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1. Deterministic Equations for model described in section 2 
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2. Exploring different ranges of parameters for model described in section 2 

 

Our computational studies show that any combination of parameters that preserves strong 

feedbacks leads to a stochastic bimodal response. In addition to the case discussed in the 

text, bimodal behavior is observed when k4, k5 >> k1, k2, k3. Biologically, this can 

correspond to a situation where upon action of the positive regulator E, A1 gets further 

activated or it could result from cooperativity (1) with other molecules, resulting in faster 

rate of production of the positive regulator. Figs. 6 and 7 are drawn in complete analogy 

to Fig. 2 and 3 of the main text and show stochastic bistability. This “all-or-none” 

behavior is explained by exactly the same arguments as those described in the text. 

 

3. Stochastic and mean-field scaling in the model described in section 2 

 

To illustrate the differences in scaling behavior between the stochastic and deterministic 

descriptions of the system, we calculated the amount of protected A1 as a function of the 

rate constant k1 for fixed values of k2 and the amount of A1. This could be considered to 

be analogous to computing the cellular response as the nature of agonist is changed. In 



Fig. 8, stochastic and deterministic dose-response curves for the system with 10 initial A1 

molecules are plotted. The stochastic behavior (Fig. 8a) is manifested in linear scaling of 

the amount of PROTA1  with k1 (agonist quality): all curves coincide when the amount of 

PROTA1  in the steady state is plotted against 
1

2
k

A , which represents the scaling variable 

22

11

Ak
Ak (see main text) with k2 and A1 fixed. As can be seen in Fig. 8b, the deterministic 

solution does not obey this linear scaling. Moreover, the value of k4 naturally affects the 

deterministic steady state value of PROTA1 , while it does not have any influence in the 

stochastic case, since feedback regulation occurs before reaction 4. 

 

4. Rates of protection and inactivation as functions of time 

 

On Fig. 9, the time dependence of the rate of production of PROTA1  (red curve) and of 

A1
INACT (blue curve) are shown for excess of antagonist (Fig. 9a) and equal amounts of 

agonist and antagonist (Fig. 9b). The parameters of the model are the same as those used 

in th Figs. 2 and 3 in the main text: k1 = 1, k2 = 1, k3 = 100, k4 = 1, k5 = 100, kD = 1. 

 

5. Details of the molecular model of antagonism 

 

As an illustration of the general results described in the main text, we considered a 

specific molecular system where competition between positive and negative feedback 

loops has been described in T-cell signaling (2-4). Important features of antagonism are 

that it is observed for less than optimal amounts of agonist in the presence of relatively 

large numbers of antagonists. Without considering effects of self-peptides (1), which 

were explicitly treated by Wylie et al. (4), the simplest model accounting for antagonism 

consists of the following elements (2, 3): a signaling complex is assembled which is 

composed of MHC-peptide, TCR, coreceptor (CD4 or CD8) and associated kinase. This 

signaling complex results in activation of negative and positive regulators, Shp-1 and 

Erk, respectively. Activated Shp-1 can bind to the signaling complex and deactivate it, 



while activated Erk can phosphorylate the binding complex at a specific position and, by 

so doing, prevent Shp-1 from binding to the “protected” complex. 

 

Modeling with deterministic kinetic equations (3) has shown the consistency of such a 

mechanism with experimental data, but could not account for effects of “digital” Erk 

response: i.e., that an individual cell’s response to stimulus was essentially binary in 

character – either complete activation or just basal Erk production. Although many 

effects could contribute to “digital” Erk responses (5, 6), we show here how principles 

outlined in the previous sections can account for this fact. 

 

The general ideas described in the main text are incorporated in this molecular model by 

setting the rate of protection of signaling complexes by Erk to be high. Phosphorylated 

Shp-1 binds and deactivates complexes fast, which provides us with the strong negative 

feedback like the one in the “toy” model. 

 

The reactions that represent the molecular steps that we simulated are detailed in Table 1. 

 

Fig. 10 shows the dose-response curve for 100 agonists upon addition of antagonists. The 

ordinate shows the percentage of trajectories in which full activation has occurred (which 

corresponds to the percentage of activated cells in experiments). One can see that 

signaling is basically shut down at 10-30 fold excess of antagonists, which is consistent 

with deterministic calculations (3). The insets show the distribution of activated cells for 

a given mixture of agonists and antagonists, and one can see from them that the 

distribution is essentially bimodal: i.e., all-or-none response of individual (cell) 

trajectories is observed. 

 

5. Mathematical Details of Solutions to the simpler model (eq 12 of the main text) 

 

5a. Solution of the Meanfield Rate Equations 

 



Here we describe the details of the calculations for the meanfield rate equations shown in 

Eqs. 13-15 in the main text. 

 

The mean field equations are, 

 

dNx

dt
= k2NxNyNz + k1NzNy  (A1) 

 

dNz

dt
= −k2NxNyNz − k1NzNy  (A2) 

 

dNy

dt
= −k3Ny  (A3) 

 

and the initial conditions are,   Nx (0) = 0,Ny (0) = N  and  Nz(0) = M . Since the total 

number of x and z species are conserved at all times, we need to solve only two 

equations, 

 

dNx

dt
= k2NxNy (M − Nx ) + k1(M − Nx )Ny  and, 

dNy

dt
= −k3Ny . 

 

The equation for Nycan be readily solved to get Ny (t) = Ne−k3t . Substituting this form of 

Ny(t) in the equation for Nx we get, 

 



dNx

dt
= (k2Nx + k1)(M − Nx )Ne−k3t

⇒
dNx

(k2Nx + k1)(M − Nx )
= Ne−k3tdt

⇒
1

Mk2 + k1

dNx

(k2Nx + k1)
+

dNx

(M − Nx )
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⎤ 

⎦ 
⎥ =

N
k3

(1− e−k3t )

⇒ Nx (t) =
k1M(F(t) −1)
Mk2 + k1F(t)

where, F(t) = exp (Mk2 + k1)
N
k3

(1− e−k3t )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 

 

Therefore, the solutions to Eq. (A1-A3) are, 

 

Nx (t) =
k1M(F(t) −1)
Mk2 + k1F(t)

 (A4) 

 

Ny (t) = Ne−k3t  (A5) 

 

Nz(t) = M − Nx (t) (A6) 

 

Fig. 12 shows the variation of the steady state value of Nx with k3 for various initial 

numbers of the y species. The number of x species produced at the steady state decreases 

exponentially as k3 > N(Mk2 + k1). 

 

5b. Large particle number limit ( M → ∞ and N → ∞ ) from the mean-field solution 

 

From Eq. A4, Nx (t) =
M(eNk1 (Mk2 / k1 +1)k3

−1

−1)
Mk2 /k1+eNk1 (Mk2 / k1 +1)k3

−1 =
M(1− e−Nk1 (Mk2 / k1 +1)k3

−1

)
1+ (Mk2 /k1)e

−Nk1 (Mk2 / k1 +1)k3
−1 . As, 

M → ∞ and N → ∞ , Nk1(Mk2 /k1 +1) /k3 >>1, therefore, 

 



Lt
N →∞
M →∞

Nx (t) = M(1− O(e−Nk1 (Mk2 / k1 +1)k3
−1

))  (A7) 

 

In the next section, we will show how the average particle number of species x, 

calculated from the stochastic solution of the Master Equation corresponds to Eq. A7 in 

large particle number limit. 

 

5c. Exact Solution of the Master Equation 

 

We describe the details of calculations for the solution of the Master Equation in Eq. 12. 

The Master Equation is given by, 

 
∂P(nx,ny ,nz, t)

∂t
= [k2(nx −1)ny (nz +1) + k1ny (nz +1)]P(nx −1,ny,nz +1, t) + k3(ny +1)P(nx,ny +1,nz, t)

− (k2nxnynz + k1nynz + k3ny )P(nx ,ny,nz, t)
 

 

(B1) 

 

We define a generating function, G(s1,s2,s3, t) = s1
nx s2

ny s3
nz

nz = 0

M

∑
ny = 0

N

∑
nx = 0

M

∑ P(nx,ny,nz,t) (7). The 

time evolution of the generating function determined by the above Master Equation is 

given by, 

 

∂G
∂t

= k2s1s2(s1 − s3)∂s1
∂s2

∂s3
G + k1(s1 − s3)∂s2

∂s3
G − k3(s2 −1)∂s2

G  (B2) 

 

At t = 0, G(s1,s2,s3,t = 0) = s2
N s3

M , in addition to that, it should satisfyG(1,1,1, t) =1 at all 

times, which is a condition for the conservation of the sum of the probabilities for all 

possible particle configurations. 

 

If we look for a solution in terms of the reduced variables, s1, s2  and  ξ = (s1 − s3) /s1 then 

G(s1,s2,ξ, t)  satisfies the following equation: 



 

∂G
∂t

= −k2s1s2ξ ∂s1
∂s2

∂ξ G − k2ξ(ξ −1)s2∂s2
∂ξ

2G + (k2 − k1)s2ξ ∂s2
∂ξ G − k3(s2 −1)∂s2

G  (B3) 

 

We define, G(s1,s2,ξ,t) = s1
α l ′ G (s2,ξ, t) , 

 

∂ ′ G 
∂t

= −k2s2ξ(1−ξ)∂s2
∂ξ

2 ′ G − (k2α l − k2 + k1)s2ξ ∂s2
∂ξ ′ G − k3(s2 −1)∂s2

′ G  (B4) 

 

If, ′ G (s2,ξ,t) = eEmtφ(s2,ξ) , then, 

 

Em = −k2s2ξ(1−ξ)∂s2
∂ξ

2φ − (k2α l − k2 + k1)s2ξ ∂s2
∂ξ φ − k3(s2 −1)∂s2

φ  (B5) 

 

Introducing a separation of variables, φ(s2,ξ) = S(s2)Ξ(ξ) , Eq. B5 becomes, 

 

k2ξ(1−ξ)
SΞ

d2Ξ
dξ 2

dS
ds2

+
ξ(k2α l − k2 + k1)

SΞ
dΞ
dξ

dS
ds2

+
k3(s2 −1)

s2S
dS
ds2

+
Em

s2

= 0 (B6) 

 

The above equation will be satisfied if, 

 

k2ξ(1−ξ)
SΞ

d2Ξ
dξ 2

dS
ds2

+
ξ(k2α l − k2 + k1)

SΞ
dΞ
dξ

dS
ds2

= An f (s2)  (B7) 

 

and, 

 

k3(s2 −1)
s2S

dS
ds2

+
Em

s2

= −An f (s2). (B8) 

 

However, from Eq. (B7) we get, 

 



1
S

dS
ds2

= f (s2) (B9) 

 

Therefore, to make Eq. B8 consistent with Eq. B9 we have to choose the following form 

for f (s2): 

 

f (s2) = −
Em

(k3 + An )s2 − k3

. 

 

Using the above form we get the solution for S(s2)  as, 

 

S(s2) = s2 −
kd

k3 + An

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
Em

k3 +An

. 

 

Ξ(ξ) satisfies the equation below, 

 

k2ξ(1−ξ) d2Ξ
dξ 2 + ξ(k 2α l − k2 + k1)

dΞ
dξ

− AnΞ = 0, By changing ξ to η =1−ξ = s3 /s1, we get, 

 

k1η(1−η) d2Ξ
dη2 − (1−η)β l

dΞ
dη

− AnΞ = 0

where,  βl = k2α l − k2 + k1

 (B10) 

 

This equation has the form of the ODE which yields hypergeometric functions (8) as its 

solutions. The following ODE has hypergeometric functions as its solutions. 

 

z(1− z) d2u
dz2 + (c − (a + b +1)z) du

dz
− abu = 0 (B11) 

 

The hypergeometric function is defined as, 

 



2 F1(a,b,c;z) =
(a)n (b)n

(c)nn= 0

∞

∑ zn  (B12) 

 

, where, (a)n =
Γ(a + n)

Γ(a)
. The series in Eq. B12 is convergent for a positive c and |z|<1. If 

a is a negative integer, i.e., a = -n, the series terminates after zn. Comparing Eq. B10, to 

Eq. B11 we get, 

 

if, c = −
βl

k2

= −α l +1−
k1

k2

, and a = −n , then b = −α l + n −
k1

k2

. In that case, 

 

An = n(−α l +
k1

k2

− n)k2 . 

 

Therefore, the general solution to Eq. B2 is, 

 

G(s1,s2,s3, t) = λlmn
n= 0

∞

∑
l= 0

∞

∑
m= 0

∞

∑ s1
α l s2 −

k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
Em

An +k3

eEmt
2 F1 a,b,c; s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ . (B13) 

 

The constants are chosen in such a way that the solution satisfies the initial condition and 

also the sum of the probabilities is conserved at all times. 

 

At t = 0, Eq.B13 takes the form, 

 

G(s1,s2,s3, t = 0) = λlmn
n= 0

∞

∑
l= 0

∞

∑
m= 0

∞

∑ s1
α l s2 −

k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−
Em

An +k3

2 F1 a,b,c; s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  (B14) 

 

Now, s2
N =

k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + s2 −

k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

= N

m= 0

N

∑ Cm
k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N−m

s2 −
k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m

, therefore, 

if we choose, 



 

Em = −m(k3 + An )  and  λlmn =N Cm
k3

An + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N−m

λl n   for m ≤ N

                                            = 0                                for m > N

 

 

Then Eq. B14 satisfies the initial condition for s2. If we choose, 

 

  αM = M    and  λl n = δlM λn  then Eq.B14 assumes the form below, 

 

  

G(s1,s2,s3, t = 0) = s2
N s1

M λn 2F1 a,b,c; s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n= 0

∞

∑

                        = s2
N s1

M λn prn
r= 0

n

∑
n= 0

∞

∑ s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

r

                        = s2
N s1

M λr pnr
r= n

M

∑
n= 0

M

∑ s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

                        = s2
N s1

M qn
n= 0

M

∑ s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

 

 

where, prn =
(an )r (bn )r

(cn )r r!
, qn = λr pnr

r= n

M

∑ and an = −n , bn = −M + n −
k1

k2

 and 

cn = −M +1−
k1

k2

. If 
  
qn = 0  for  n < M
   =1   for n = M

 then, Eq.B14 satisfies the initial condition, 

G(s1,s2,s3, t = 0) = s2
N s3

M . 

 

Therefore, the time dependent generating function is given by, 

 

G(s1,s2,s3, t) = λr pnr
r= n

M

∑
n= 0

M

∑ s1
M −n f (r,s2, t)s3

n  (B15) 

 

where, 

 



f (s2,r, t) =
k3

Ar + k3

+ s2 −
k3

Ar + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ e−(k3 +Ar )t

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

 

 

and 

  

λr pnr
r= n

M

∑ = 0  for  n < M

λM pMM  =1   for n = M
 

 

(B16) 

 

It is straightforward to show, G(s1 =1,s2 =1,s3 =1, t) =1 for the above choices of the 

coefficients. The proof follows below. From Eq. B15, 

 

G(s1 =1,s2 =1,s3 =1, t) = λr pnr
r= n

M

∑
n= 0

M

∑ f (r,s2 =1, t) = λn prn
r= 0

M

∑
n= 0

M

∑ f (n,s2 =1, t). 

 

  
QG(1,1,1,t) =1, if, prn

r =0

n

∑ = 0 for n > 0 and λ0 =1. This is because, f (0,1,t) =1 and p00 =1. 

 

Proof: prn
r =0

n

∑ = 0, when, n > 0. 

 

prn
r =0

n

∑ =
Γ(M + k1 /k2 +1− n)

Γ(M + k1 /k2)
n

r= 0

n

∑ Cr(−1)r Γ(M + k1 /k2 − r)
Γ(M + k1 /k2 +1− n − r)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

=
Γ(M + k1 /k2 +1− n)

Γ(M + k1 /k2)
n

r= 0

n

∑ Cr (−1)r Sn−1
( p )(a − r)p

p= 0

n−1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
  where, a = M + k1 /k2 −1

=
Γ(M + k1 /k2 +1− n)

Γ(M + k1 /k2)
Sn−1

( p ) pCqap−q rq nCr (−1)r

r= 0

n

∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

q= 0

p

∑
p= 0

n−1

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

 

 



In the above, expressions, Sn
(m ) denotes the Stirling number of the first kind (9). However, 

x ∂
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

q

(1− x)n = n

r= 0

n

∑ Cr (−1)r rq x r , therefore, n

r= 0

n

∑ Cr(−1)r rq = x ∂
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

q

(1− x)n

x=1

. For, 

0 ≤ q ≤ n −1, x ∂
∂x

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

q

(1− x)n

x=1

= 0, hence, 

 

prn
r =0

n

∑ = 0 . 

 

Proof: λ0 = 1 

 

Using, Eq. B16, 

 

λr pnr
r= n

M

∑
n= 0

M

∑ =1, ⇒ λn prn
r= 0

n

∑
n= 0

M

∑ =1, ⇒λ0 p00 + λn prn
r= 0

n

∑
n=1

M

∑ =1. 

 

Since, prn
r =0

n

∑ = 0  for n > 0 and p00 =1; λ0 =1. 

 

Therefore, G(1,1,1, t) =1. QED. 

 

Expanding the polynomials one can easily get the probability distribution 

 

P(nx,ny,nz, t) = δnx +nz , M λr
r= nz

M

∑ pnz r
NCny

k3

Ar + k3

1− exp(−(Ar + k3)t( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N−ny

exp −ny (Ar + k3)t( ) 

 

(B17) 

 

where, Ar = r((M − r)k2 + k1) and pnz r=
rCnz

(−1)nz
Γ(M + k1 /k2 +1− r)Γ(M + k1 /k2 − nz)
Γ(M + k1 /k2 +1− nz − r)Γ(M + k1 /k2)

. 

 



{λr} are determined from the equations, 

 

  

λr pnr
r= n

M

∑ = 0     for   n < M

             =1     for  n = M

 

 

At large times, t → ∞ , f (s2,r, t) =
k3

Ar + k3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

, because, 

Ar = r((M − r)k2 + k1) > 0 for  r ≤ M . Therefore, the generating function at the steady 

state has the following form, 

 

G(s1,s2,s3, t → ∞) = λr pnr
r= n

M

∑
n= 0

M

∑ s1
M −n k3

k3 + Ar

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

s3
n  (B18) 

 

Hence, the probability distribution function at t → ∞  is given by, 

 

P(nx,ny,nz,t → ∞) = δnx +nz , M δny ,0 λr
r= nz

M

∑ pnz r
k3

(r(M − r)k2 + rk1) + k3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

. (B19) 

 

For fixed k1, k2, and k3, the factor u(r) =
k3

(r(M − r)k1 + rk2) + k3

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

N

is peaked at r = 0 and r 

= M which corresponds to the cases at nx = M  and nx = 0 respectively. The values of the 

peaks are u(r = 0) =1 and u(r = M) =
1

Mk1 /k3 +1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

. Therefore, the peak at r = M, will 

have significant contribution when, k3 >> Mk1, i.e., the y particles decay at a much faster 

rate than it generates particles of the x species. Furthermore, if the initial number of the y 

particles increases, the value of the peak at r = M goes down. Therefore, we can expect to 

see a bimodal behavior in the distribution function for k3 >> Mk1 and small N. Fig. 13 

displays the above characteristics in the distribution function. 

 



5d. Calculation of the average particle number 

 

The average particle number of any species can be easily calculated from the generating 

function, G(s1,s2,s3, t) . For example, the average number of x species is given by, 

 

x(t) = ∂s1
G(s1,s2,s3, t) s1 =1,s2 =1,s3 =1

= λr pnr
r= n

M

∑
n= 0

M

∑ f (r,s2 =1, t)(M − n)  (B20) 

 

At, t → ∞ , the above average takes the following form, 

 

x(t → ∞) = λr pnr
r= n

M

∑
n= 0

M

∑ k3

r((M − r)k2 + k1) + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

(M − n)  (B21) 

 

5e. Limit of large N and large k1/k3, keeping the ratio Nk1/k3 fixed: 

 

Let us, write, 

k3

r((M − r)k2 + k1) + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

=
1

a /N +1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

N

,  where, a = r((M − r)k2 /k1 +1)Nk1 /k3 . 

 

Therefore, in the limit, N → ∞ and Nk1/k3 = const, 

 

  

LtN →∞
1

a /N +1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

N

= Lty →0
1

ay +1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ y

= g

when   y =1/N .
Now, ln(g) = −1/ y ln(ay +1) → −a + O(y)  as  y → 0.

Q  LtN →∞
1

a /N +1
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ = exp(−a)

 

 

Thus, 

 



LtN →∞
k3 →∞
k3 / N fixed

x = λr
r= n

M

∑ pnr
n= 0

M

∑ (M − n)exp(−r((M − r)k2 /k1 +1)Nk1 /k3). (B22) 

 

5f. Large M limit: 

 

Rewriting, Eq. B22 as, 

 

LtN →∞
k3 →∞
k3 / N fixed

x = λn
r= 0

n

∑ prn
n= 0

M

∑ (M − r)exp(−n((M − n)k2 /k1 +1)Nk1 /k3)

= M − λn
n=1

M

∑ exp(−n((M − n)k2 /k1 +1)Nk1 /k3) rprn
r= 0

n

∑
 (B23) 

 

In the limit, M → ∞, each term in the sums of Eq. B23 decay exponentially with M, thus, 

we can write, LtN →∞
k3 →∞
k3 / N fixed
M →∞

x = M(1− O(e−Nk1 / k3 (Mk2 / k1 +1))). 

 

This form is consistent with the large particle limit of the solutions of the meanfield rate 

equations in Eq. A7. 

 

5g. Strong feedback limit ( k2 → ∞  and  k1 /k2 = ε → 0) 

 

In this limit, k2 → ∞  and  k1 /k2 = ε → 0. 

 

Particle distribution function 

 

The probability of having no x species in the steady state is given by, 

 



P(nx = 0,ny = 0,nz = M) = λM pMM
k3

Mk1 + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

=
k3

Mk1 + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

, because, λM pMM =1 from 

Eq.B16. Note, the distribution does not depend on k2 and this form of the distribution 

function holds good for any value of k2. 

 

Now, in the limit, k1 /k2 = ε → 0, 

 

pMM =M CM (−1)M Γ(1)Γ(ε)
Γ(−M +1+ ε)Γ(M)

= −1, using (10), 

 

  
Γ(−n + ε) =

(−1)n

n!
1
ε

− γ
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟   as  ε → 0. (B22) 

 

where,   γ ≈ 0.5772 is the Euler Mascheroni constant . 

 

We need to evaluate, other   pnr  for r = n....M (0 ≤ n ≤ M) and λ1.....λM to compute the 

probability distribution function for all particle numbers. Now, 

 

pnr = rCn (−1)n Γ(M + ε + 1− r)Γ(M + ε − n)
Γ(M + ε + 1− n − r)Γ(M + ε)

→ 0 for  n + r ≥ M +1  and n ≠ r . For 

  n + r ≥ M +1  and n = r ; pnn = −1. Therefore,  λr = 0  for M /2 ≤ r < M  which can be 

easily shown from Eq. B16. For, n + r < M +1 pnr → rCn (−1)n Γ(M + 1− r)Γ(M − n)
Γ(M + 1− n − r)Γ(M )

, 

however, from Eq. B16 it can be shown that,  λr = 0  for 0 < r < M /2 and λ0 =1. 

Therefore, the probability distribution is, 

 

P(nx,ny = 0,nz) =
k3

Mk1 + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

δnx ,0δnz ,M + 1−
k3

Mk1 + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
δnx ,M δnz ,0  (B23) 

 

Note, that the distribution is strictly bimodal with peaks at nx = 0 and nx = M . The 

magnitudes of the peaks depend on Mk1, N and k3. The probability of having no particles 



of x species is easy to guess from following observation: Starting with N particles of y 

species at t = 0, the probability of having N successive y annihilation events is 

1
Mk1 /k3 +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

, which is also the probability of having no particles of x species in the 

steady state. Now intuitively on can think that when a single reaction for the creation of 

the x species occurs, the strong positive feedback will convert all of the z species into the 

x species. Fig. 14 shows the comparison of Eq. B23 with the Gillespie simulation with a 

very large positive feedback. 

 

5h. Calculation of the average particle number 

 

Using the same properties of the coefficients,  {λr}  and {pnr} it can be shown that, 

 

x(t → ∞) = λ0M + λM M k3

k3 + Mk1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

= M 1−
k3

k3 + Mk1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟  (B24) 

 

5i. No Feedback Limit ( k2 → 0) 

 

The limit, k2 → 0 , is tricky to take directly from Eq. 13 because k2 multiplies the highest 

derivative in Eq. B3, therefore, analyzing the limit k2 → 0  becomes a case of singular 

perturbation theory. A simpler approach would be to analyze the case with k2 = 0  from 

the Master Equation and solve it directly. In that case, the Master Equation will be given 

by, 

 
∂P(nx,ny ,nz, t)

∂t
= k1ny (nz +1)P(nx −1,ny,nz +1, t) + k3(ny +1)P(nx,ny +1,nz, t)

− (k1nynz + k3ny )P(nx,ny ,nz, t)
 (B25) 

 

The equation followed by the generating function, 

G(s1,s2,s3, t) = s1
nx s2

ny s3
nz

nz = 0

M

∑
ny = 0

N

∑
nx = 0

M

∑ P(nx,ny,nz,t) is, 



 

∂G
∂t

= k1s2(s1 − s3)∂s2
∂s3

G − k3(s2 −1)∂s2
G  (B26) 

 

This equation can be solved in a similar way by changing to variables, 

s1, s2  and  ξ = (s1 − s3) /s1 and performing separation of variable on the ensuing equation. 

The general solution of Eq. B26 is 

 

G(s1,s2,s3, t) = s1
M (−1)n

n= 0

M

∑ M Cn
NCm 1−

s3

s1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

s2 −
k3

k3 + nk1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

m= 0

N

∑
m

k3

k3 + nk1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N−m

exp(−m(k3 + nk1)t)  

(B27) 

 

In the steady state ( t → ∞), the probability distribution can be easily obtained from Eq. 

B27, which is given by, 

 

P(nx,ny ,nz, t → ∞) = δnx +n,Mδny ,0
M

r= nz

M

∑ Cr
rCnz

(−1)r+nz
k3

rk1 + k3

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

N

. (B28) 

 

This form always gives a unimodal distribution (Fig. 15, also see Fig. 14(b)). Therefore, 

the nonlinear feedback is essential to realize a bimodal distribution. 
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