
Supporting Text

Generalized Relative Variance. Here, we introduce the generalized relative vari-

ance as

D ≡
1
S

∑
n P (n, t|n0, t0)

∑S
i=1 n2

i −
(

1
S

∑
n P (n, t|n0, t0)

∑S
i=1 ni

)2

(
1
S

∑
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)2 , (10)

where S is the number of cellular types within the community and n = (n1, n2, . . . , nS)

is an S-dimensional vector whose elements, ni = ni(t), represent the number of cells of

type i at time t and P (n, t|n0, t0) is the probability that community has a composition

n at time t given that it started with n0 at time t0. We can rewrite Eq. 10 as

D =
〈n2

i 〉 − 〈ni〉2(〈ni〉
)2 +

〈ni〉2 −
(〈ni〉

)2

(〈ni〉
)2

≡ DI + DC , (11)

where the bracket operator, 〈(·)〉 ≡ 1
S

∑S
i=1(·), represents averaging over cell types

within a given population; the bar operator, (·) ≡ ∑
n P (n, t|n0, t0)(·), is the ensemble

average over the population distribution of all possible communities; and we have

introduced DI , the intracolony variance, and DC , the cross-colony variance.

Because the two types of averaging commute, we may rewrite Eq. 11 as
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∑
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∑
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2

1
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∑
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2
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∑
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2
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∑
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∑
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∑
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∑
i ni)

2
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∑

i ni)
2 . (12)

Note that the bar operator acts only on terms of the form ni or ninj. This means

that, instead of the full probability distribution P (n, t|n0, t0), it is only necessary to

calculate the first two moments of the distribution in order to calculate D.

Calculation of the First and Second Moments in Unbounded Growth Envi-

ronments. The differential equation describing the evolution of the first and second
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moments of P (n, t|n0, t0) (Eq. 4 of the main text) can be decomposed into two sets of

equations, one describing the first moments and the other the second moments. These

equations can be solved exactly and for the first moments, M(1)(t) =
(
n̄1(t), n̄2(t)

)T
,

one obtains

M(1)(t) =


 n̄1(t)

n̄2(t)


 =


 1 1

σ2−σ1+∆
2τ12

σ2−σ1−∆
2τ12





 β1e

θt

β2e
νt


 , (13)

where ∆ =
√

(σ1 − σ2)2 + 4τ12τ21, θ = 1
2
(σ1 + σ2 + ∆), ν = 1

2
(σ1 + σ2 − ∆), β1 =

(σ1−σ2+∆)
2∆

n̄1(0) + τ12
∆

n̄2(0) and β2 = (σ2−σ1+∆)
2∆

n̄1(0)− τ12
∆

n̄2(0).

For the second moments, M(2)(t) =
(
n2

1(t), n
2
2(t), n1n2(t)

)T
, we obtain

M(2)(t) = Y(t)C + Y(t)

∫ t

0

Y−1(t′)H(t′)dt′ = Y(t) [C + F(t)− F(0)] , (14)

where Y = KU(t), C = K−1M(2)(0), L = K−1H, and

K =


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,
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2τ12
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.

With the above exact expressions of the first and second moments we can study

the temporal behavior of D(t), which can be expressed as a function of M(t)

D(t) =
M

(2)
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(2)
3
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2 )2
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2 )2

. (15)
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For our two-phenotype community the behavior of the first and second moments is

characterized by five exponents (θ, ν, θ + ν, 2θ, 2ν). In the long-time limit, the terms

involving the largest exponent (2θ) will dominate, and the contributions of all other

terms become negligible. The t →∞ expressions for DI and DC then become

D∞
I =

[C1 − F1(0)] (K11 + K21 − 2K31)

β2
1

[
1 + σ2−σ1+∆

2τ12

]2

D∞
C =

[C1 − F1(0)] (K11 + K21 + 2K31)

β2
1

[
1 + σ2−σ1+∆

2τ12

]2 − 1. (16)

Propagation of the Population Variation in an Unbounded Growth Envi-

ronment for Different Initial States. SI Fig. 6 illustrates the propagation of the

population variation in an unbounded growth environment for different initial states.

Here the background colors represent different growth conditions, which correspond,

perhaps, to growth media containing various levels of inducing agents that affect the

various rates. The colors of the lines (red, orange, green, and blue) represent the initial

states of the community ((1, 1), (1, 10), (10, 1), and (100, 100), respectively) and the

style of those lines (dotted, dash, and solid) correspond to the contributions of the

relative variance (intracolony, cross-colony, and overall variance, respectively). Both

the intracolony and the cross-colony contributions, and therefore the overall variance,

approach constant values in the long time limit in a constant unbounded growth envi-

ronment (SI Fig. 6 Upper). When the growth medium is changed after a period of time,

however, the variances are no longer at their equilibrium values and must again enter

a transient phase before asymptotically approaching their new steady-state values (SI

Fig. 6 Lower).

Two Symmetric Phenotypes. To better understand the physical meaning of the

variability, we also examined a completely symmetric situation in which the growth,

death and transitions rates were the same between the two phenotypes. Here we show

the results of the symmetric setup in SI Fig. 7. In such a situation, the intracolony

variability goes to zero in the long time limit, and the total variability is solely due to the
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cross-colony variability. In other words, because the rates are completely symmetric,

the population within a given trial will eventually contain equal (but growing) numbers

of the two phenotypes, making the intracolony variability zero. However, the total

number of cells will vary from trial to trial, resulting in the non-zero cross colony

variability. As the asymmetry of the rates grows, the long time limit of the intracolony

variability will increase, since one phenotype will now have a majority within the total

population.

The Single-Cell Initial Condition. We present the results with the initial condition

of only one cell in the system. In SI Fig. 8, we show the dynamic profiles of the variance

over time for the free growth environment. Notice that the final variability is highest

for populations started from a single cell. In SI Fig. 9, we also show the corresponding

properties of populations started from a single cell in the logistic growth environment.

Cellular Populations in Chemostat Environments. The cellular population in

a chemostat environment is constrained by the corresponding container or chamber.

Thus the dynamics are quite different from those cases of free environments. It can be

described by the following Master equation

∂
∂t

P (n1, n2, t) = β1n
−
1 P (n−1 , n2, t)[1−Θ(n−1 + n2 −Nmax)] + δ1n

+
1 P (n+

1 , n2, t)

+τ12n
+
2 P (n−1 , n+

2 , t) + β2n
−
2 P (n1, n

−
2 , t)[1−Θ(n1 + n−2 −Nmax)]

+δ2n
+
2 P (n1, n

+
2 , t) + τ21n

+
1 P (n+

1 , n−2 , t)

+β1n
−
1

( n+
2

n−1 +n+
2

)
P (n−1 , n+

2 , t)Θ(n−1 + n+
2 −Nmax)

+β2n
−
2

( n+
1

n−1 +n+
2

)
P (n+

1 , n−2 , t)Θ(n+
1 + n−2 −Nmax)

−
[
(δ1 + τ21)n1 + (δ2 + τ12)n2 + (β1n1 + β2n2)[1−Θ(n1 + n2 −Nmax)]

+ (β1+β2)n1n2

n1+n2
Θ(n−1 + n+

2 −Nmax)
]
P (n1, n2, t), (17)

where Nmax is the maximum population allowed by the environment, and Θ(x) = 1 for

x ≥ 0 and is zero otherwise.

Although approximate solutions for P (n1, n2, t) for any t can be obtained numer-
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ically, we are interested in two limits. First, we note that if the initial population

is small (n1 + n2 ¿ Nmax) then for short times thereafter P (n1, n2, t) is negligibly

small at all points where n1 + n2 ≥ Nmax. In this case, all terms involving the prod-

uct P (n1, n2, t)Θ(n±1 + n±2 − Nmax) are all vanishingly small in the short time limit.

Eq. 22 then reduces to the master equation describing cells in an unbounded growth

environment, given by Eq. 3 of the main text.

Second, as t → ∞ the population will have grown such that n1 + n2 ≈ Nmax.

Therefore the step function reduces to Θ(n±1 + n±2 −Nmax) = 1, and Eq. (22) becomes

∂
∂t

P (n1, t) =
[
τ12(Nmax − n−1 ) + β1n

−
1

(
1− n−1

Nmax

)]
P (n−1 , t)

+
[
τ21n

+
1 + β2n

+
1

(
1− n−1

Nmax

)]
P (n+

1 , t)

+
[
τ12(Nmax − n1) + τ21n1 + (β1 + β2)n1

(
1− n1

Nmax

)]
P (n1, t), (18)

where we have suppressed the variable n2 since n1 +n2 = Nmax. Solving for the steady

state distribution of the above equation (detailed balance) gives us

P (n1)

P (n1 − 1)
=

τ12[Nmax − (n1 − 1)] + β1(n1 − 1)(1− n1−1
Nmax

)

τ21n1 + β2n1(1− n1

Nmax
)

, (19)

from which we have the steady state distribution:

P (n1) =

n1∏
i=1

[
τ12[Nmax − (i− 1)] + β1(i− 1)(1− i−1

Nmax
)

τ21i + β2i(1− i
Nmax

)

]
P (0), (20)

where P (0) is the probability the n1 = 0 (and hence n2 = Nmax) and is given by

P (0) =

{
1 +

Nmax∑
n1=1

n1∏
i=1

[
τ12[Nmax − (i− 1)] + β1(i− 1)(1− i−1

Nmax
)

τ21i + β2i(1− i
Nmax

)

]}−1

. (21)

Cellular Populations in Logistic Environments. The dynamics of cellular pop-

ulation in a logistic environment can be described by the Master equation which is

similar to that in chemostat environment

∂
∂t

P (n1, n2, t) = β
′
1

(
1− n−1 +n2

Nequ

)
n−1 P (n−1 , n2, t) + δ1n

+
1 P (n+

1 , n2, t) + τ12n
+
2

P (n−1 , n+
2 , t) + β

′
2

(
1− n1+n−2

Nequ

)
n−2 P (n1, n

−
2 , t) + δ2n

+
2 P (n1, n

+
2 , t) + τ21n

+
1 P (n+

1 , n−2 , t)

−
[
(δ1 + τ21)n1 + (δ2 + τ12)n2 + (β

′
1n1 + β

′
2n2)

(
1− n1+n2

Nequ

)]
P (n1, n2, t), (22)
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where Nequ is the equilibrium population allowed by the logistic environment, and β
′
1

and β
′
2 are net growth coefficients for phenotypes 1 and 2 respectively.

Because of the population dependence of the growth rates for both phenotypes, the

overall population (N1 + N2) approaches to a steady state distribution with its mean

around equilibrium population Nequ in the long time limit. We therefore have the

analytical expression of the relative variance by employing an assumption that overall

population is exactly the equilibrium population, i.e., N1 + N2 = Nequ.

Detailed balance of the system brings the following steady population distribution

for phenotype 1:

P (n1) =

n1∏
i=1

[
τ12[Nmax − (i− 1)]

τ21i

]
P (0), (23)

where P (0) is the probability the n1 = 0 (and hence n2 = Nequ) and is given by

P (0) =

{
1 +

Nmax∑
n1=1

n1∏
i=1

[
τ12[Nmax − (i− 1)]

τ21i

]}−1

. (24)
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