oscillations. In the most general formulation,the nonlinearity parameterg is complex, and
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its imaginary part makes the frequency of the free-running oscillator depend on the amplitude. Previous
estimates of this parameter (7) have evidenced the small relative value of the imaginary part ofg
( |Im(g)|
|Re(g)| = 0.2) and we have observed no frequency shift in transients afterforcing. Therefore, we here

assume thatg is real-valued.
The plane of oscillations is embedded in a high-dimensional concentration space. Close to the onset

of oscillations, however, the dynamics is essentially confined to this plane. This corresponds to a sharp
time scale separation between the oscillations and the fasttransverse modes. The coupling acts along
the direction(s) of the diffusing species, and these directions do generally not coincide with the plane
of oscillations. This is the cause of the density rescaling introduced above.

In the case of yeast, Aca is known to diffuse extremely fast. When the description of the yeast
glycolytic oscillations, Eq.S4, is substituted into Eq.2, this takes the form:

dz

dt
=

αc

αc + 1

(

λ0 + iω0 + g |z|2
)

z −
1

αc + 1
τz. (S5)

Separation of the radial and angular parts of this equation (z = Reiφ) yields:
dR
dt

= αc
αc+1

(

λ0 + g R2
)

R − τ
αc+1R

dφ
dt

= αc
αc+1 ω0.

(S6)

From these equations, we obtain the scaling laws Eqs.3 – 5. These scaling laws allow us to parameterise
the reduced system by fitting the parametersω0, λ0, c, τ andg to the experimental data, as described in
Section 1.

4. Comparison of Fitted Parameters with Independent Estimates

Estimate of the linear stability of the intracellular steady state λ0. We have previously determined
the linear stability of the steady state by fitting the Hopf normal form with an additional stable mode to
quenching experiments where the glycolytic oscillations are perturbed by addition of a single pulse of
either Aca or glucose (7). This analysis indicates thatλ = 0.014 s−1 at a cell density of dw =16 mg/ml.
This is in good agreement with the value ofλ0 = 0.015 s−1 determined here.

Estimate of the relaxation timeτ . An independent estimate of the first-order rate constant for extracel-
lular removal of Aca can be obtained from biochemical data inthe literature and the flow parameters of
the reactor. The estimate is based on the observation that thebalance of the chemical species present in
the extracellular medium is due to three factors: (i) the flow through the reactor, entirely determined by
its volume and by the rate at which chemicals are introduced,(ii) the reaction among different chemical
species present in the reactor, (iii) the cell-dependent contribution to the concentration of such species.
Thus, the changes in the Aca concentration is given by

d [Aca]
dt

= k0 ([Aca]0 − [Aca]) − k [CN−][Aca] + vcells

wherek0 is the specific flow rate of the reactor,[Aca]0 is the mixed flow Aca concentration,k is the
second-order rate constant describing the kinetics of the reaction between cyanide and Aca, andvcells

is the cellular Aca production rate. The relaxation parameter τ in the model corresponds to the rate of
extracellular Aca removal,τ = k0 + k [CN−].

All these parameters can be estimated separately, with the exception ofk, which we determine from
the steady-state Aca concentration[Aca]ss in the presence of oscillating yeast cells. In doing this, we
approximate the concentrations to the steady state around which they oscillate. This is not expected to
significantly affect the result, since the amplitude of the oscillations is small compared to their average.
For the steady state we get:

τ = k0 + k[CN−]ss = k0 +
vcells + k0 ([Aca]0 − [Aca]ss)

[Aca]ss
. (S7)
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The parameters of our open-flow reactor arek0 = 0.062 min−1 and [Aca]0 = 0.75 mM. From ref.
(3) and the correction given on p. 27 in ref. (9) we estimate[Aca]ss = 20 µM. At a cell density of
dw= 16 mg/ml, the Aca production is estimated asvcells = 100 µM/min (10). By substituting these
values in Eq.S7, one obtainsτ = 7.3 min−1. This is in reasonable agreement with the value of
τ = 9.9 min−1, which we obtain by fitting the reduced equation (Eq.2) to the experimental data.

[1] Richard P, Teusink B, Hemker MB, van Dam K, Westerhoff HV (1996)Yeast 12: 731–740.

[2] Pikovsky A, Rosenblum M, Kurths, J (2001)Synchronization: A Universal Concept in Nonlinear
Science (Cambridge Univ Press, New York).

[3] Richard P, Bakker BM, Teusink B, van Dam K, Westerhoff HV (1996) Eur J Biochem 235:
238–241.

[4] Crank J (1970)The Mathematics of Diffusion (Oxford University Press, USA).

[5] Kuramoto Y (1975) inLecture Notes in Physics (Springer, New York) Vol 39, pp 420–422.

[6] Danø S, Sørensen PG, Hynne F (1999)Nature 402: 320–322.

[7] Danø S, Hynne F, De Monte S, d’Ovidio F, Sørensen PG, Westerhoff HV (2001)Faraday Discuss
120: 261–276.

[8] Kuznetsov Y (1998)Elements of Applied Bifurcation Theory (Springer-Verlag, New York), 2nd
Ed.

[9] Teusink B (1999) PhD thesis (University of Amsterdam, Amsterdam).

[10] Hynne F, Danø S, Sørensen PG (2001)Biophys Chem 94: 121–163.

8


