
 

Fig. 6. Bimodal stochastic solutions distinct from the monostable deterministic solution. 

Histogram showing the bimodal distribution of the protected agonists at steady state (red) 

for a situation when there are 10 agonist (A1) and 10 antagonists (A2). The corresponding 

single steady state solution of the deterministic ODEs (blue) is also shown. The other 

parameter values are: k1 = 3, k2 = 0.7, k3 = 1, k4 = 1000, k5 = 50, kD = 1, and statistics 

were collected over 5,000 trajectories obtained using the Gillespie algorithm. The 

robustness of this result to variations in the parameter values is discussed in the main text 

and section 1 of the web supplement. 

 

Fig. 7. A purely stochastic instability. Histograms showing the distribution of the 

protected agonists at steady state (red) and corresponding steady state solution of 

deterministic ODEs (blue) for different amounts of A1 and A2 molecules. All other 

parameters are identical to that in Fig. 6. 

 

Fig. 8. The variation of the average number of  species as a function of the number 

of A2 molecules and the parameter k1 (which could be considered to reflect the quality of 

the agonist). (a) Results of the stochastic simulations collapse to one master curve when 

scaled with 
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(b) The deterministic results do not follow this scaling. All results are 

for cases where k3, k5 >> k1, k2, k4. 

 

Fig. 9. Time dependence of the deterministic rate of production of protected species (red) 

and inactivated species (blue) as a function of time. (a) For 10 molecules A1 and 100 

molecules A2. (b) For 10 molecules A1 and 10 molecules A2. 

 

Fig. 10. Simulations of a molecular model of membrane proximal events in T-cell 

signaling by 100 agonists in the presence of varying numbers of antagonists. The 

percentage of fully activated trajectories goes down as antagonists are added. As shown 

on the insets, the distribution of Erk at steady-state is strictly bimodal, i.e., every 



trajectory either produces Erk or produces none at all. The bimodal distribution for no 

antagonists and a 30-fold excess of antagonists are shown. 

 

Fig. 11. Results from the minimal model. (a) Exact solution of the Master Equation: The 

exact solution (Eq. 13) shows a bimodal distribution for low values of initial numbers of 

Y (n = 2) and Z (M = 20) species. The reaction rates are taken to be, k1 = 0.0012 s-1, k2 = 

0.0010 s-1, and k3 = 0.0125 s-1 (b) Minimal model captures the essential characteristics of 

the larger model: Distribution of the number of X species at steady state is calculated 

from Gillespie simulations as both N (related to agonist number) and k3 (related to 

antagonist number) are increased keeping the ratio N/k3 fixed. All of the other 

parameters, as well as the ratio, N/k3, are the same as in a. The distribution is markedly 

bimodal for a low value (shown in red) of n = 2. The distribution becomes unimodal 

(shown in blue), peaked at the mean field value (shown with the black bar) as both N and 

k3 are increased 1000 fold keeping all other parameters unchanged. We use Gillespie 

simulations instead of the exact solution (Eq. 13) for the above cases because numerical 

evaluation of the Gamma functions for large arguments (required to evaluate Eq. 13) is 

computationally more expensive than carrying out Gillespie simulations. The Gillespie 

simulations agree with the exact solution (web supplement). 

 

Fig. 12. The steady values of the number ( Nx
s) of the x species as the decay rate of the y 

species ( ) is varied. Three cases, corresponding to different values of the initial 

numbers (N) of species Z are shown. 
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Fig. 13. The distribution of the number of x particles at the steady state. Results obtained 

from the analytic solutions (given by Eq. 13) are compared with the results from 

Gillespie simulations. All of the cases have a fixed k2 = 0.001 s-1, and are started with the 

same number (M = 20) of particles for the Z species. (a) A bimodal distribution is 

obtained for k1 = 0.0005 s-1, k3 = 0.06 s-1 and n = 15, where N is the number of Y species 

at t = 0. (b) The bimodal distribution in a turns in a unimodal distribution as k3 is 

increased to 0.5 keeping other parameters fixed. (c) The distribution becomes unimodal 



when k1 is increased to 0.005 s-1. (d) The bimodal distribution in a becomes sharper as N 

is reduced to 5 with other parameters held fixed. 

 

Fig. 14. The particle number distribution function for the x species at the steady state for 

(a) a very strong positive feedback, k2 = 2s−1

 and N

 and (b) for a very weak positive feedback 

. The values of the other parameters are, k2 =10−7 s−1

k1 = 0.0005s−1, k3 = 0.2s−1,M = 20 =15, where, M and N are the numbers of 

particles at t = 0 for the Z and Y species respectively. The solid line and the red points are 

obtained from the analytical solution and the Gillespie simulation respectively. 

 

Fig. 15. Particle distribution functions for the X species do not show any bimodality 

when there is no positive feedback, i.e., k2 = 0. The plots show cases for (a) M = 25, n = 

5, k1 = 0.005 s-1 and k3 = 0.1 s-1, (b) M = 25, n = 100, k1 = 0.005 s-1 and k3 = 0.8 s-1. The 

Gillespie solution is compared with the exact solution in Eq. B28. 

 


