
Protein Science (1992), I , 667-677. Cambridge University Press. Printed in the USA.
Copyright 0 1992 The Protein Society

Protein classification artificial neural system

CATHY WU, ',' GEORGE WHITSON, JERRY McLARTY ,'
ADISORN ERMONGKONCHAI, ' AND TZU-CHUNG CHANG'
I Department of Computer Science, The University of Texas at Tyler, Tyler, Texas 75701

Department of Epiderniology/Biomathematics, The University of Texas Health Center at Tyler, Tyler, Texas 75710

(RECEIVED December 9, 1991; ACCEPTED January 10, 1992)

Abstract

A neural network classification method is developed as an alternative approach to the large database search/
organization problem. The system, termed Protein Classification Artificial Neural System (ProCANS), has been
implemented on a Cray supercomputer for rapid superfamily classification of unknown proteins based on the in-
formation content of the neural interconnections. The system employs an n-gram hashing function that is simi-
lar to the k-tuple method for sequence encoding. A collection of modular back-propagation networks is used to
store the large amount of sequence patterns. The system has been trained and tested with the first 2,148 of the
8,309 entries of the annotated Protein Identification Resource protein sequence database (release 29). The entries
included the electron transfer proteins and the six enzyme groups (oxidoreductases, transferases, hydrolases, lyases,
isomerases, and ligases), with a total of 620 superfamilies. After a total training time of seven Cray central pro-
cessing unit (CPU) hours, the system has reached a predictive accuracy of 90%. The classification is fast (i.e.,
0.1 Cray CPU second per sequence), as it only involves a forward-feeding through the networks. The classifica-
tion time on a full-scale system embedded with all known superfamilies is estimated to be within 1 CPU second.
Although the training time will grow linearly with the number of entries, the classification time is expected to re-
main low even if there is a 10-100-fold increase of sequence entries. The neural database, which consists of a set
of weight matrices of the networks, together with the ProCANS software, can be ported to other computers and
made available to the genome community. The rapid and accurate superfamily classification would be valuable
to the organization of protein sequence databases and to the gene recognition in large sequencing projects.

Keywords: database search; neural networks; protein classification; sequence analysis; superfamily

The continuing rapid growth of the molecular sequenc-
ing data has generated a pressing need for advanced com-
putational tools to analyze and manage the data. An ideal
computer tool should allow the interpretation of genomic
information from the sequences and permit easy organiza-
tion of the information into a database to facilitate infor-
mation retrieval. Currently, a database search for sequence
similarities represents the most direct computational ap-
proach to the analysis of genomic information (Doolittle,
1990). There exist good algorithms and mature software
for this task. Sequence comparison algorithms based on
dynamic programming (Needleman & Wunsch, 1970) have
emerged as the most sensitive methods but have a high
computational cost of order N 2 with respect to sequence
length N. The FastA program (Pearson & Lipman, 1988)
identifies related proteins rapidly using a lookup table to
locate sequence identities (Lipman & Pearson, 1985). The

Reprint requests to: Cathy Wu, Department of Computer Science,
The University of Texas at Tyler, Tyler, Texas 75701.

Quicksearch method (Devereux, 1988) provides an even
faster but less sensitive search against the database that
is represented with a sparse hash table. A BLAST ap-
proach (Altschul et al., 1990), which directly approximates
alignments that optimize a measure of local similarity,
also permits fast sequence comparisons. In contrast to the
above methods that are designed for pairwise compari-
sons, a profile analysis method (Gribskov et al., 1987)
provides search against information from protein fami-
lies instead of individual proteins using dynamic pro-
gramming alignment. Even with the rapid advancement
of new search methods, the database search is becoming
computationally intensive and increasingly more forbid-
ding due to the accelerating growth of sequencing data.
It is desirable to develop methods with a search time that
is not constrained by the database size.

Equally important to the development of new database
search tools is the organization of second generation da-
tabases (Pabo, 1987) according to biological principles
from which related information can be readily extracted.

667

668

The most notable example of a second generation data-
base is the PIR (Protein Identification Resource) protein
sequence database, which is organized with the superfam-
ily concept (Sidman et al., 1988). A second generation
database, however, is much more difficult and time-con-
suming to organize than a raw sequence database. The
time necessary to annotate an entry and place it into the
PIR database according to the superfamily is about four
times that needed for preparation of a raw entry (Barker
et al., 1990). This is because in order to place a new se-
quence entry, its degree of similarity to all other entries
in the database needs to be determined by using a data-
base search.

The neural network technique has its origins in efforts
to produce a computer model of the information process-
ing that takes place in the nervous system (Rumelhart &
McClelland, 1986). One can simply view a neural net-
work as a massively parallel computational device, com-
posed of a large number of simple computational units
(neurons). The neurons communicate through a rich set
of interconnectigns with variable strengths (weights), in
which the learned information is stored. Artificial neural
networks with back-propagation (Rumelhart & McClel-
land, 1986) currently represent the most popular learning
paradigm and have been successfully used to perform a
variety of input-output mapping tasks for recognition,
generalization, and classification (Dayhoff, 1990). In
fact, neural networks can approximate linear and nonlin-
ear discriminant analysis with much stronger capability
of class separation (Gallinari et al., 1988; Asoh & Otsu,
1990; Webb & Lowe, 1990).

As a technique for computational analysis, neural net-
work technology is very well suited for the analysis of
molecular sequencing data. The perception learning algo-
rithm developed by Rosenblatt in the late 1950s was
adapted to sequence pattern analysis by Stormo et al.
(1982) in an attempt to distinguish ribosomal binding sites

C. Wu et al.

from nonbinding sites. More recently, back-propagation
networks have been used to predict protein secondary
structure (Qian & Sejnowski, 1988; Holley & Karplus,
1989; Kneller et al., 1990) and tertiary structure (Bohr
et al., 1990), to distinguish protein-encoding regions from
noncoding sequences (Lapedes et al., 1990), to detect
DNA-binding sites (O’Neill, 1991), and to predict bacte-
rial promoter sequences (Demeler & Zhou, 1991). We
have been applying back-propagation networks for pro-
tein classification as an approach to solve the large data-
base search/organization problem (Wu & Whitson, 1991;
Wu et al., 1990, 1991a,b). This paper describes the present
state of the Protein Classification Artificial Neural Sys-
tem (ProCANS), which is scaled-up from a pilot protein
classification system (Wu et al., 1990) and was termed
Neural Network Protein DataBase (NNPDB) system pre-
viously (Wu et al., 1991a,b).

Results

Training and prediction set

The modular network architecture permits an incremental
development of the ProCANS system, i.e., individual
modules can be trained and optimized one at a time. The
current system has four database modules trained and an-
alyzed for seven protein.functiona1 groups, consisting of
620 superfamilies and 2,148 entries of the annotated PIR
protein sequence database (Table 1). These include the
electron transfer proteins and the six enzyme groups (ox-
idoreductases, transferases, hydrolases, lyases, isomer-
ases, and ligases). The number of superfamilies for each
network module is an optimum value of between 100 and
200. If the number is too small (e.g., 28 for the electron
transfer proteins), then the network gives too many false
positives (Wu & Whitson, 1991). If the number is too
large (e.g., 305 for electron transfer proteins, oxidoreduc-

Table 1. PIR protein entries used to train and test ProCANSa

Database Protein Number of superfamilies: Number of entries:
module functional group total (begin-end) total (train + test)

EO Electron transfer proteins 28 (1-28) 385 (266 + 119)

Subtotal 148 (1-148) 753 (557 + 196)

TR Transferases 157 (1 49-305) 499 (383 + 116)

HY Hydrolases 178 (306-483) 584 (455 + 129)

Oxidoreductases 120 (29-148) 368 (291 + 77)

LI Lyases 66 (484-549) 196 (156 + 40)
Isomerases 23 (550-572) 47 (41 + 6)
Ligases 48 (573-620) 69 (64 + 5)

Subtotal 137 (484-620) 312 (261 + 51)

Total 620 (1-620) 2,148 (1,656 + 492)

a The total numbers of superfamilies and entries for each database module are underlined.

Protein classifcation neural system 669

tase, and transferases), then the network takes a long
time to train (unpubl.).

Among the 2,148 entries, 1,656 were used for training,
and the remaining 492 were used for prediction (Table 1).
The prediction set was compiled by using every third en-
try from superfamilies with more than two entries. Dur-
ing the training phase, each database module was trained
with its own training entries (i.e., 557, 383, 455, and 261
entries, respectively, for the four database modules,
named EO, TR, HY, and LI). During the prediction
phase, every database module was tested with all 492 pre-
diction entries concatenated from entries of individual
database modules.

Network parameters

Network configuration
The number of input units (size of input layer) is the

number of input patterns created from the selected n-
gram encoding method. The number of output units is
the number of superfamilies of the database module, with
each unit representing one superfamily. The optimum
number of hidden units is between 100 and 300, which is
a number close to the output size. Large hidden layer
sizes resulted in poor convergence speed and predictive
accuracy probably due to the overlearning of unnecessary
details.

Training parameters
The learning rate (11) and the momentum term (CY) are

important to the network learning in speeding conver-
gence and avoiding local minima (Weiss & Kulikowski,
1991). Their optimum values are the learning rate of be-
tween 0.2 and 0.8 with a momentum term of between 0.2
and 0.3. A high momentum term of greater than 0.6 re-
sulted in very slow convergence. For the initial weight
matrix, random weights ranging from -0.5 to 0.5 were
used. The results presented below are based on the net-
works with 200 hidden units, learning factor of 0.8, mo-
mentum term of 0.3, and bias term of -1.0.

Stopping parameters
The training can be terminated when it is converged to

within a certain tolerance or when a fixed number of
training epochs (iterations) has been reached. The toler-
ance is a user-defined value of root mean square (RMS)
error. Training curves are plotted to identify reasonable
tolerance and epoch parameters (Fig. 1). The percentage
of trained patterns (i.e., the percentage of known patterns
that are correctly classified after training) is directly re-
lated to the RMS error. The RMS error decreased quickly
from 0.8 to 0.4 with trained patterns increased from 21
to 85% during the first 400 iterations. The network con-
verged to an RMS error of 0.33 with 89% trained pat-
terns after 800 iterations. The degree of learning appeared

RMS ERRORS

Fig. 1. The training curves of the neural network illustrated by the TR
database module with the a2 encoding method.

to reach a plateau in the 90% range. The further train-
ing of another 800 and 1,600 iterations only decreased the
RMS error slightly to 0.294 and 0.289 with 91.4 and
91.6% trained patterns. Although the convergence speed
is highly dependent on the encoding methods chosen
(shown below), similar training curves were observed for
all network modules. Thus, the network modules were
trained from only 800 iterations and then compared for
their convergence speed and predictive accuracy.

Effects of encoding schema

It has been demonstrated (Wu et al., 1991a) that the en-
coding method is the most important factor that affects
system performance. Encoding methods are designated
by a two-character code: the first character is a letter des-
ignating the alphabet set; the second character is a digit
representing the order of the n-gram. Three observations
were made: (1) among the four alphabet sets, the amino
acid and exchange group alphabets gave a much higher
predictive accuracy (83-89%) than did the hydrophobic-
ity alphabets (58-76%), with a2 (bigrams of amino acid)
and e3 (trigrams of exchange group) being the best two
encoding methods; (2) important n-gram patterns can be
concatenated into one long input vector to improve pre-
diction results, such as the concatenation of the a1
(monograms of amino acid), a2, el (monograms of ex-
change group), e2 (bigrams of exchange group), and e3
patterns in cat1 encoding (Wu et al., 1991a); and (3) pre-
diction results (i.e., classification scores) from best per-
forming encoding modules can be combined with an
averaging function to improve the sensitivity and speci-
ficity of the system (i.e., more patterns identified with
fewer false positives) (Wu & Whitson, 1991).

The input vectors used in previous studies (Wu & Whit-
son, 1991; Wu et al., 1991a) were essentially “count”vec-
tors that represent the n-gram counts. However, the order
information in the sequence string is not preserved. The

670

present study evaluates the addition of a second vector,
the “position” vector that notes the positions of n-gram
patterns on the sequence. The value of each neuron in the
position vectors is the average position of each n-gram on
the sequence string, scaled to fall between 0 and 1. With
the two types of vectors, each n-gram pattern can be rep-
resented in three ways: count vector only, position vec-
tor only, and both vectors. Preliminary studies showed
that for most encoding methods, best prediction accuracy
was obtained with both vectors, followed by count vec-
tor only, then position vector only (unpubl.).

This study used 10 encoding modules, with 5 encoding

C. Wu et al.

methods represented by count vector only, and the same
5 methods represented by both vectors. The encoding
methods chosen involve the concatenation of various
amino acid and exchange group patterns. These are a2,
ae12 (al , a2, e l , and e2 concatenated), a2e2 (a2 and e2),
a2e3 (a2 and e3), and ae123 (al, a2, el, e2 and e3). The
10 encoding modules thus are a2, ae12, a2e2, a2e3, and
ae123, which use count vectors, and ba2, bael2, ba2e2,
ba2e3, and bae123, which use both vectors. Tables 2 and
3 summarize the training and prediction results, respec-
tively, for the various encoding modules after training for
800 iterations.

Table 2. Training summaries of the four database modules after 800 iterations

Database
module

EO

TR

HY

LI

Encoding
method

a2
a2e2
ae12
a2e3
ae 123
ba2
ba2e2
bael2
ba2e3
bae 123

a2
a2e2
ae12
a2e3
ae123
ba2
ba2e2
bael2
ba2e3
bae 123

a2
a2e2
ae12
a2e3
ae123
ba2
ba2e2
bae 12
ba2e3
bae 123
a2
a2e2
ae12
a2e3
ae123
ba2
ba2e2
bae I2
ba2e3
bae123

___”

Network
configuration:

input x hidden X output
-

400 x 200 x I48
436 x 200 x 148
462 x 200 x 148
616 x 200 x 148
678 x 200 x 148
800 x 200 x 148
872 x 200 x 148
924 x 200 x 148

1,232 x 200 x 148
1,356 x 200 x 148

400 x 200 x 157
436 x 200 x 157
462 x 200 x 157
616 x 200 x 157
678 x 200 x 157
800 x 200 x 157
872 x 200 x 157
924 x 200 x 157

1,232 x 200 x 157
1,356 x 200 x 157

400 x 200 x 178
436 x 200 x 178
462 x 200 x 178
616 x 200 x 178
678 x 200 x 178
800 x 200 x 178
872 x 200 x 178
924 x 200 x 178

1,232 x 200 x 178
1,356 x 200 x 178

400 x 200 x 137
436 x 200 x 137
462 x 200 x 137
616 x 200 x 137
678 x 200 x 137
800 x 200 x 137
872 x 200 x 137
924 x 200 x 137

1,232 x 200 x 137
1,356 x 200 x 137

Number of
connections

109,600
116,800
122,000
152,800
165,200
189,600
204,000
214,400
276,000
300,800

11 1,400
118,600
123,800
154,600
167,000
191,400
205,800
216,200
277,800
302,600

115,600
122,800
128,000
158,800
171,200
195,600
210,000
220,400
282,000
306,000
107,400
114,600
119,800
150,600
163,000
187,400
201,800
212,200
273,800
298,600

Cray CPU
time
6)

7,766
8,325
8,668

10,732
11,614
13,305
14,340
15,225
19,260
21,021

5,546
5,902
6,134
7,571
8,187
9,491

10,000
10,508
1 3,404
14,624
6,710
7,096
7,372
9,092
9,754

11,154
12,013
12,629
16,041
17,515
3,666
3,918
4,101
5,161
5,429
6,186
6,664
7,009
9,384
9,909

- -~

RMS
error

0.4384
0.4257
0.1897
0.3742
0.2472
0.3416
0.2202
0.2243
0.2543
0.1896

0.3313
0.3429
0.2019
0.3926
0.2607
0.2980
0.2286
0.2229
0.2892
0.2846
0.3722
0.3510
0.2255
0.4546
0.2695
0.2966
0.2653
0.1817
0.3146
0.2045
0.4108
0.3817
0.2770
0.3663
0.2478
0.2628
0.2770
0.2700
0.3096
0.1959

Trained patterns:
number trained/total (070)

450/557 (80.79)
458/557 (82.23)
537/557 (96.41)
479/557 (86.00)
523/557 (93.90)
492/557 (88.33)
530/557 (95.15)
529/557 (94.77)
521/557 (93.54)
537/557 (96.41)
341/383 (89.03)
338/383 (88.25)
368/383 (96.08)
324/383 (84.60)
357/383 (93.21)
349/383 (91.12)
363/383 (94.78)
364/383 (95.04)
351/383 (91.64)
352/383 (91.91)

392/455 (86.15)
399/455 (87.69)
432/455 (94.95)
361/455 (79.34)
404/455 (88.79)
415/455 (91.21)
423/455 (92.97)
440/455 (96.70)
410/455 (90.1 1)
436/455 (95.82)
217/261 (83.14)
223/261 (85.44)
241/261 (92.34)
226/261 (86.59)
245/261 (93.81)
243/261 (93.10)
241/261 (92.34)
241/261 (92.34)
236/261 (90.42)
25 1 /26 1 (96.17)

Protein Classification neural system 67 1

Table 3. Prediction summaries of the system with four database modules after 800 iterationsa

Encoding
method

a2
a2e2
ae12
a2e3
ae123
ba2
ba2e2
bael2
ba2e3
bae 123
Avg.
a e 1 2 ~
ae123b
Avg.

_ _ _ _ ~

CPU
time

6)

43
46
49
59
63
71
77
81

I06
123

_____~

Accuracy at 0.01

TC (070) IC (070) UN (070)

80.28 15.45 3.86
79.67 12.80 7.32
90.04 9.35 0.61
79.88 14.63 5.28
87.40 10.16 2.44
83.94 8.94 6.91
86.38 7.52 6.10
87.60 11.59 0.81
85.57 9.15 5.28
87.20 9.55 3.25
90.04 7.93 1.83
84.15 15.24 0.61
83.94 13.62 2.44
85.57 12.60 1.83

TC (070)

74.59
73.17
79.27
73.17
79.88
75.20
78.66
78.05
77.64
78.05
80.69
78.66
79.47
80.49

Accuracy at 0.3

IC (070) UN (070)

1.02 24.39
1.42 25.41
1.83 18.90
0.41 26.42
0.81 19.31
0.81 23.98
0.81 20.53
1.02 20.93
1.22 21.14
0.81 21.14
1.02 18.29
2.44 18.90
I .22 19.31
1.22 18.29

TC (070)

62.40
61.18
68.29
62.40
69.31
61.99
67.68
66.87
66.26
67.07
67.28
68.29
69.31
67.28

Accuracy at 0.9

IC (070) UN (070)

0.20 37.40
0.20 38.62
0.00 31.71
0.00 37.60
0.00 30.69
0.61 37.40
0.41 31.91
0.61 32.52
0.41 33.33
0.41 32.52
0.00 32.72
0.00 31.71
0.00 30.69
0.00 32.72

-

a The predictive accuracy is shown at three threshold values, 0.01,0.3, and 0.9, and expressed with three terms: TC (the percentage of total cor-
rect patterns), IC (the percentage of incorrect patterns), and UN (the percentage of unidentified patterns). The total number of correct patterns
is the total of correct first-fit, second-fit, and third-fit patterns. The average (Avg.) encoding method used the combined outputs of the ae12 and
ae123 encoding methods.

Only correct first-fit patterns are counted as correct patterns.

Convergence speed
The choice of encoding methods greatly affects the

convergence speed of the network. After 800 iterations,
the encoding modules converged to a tolerance level of
between 0.18 and 0.45 RMS error, with the percentage of
trained patterns ranging from 79 to 97% (Table 2). Be-
cause the RMS error is directly related to the percentage
of trained patterns (Fig. l), the latter is used as an indi-
cator of the convergence speed. To compare the conver-
gence speed of various encoding methods, the percentage
of trained patterns of each method was calculated by
adding the total number of trained patterns from all four
database modules and dividing by the number of train-
ing patterns (i.e., 1,656). The resulting percentages of
trained patterns for the 10 encoding methods in descend-
ing order were 95.3, 95.2, 95.1, 94.0, 92.3, 91.7, 90.5,
85.6, 84.5, and 83.9, respectively, for ae12, bae123,
bael2, ba2e2, ae123, ba2e3, ba2, a2e2, a2, and a2e3. It
appears that (1) encoding methods that incorporated a1
and el n-gram patterns (i.e., ae12 and ae123) converged
faster, and (2) in general, methods that used both count-
ing and position vectors converged faster than those that
used only count vectors.

Predictive accuracy
The weight files generated after 800 iterations were

used for prediction. The predictive accuracies were mea-
sured at threshold values ranging from 0.01 to 0.9. The
threshold is a cut-off level for the classification scores,
above which the superfamily identification is made. At
lower threshold values, more superfamilies were identi-
fied, which resulted in a higher sensitivity (more true pos-

itives), but a lower specificity (more false positives).
Figure 2 shows the effect of threshold on the sensitivity
and specificity. At a low threshold of 0.01, more than
90% of the prediction patterns were correctly classified,
with 9% false positives. On the other hand, at a high
threshold of 0.9, although only 68% of the patterns were
correctly classified, the false positive was completely elim-
inated. When both sensitivity and specificity are consid-
ered, the 10 encoding methods ranked from best to worst
are ae12, ae123, ba2e2, bael2, bae123, ba2e3, ba2, a2,
a2e2, and a2e3 (Table 3). Generally, a low degree of train-
ing (especially below 90% training) results in a low pre-

100 ~Q"".."".... D...".."""~""""~"
"""""

95- ,p----
SPECIFICITY

a (. , . . , . , , , .

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 I

THRESHOLDS

Fig. 2. The effects of threshold on the sensitivity and specificity of Pro-
CANS classification illustrated by the ae12 encoding method. The sen-
sitivity is the percentage of total correct patterns; the specificity is
1 - the percentage of total incorrect patterns.

672 C. Wu et al.

dictive accuracy, as found in a2, a2e2, and a2e3. The
performance of these encoding methods is improved with
the addition of position vectors (Le., ba2, ba2e2, and
ba2e3) because methods that use both counting and po-
sition vectors generally converge faster. On the other
hand, a high degree of training does not necessarily give
better prediction. For instance, ae123, which is 92.3%
trained, predicts better than bae123, which is 95.2%
trained. Overall, ae12 and ae123 are considered the best
encoding modules due to their high predictive accuracy,
fast convergence rate, and small network size. The small
network size makes them faster to train and classify, as
shown below. The output values of ae12 and ae123 en-
coding modules can be combined (i.e., averaged) to
slightly increase the sensitivity and specificity (Table 3).
The predictive accuracy discussed above is based on the
criteria defined in the Materials and methods section,
with the number of correct patterns being the total of cor-
rect first-fit, second-fit, and third-fit patterns. The results
obtained by using only first-fit as correct patterns are
similar at higher thresholds of 0.3 and 0.9, but the sen-
sitivity is lowered from 90 to 85% at a low threshold of
0.01 (Table 3).

CPU time for training and classification

The central processing unit (CPU) time for both training
and classification is directly proportional to the number
of neural interconnections and the number of patterns,
the training time is also directly related to the number of
iterations. In the present network model, all neurons are
fully connected in a forward fashion (i.e., feed-forward
network). Thus, the total number of neural connections
of the network is the total number of connections between
the input and hidden layers and the connections between
the hidden and output layers. This can be expressed by:

12
38

o l , , , , . . . , . t 8
100 150 200 250 300

NUMBER OF CONNECTIONS (xl.000)

Fig. 3. The relationships between the number of neural interconnections
and the training and classification time illustrated by the EO database
module. The training time shown is for 557 patterns with 800 iterations;
the classification time shown is for 492 patterns.

total connections = (number of input units x number of
hidden units) + (number of hidden units x number of
output units). Figure 3 shows the linear relationship be-
tween the number of neural connections and the CPU
time for both training and classification.

The total training time of the current system, which
consists of four database modules and 1,656 training pat-
terns, is 7.3 and 9.7 Cray CPU hours, respectively, for
the ae12 and ae123 encoding methods. Although it takes
a long time to train a neural network, the classification
is speedy because it involves only a forward-feeding
through the network. The classification time of the sys-
tem is the total classification time of all four database
modules. It takes 49 and 63 CPU seconds, respectively,
to classify all 492 prediction patterns using the ae12 and
ae123 encoding methods (Table 3). This averages to ap-
proximately 0.1 CPU second per pattern.

Discussion

ProCANS is an alternative to other database search
methods with two advantages. First, it is a classification
system that can directly aid database organization. Sec-
ondly, the classification is fast and is not constrained by
the database size. The current system is capable of clas-
sifying the superfamily of an unknown electron transfer
protein or enzyme within 0.1 Cray CPU second with a
more than 90% accuracy. As with other search methods,
the major task for superfamily identification is to distin-
guish true positives from false positives. With the present
system, 100% specificity (i.e., no false positives) can be
achieved at a high threshold of 0.9, with a 68% sensitiv-
ity. Therefore, one can use ProCANS to screen a large
number of unknown protein sequences and give true
identifications to more than two-thirds of the query se-
quences quickly. The rapid and accurate superfamily
identifications provided by ProCANS would be particu-
larly valuable to the organization of protein sequence da-
tabases (e.g., the preliminary PIR database with 12,837
unclassified entries and the unverified PIR database with
12,354 unannotated entries) and to the gene recognition
in large sequencing projects.

The classification time on a full-scale system embedded
with all known superfamilies is estimated to be about
four times that of the present system (well within one
Cray CPU second), because the full system is about four
times larger. (The current system has 620 superfamilies
trained with four database modules, whereas the com-
plete system will have 2,589 superfamilies trained by 14
database modules.) Unlike other search methods, in
which search time depends strongly on database size, the
classification time of ProCANS is expected to remain low
even if there is a 10-100-fold increase of sequence entries.
This is because (1) although the number of sequences in
the database increases the number of superfamilies is
likely to remain small, as most sequences will be classi-

Protein classifcation neural system 673

fied into one of the known superfamilies (Doolittle,
1989), and (2) the classification time is directly propor-
tional to the total number of neural connections, not the
number of superfamilies. (As an example, given an ae12
network configuration of 462 x 200 x 100, if the num-
ber of superfamilies doubles, then the classification time
would increase only 18% instead of 100Vo.) Training the
network, however, is directly related to the number of
training patterns, so the time needed to train each mod-
ule will increase considerably. Therefore, we will continue
to use the multiprocessor Cray for training the system.

ProCANS has two useful products: a neural database,
which consists of a set of weight matrices that embed su-
perfamily information in the neural interconnections af-
ter iterative trainings, and a system software that utilizes
the neural database for rapid protein classification. The
encoding schema used in preprocessing makes the neural
database essentially a neural network presentation of the
lookup (hash) tables built from the protein sequence da-
tabase. The neural database and the system software can
be ported to other computer platforms easily. We have
implemented a back-propagation neural network system
on an intel iPSC hypercube, termed HANS (hypercube
artificial neural system) (Whitson et al., 1990). The
weight files trained on the Cray have been ported to the
hypercube and used to classify proteins successfully.

The predictive accuracy of the current system is about
90%, which is slightly lower than that of the FastA da-
tabase search method (Pearson & Lipman, 1988). (A sys-
tematic comparison of ProCANS with other search
methods including FastA and BLAST [Altschul et al.,
19901 is being conducted and will be published else-
where.) The accuracy is expected to increase with an en-
hanced encoding method and/or neural network design
and with increased database entries for training. With the
modular architecture, it is easy to incorporate other en-
coding schemes without affecting the present system. The
accumulation of more sequence entries in the PIR data-
base should improve accuracy because more patterns
would be available for network training, and it was ob-
served that only one single closely related training pattern
is required for the unknown entry to be classified with a
high classification score (unpubl.). The network should
have enough capacity to hold the information embedded
in the training patterns even with a 10-100-fold increase in
the sequencing data. A typical ae12 network module in
the present system has approximately 120,000 neural inter-
connections (i.e., weights). With an average of 300-500
training patterns used for each network, the present
weight matrices are quite sparse. In fact, it has been sug-
gested that a back-propagation network can average 10
patterns per weight (Weiss & Kulikowski, 1991).

The ProCANS system can be updated easily to reflect
the growth of the database by retraining the neural net-
works. The system can also be adapted for other protein
classification schemes. For example, the new proposed

scheme for PIR database organization according to align-
ment groups, rather than superfamilies (Barker et al.,
1990), can be readily implemented with the ProCANS de-
sign. The same design concept has been extended to the
classification of nucleic acid sequences. A preliminary re-
sult showed a 92% accuracy for RNA classification by
using a pentagram encoding for ribonucleotides (unpubl.).

Materials and methods

ProCANS design

ProCANS was designed to embed superfamily informa-
tion from the PIR database and used as an associative
memory to classify proteins based on the underlying in-
formation contents. The system employs two design prin-
ciples (Wu et al., 1991b): (1) sequence encoding schema
(used in the preprocessor) to extract information from the
sequence string without knowing what kind of features in
the underlying training data set are recognized by the net-
work, and (2) modular network architecture (used in the
neural network classifier) to allow the scaling-up of back-
propagation networks for the processing of large and
complex molecular databases.

Sequence encoding schema
The sequence encoding schema has three major com-

ponents: (1) sequence interpretation, to interpret each se-
quence string with several different biological meanings
for maximal information retrieval; (2) n-gram extraction,
to extract patterns from sequence strings; and (3) pattern
transformation, to convert the n-gram patterns to real-
valued input vectors.

Sequence interpretation
Each amino acid residue of the sequence string can be

attached with various biological meanings and repre-
sented by different alphabet sets. The alphabet sets of
ProCANS include amino acids (20 letters), exchange
group (6 letters), structural group (3 letters), and hydro-
phobicity group (2 letters). The six exchange groups are
derived from the PAM (percent accepted mutations) ma-
trix, which represents the conservative replacements found
in homologous sequences through evolution (Dayhoff,
1972). The two hydrophobicity groups, hydrophobic and
hydrophilic, and the three structural groups, ambivalent,
external, and internal, are adopted from Karlin et al.
(1989).

The n-gram extraction
In other studies that use neural networks (e.g., Qian &

Sejnowski, 1988; Lapedes et al., 1990), each amino acid
(or nucleotide) residue of the sequence string is repre-
sented by an indicator vector of 20 (or 4) input units. The
length of the input vector, thus, is 20 x n (or 4 x n) ,
where n is the total number of residues in the string. The

674

major advantage of such representation is the preservation
of the sequence of residues along the sequence string.
This representation, however, is not suitable for detecting
sequence similarities where long and varied-length se-
quences are to be compared. The key element of the se-
quence encoding schema presented here is a hashing
function, called the n-gram extraction method, that was
originally used by Cherkassky and Vassilas (1989) for as-
sociative database retrieval. The n-gram extraction method
extracts various patterns of n consecutive residues from
a sequence string and gives the number of occurrences of
all possible letter pairs, triplets, etc. The total number of
possible patterns from each n-gram extraction is m",
where m is the number of different letters in an alphabet.
The concept of the n-gram method is similar to that of
the k-tuple method. The latter has been successfully ap-
plied to sequence analyses, such as the comparison of k-
tuple locations for database search (Lipman & Pearson,
1985) and the statistical analysis of k-tuple patterndfre-
quencies for sequence discrimination and analysis (Karlin
et al., 1989; Claverie et al., 1990). The hashing function
has several advantages: (1) it is sequence length invariant;
(2) it is residue insertion and deletion invariant; (3) it
allows classification based on localized regions of simi-
larity; and (4) it does not depend upon the a priori rec-
ognition of certain specific patterns.

Pattern transformation
The n-gram patterns are transformed into real-valued

input vectors, with each unit of the vector (input neuron)

C. Wu et al.

representing an n-gram. The value of each neuron is the
product of the n-gram count and weight, scaled to fall be-
tween 0 and l. The count is the number of times the n-
gram appears in the sequence string. The weight of each
amino acid is the measure of its frequency of occurrence
in nature.

Modular network architecture
It has been known that back-propagation networks do

not scale up very well from small systems to large ones.
A collection of small networks, however, has been dem-
onstrated to be an effective alternative to large back-
propagation networks (Kimoto et al., 1990; Lendaris &
Harb, 1990). The network architecture used involves two
levels of modularization, the database modularization
and the encoding modularization (Wu et al., 1991b).

Database modularization
The training set derived from the PIR database is bro-

ken down to multiple sets according to functional groups,
with each set trained by a separate network module,
called the database module (Fig. 4). The protein func-
tional groups in the PIR database include the electron
transfer proteins, the six enzyme groups, enzyme inhibi-
tors, growth factors, hormones, toxins, immunoglobulin-
related proteins, heme-carrier proteins, chromosomal
proteins, ribosomal proteins, fibrous proteins, contrac-
tile system proteins, lipid-associated proteins, organelle
proteins, membrane proteins, bacterial proteins, bacterio-
phage and plasmid proteins, and viral proteins.

Protein Classification Artificial Neural System

Database Module 1 (EO)

1

2

148
Amino ~ ~ s ~ ~ r Input Layer Hi&nhyer Output ~ a y m

Sequence Acid -I Database Module 2 (TR)

Input Layer Hidden Layer Output Layer

Database Module 3 (HY)

I Database Module 4 (LI)

Postprocessor protein - superfamily

Fig. 4. The database modularization of ProCANS.

Protein classification neural system 675

Encoding modularization
The sequence encoding performed by the preprocessor

results in a large number of input neurons. The large in-
put vector will be decomposed into multiple vectors, each
corresponding to one or a few n-gram extractions and
trained by a separate encoding module (Fig. 5) .

ProCANS implementation

The ProCANS system software has three components: a
preprocessor program to create from input sequence files
the training and prediction patterns, a neural network
program to classify input patterns, and a postprocessor
program to summarize classification results and report
superfamily identifications (Wu et al., 1991a). All three
programs have been implemented on the CRAY Y-MP
81864 supercomputer of the UTCHPC (University of
Texas, Center for High Performance Computing).

The neural network program, termed CANS (Cray Ar-
tificial Neural System), is a set of programs and subrou-
tines intended to be a tool for developing neural network
applications. A CANS interface program serves as an au-
tomated neural network generator using user-defined pa-
rameters. The main driver makes calls to appropriate
drivers for different learning algorithms, including back-
propagation, competitive learning (Rumelhart & Zisper,
1986), Hopfield, and Kohonen (Wasserman, 1989). The
user-input parameters include network configurations
(number of neurons for each layer), network parameters
(learning factor, momentum term, bias term, error thresh-

old, number of iterations, and maximum runtime), and
weight matrix option (initialization with random weights
or normally distributed random weights, reading from a
weight file, or prediction with trained weights). The back-
propagation program module contains, among other
routines, a back-propagation module for training, a clas-
sification module for prediction, and utility programs for
weight initialization and saving.

Neural network model

The neural network used in this research is a three-layered,
feed-forward network that employs a back-propagation
learning algorithm. The three layers are: one input layer
to provide input information, one output layer to collect
output, and one hidden layer to capture information in
nonlinear parameters. The functions used in the neural
network model are discussed below (Rumelhart & Mc-
Clelland, 1986).

Feed-forward calculation
Feed-forward calculation (change of state function) is

used to determine the output of each neuron (Equations
1 and 2). The net input to each neuron is given by

neti = O,K,,
.i

where 0, represents the output from the neuronj in the
preceding layer and w, represents the connection weight

Database Module 1 (EO)

Encoding Module 1 (A2)
1 1

AA 1
AC 2

w loIl

Amino PreProcessor
Acid

Sequence Encoding Module 2 (E3)

1 1
111 1
112 2

1

666
216 148

148

PostProcessor Protein - Superfamily

Fig. 5. The encoding modularization of ProCANS.

676 C. Wu et al.

between neurons i and j . The output from each neuron
is given by

where 0 is a bias term, and f is a nonlinear activation
(squashing) function.

Back-propagation learning
Back-propagation learning applies the generalized delta

rule to recursively calculate the error signals and adjust
the weights (Equations 3-7). The error signal at the out-
put layer is given by

Ai = f ’ (net;)(T, - Oi) , (3)

where T, is the target value, andf ’ (ne t i) is the first de-
rivative of the activation (squashing) function, which can
be described by

f ’ (ne t j) = O;(l - Oi). (4)

The error signal at the hidden layer is given by

The error signals are then used to modify the weights with
the following:

where r] is the learning rate and a is the momentum term.

Learning control
The error function that back-propagation minimizes is

a sum square error function, which is a function of weights;
and back-propagation is really just a gradient descent ap-
plied to this function (Equation 8)

where p represents training patterns.
The weights are iteratively modified for every pattern

being read in until the system is converged to the toler-
ance or until a fixed upper limit on the epochs is reached.
The tolerance is a user-defined value of RMS error, which
is the square root of the sum square error (E) calculated
from all patterns across the entire training file.

ProCANS evaluation mechanism

The main criterion used to evaluate the performance of
ProCANS is the classification accuracy for the prediction

patterns. During the prediction phase, each pattern is
classified on all four database modules. The values of the
620 output units represent the classification scores of the
620 superfamilies. The classification score ranges from
1 .O (perfect match) to 0.0 (no match). Superfamilies of
the three highest scores are identified as the first-fit, sec-
ond-fit, and third-fit. The predictive accuracy is expressed
with three terms: the total number of correct patterns
(true positives), the total number of incorrect patterns
(false positives), and the total number of unidentified pat-
terns (false negatives). A protein entry is considered to be
accurately classified if one of its three best classifications
matches the target value (the known superfamily number
of the entry) with a classification score above a certain
threshold. Thus, the total number of correct patterns is
the total of correct first-fit, second-fit, and third-fit pat-
terns. Three best fits are chosen because many proteins
are composed of multiple domains that may be arbitrarily
classified into different superfamilies, and even homol-
ogous domains may be placed in different superfamilies
(Barker et al., 1990). The predictive accuracy is measured
at threshold values ranging from 0.01 (low stringency) to
0.9 (high stringency) in terms of sensitivity and specificity.
The sensitivity is the percentage of total correct patterns;
the specificity is 1 - the percentage of total incorrect pat-
terns.

Acknowledgments

This work was supported by the University Research and De-
velopment Grant of Cray Research, Inc.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., & Lipman, D.J.
(1990). Basic local alignment search tool. J. Mol. Biol. 215,403-410.

Asoh, H. & Otsu, N. (1990). An approximation of nonlinear discrimi-
nant analysis by multilayer neural networks. Proc. Int. Joint Conf.
Neural Networks (June) III, 211-216.

Barker, W.C., George, D.G., & Hunt, L.T. (1990). Protein sequence da-
tabase. Methods Enzyrnol. 183, 31-49.

Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Fredholm, H.,
Lautrup, B., & Peterson, S.B. (1990). A novel approach to predic-
tion of the 3-dimensional structures of protein backbones by neu-
ral networks. FEBS Lett. 261, 43-46.

Cherkassky, V. & Vassilas, N. (1989). Performance of back propaga-
tion networks for associative database retrieval. Proc. Int. Joint
Conf. Neural Networks I , 11-83.

Claverie, J.-M., Sauvaget, I., & Bougueleret, L. (1990). K-tuple fre-
quency analysis: From introdexon discrimination to T-cell epitope
mapping. Methods Enzyrnol. 183, 231-252.

Dayhoff, J. (1990). Neural Network Architectures, A n Introduction.
Van Nostrand Reinhold, New York.

Dayhoff, M.O., Ed. (1912). Atlas of Protein Sequence and Structure,
Vol. 5 . National Biomedical Research Foundation, Washington,
D.C.

Demeler, B. & Zhou, G . (1991). Neural network optimization for E. coli
promoter prediction. Nucleic Acids Res. 19, 1593-1599.

Devereux, J. (1988). A rapid method for identifying sequences in large
nucleotide sequence databases. Ph.D. Thesis, University of Wiscon-

Doolittle, R.F. (1989). Redundancies in protein sequences. In Predic-
sin, Madison.

Protein classification neural system 677

tion of Protein Structure and the Principles of Protein Conforma-
tion (Fasman, G.D., Ed.), pp. 599-624. Plenum Press, New York.

Doolittle, R.F. (1990). Searching through sequence databases. Methods
Enzymol. 183, 99-110.

Gallinari, P., Thiria, S., & Soulie, F.F. (1988). Multilayer perceptrons
and data analysis. Proc. Int. Joint Conf. Neural Networks I ,
391-399.

Gribskov, M., McLachlan, A.D., & Eisenberg, D. (1987). Profile anal-
ysis: Detection of distantly related proteins. Proc. Natl. Acad. Sci.

Holley, L.H. & Karplus, M. (1989). Protein secondary structure pre-
diction with a neural network. Proc. Natl. Acad. Sci. USA 86,

Karlin, S., Ost, F., & Blaisdell, B.E. (1989). Patterns in DNA and amino
acid sequences and their statistical significance. In Mathematical
Methods forDNA Sequences(Waterman, MS., Ed.), pp. 133-157.
CRC Press, Inc., Boca Raton, Florida.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock mar-
ket prediction system with modular neural networks. Proc. Int. Joint
Conf. Neural Networks (June) I , 1-6.

Kneller, D.G., Cohen, F.E., & Langridge, R. (1990). Improvements in
protein secondary structure prediction by an enhanced neural net-
work. J. Mol. Biol. 214, 171-182.

Lapedes, A., Barnes, C., Burks, C., Farber, R., & Sirotkin, K. (1990).
Application of neural networks and other machine learning algo-
rithms to DNA sequence analysis. In Computers and DNA, SFI
Studies in the Sciences of Complexity, Vol. VI1 (Bell, G. & Marr,
T., Eds.), pp. 157-182. Addison-Wesley, Reading, Massachusetts.

Lendaris, G.G. & Harb, I.A. (1990). Improved generalization in ANNs
via use of conceptual graphs: A character recognition task as an ex-
ample case. Proc. Int. Joint Conf. Neural Networks (June) I ,

Lipman, D.J. & Pearson, W.R. (1985). Rapid and sensitive protein sim-
ilarity searches. Science 277, 1435-1441.

Needleman, S.B. & Wunsch, C.D. (1970). A general method applica-
ble to the search for similarities in the amino acid sequences of two
proteins. J. Mol. Biol. 48, 443-453.

O’Neill, M.C. (1991). Training back-propagation neural networks to de-
fine and detect DNA-binding sites. NucleicAcids Res. 19, 313-318.

Pabo, C.O. (1987). New generation databases for molecular biology.
Nature 327, 467.

Pearson, W.R. & Lipman, D.J. (1988). Improved tools for biological
sequence comparisons. Proc. Natl. Acad. Sci. USA 85,2444-2448.

USA 84, 4355-4358.

152-156.

551-556.

Qian, N. & Sejnowski, T.J. (1988). Predicting the secondary structure
of globular proteins using neural network models. J. Mol. Biol. 202,

Rumelhart, D.E. & McClelland, J.L., Eds. (1986). Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Vol.
1: Foundations. MIT Press, Cambridge, Massachusetts.

Rumelhart, D.E. & Zisper, D. (1986). Feature discovery by competitive
learning. In Parallel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, Vol. l : Foundations (Rumelhart, D. &
McClelland, J., Eds.), pp. 151-193.38. MIT Press, Cambridge, Mas-
sachusetts.

Sidman, K.E., George, D.G., Barker, W.C., &Hunt, L.T. (1988). The
protein identification resource (PIR). Nucleic Acids Res. 16,

Stormo, G.D., Schneider, T.D., Gold, L., & Ehrenfeucht, A. (1982).
Use of the ‘Perceptron’ algorithm to distinguish translation initia-
tion sites in E. coli. Nucleic Acids Res. 10, 2997-301 l .

Wasserman, P.D. (1989). Neural Computing: Theory and Practice. Van
Nostrand Reinhold, New York.

Webb, A.R. & Lowe, D. (1990). The optimized internal representation
of multilayered classifier networks performs nonlinear discriminant
analysis. Neural Networks 3, 367-375.

Weiss, S.M. & Kulikowski, C.A. (1991). Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert Systems. Morgan Kaufmann Pub-
lishers, San Mateo, California.

Whitson, G., Wu, C., Ermongkonchai, A., &Weber, J. (1990). Aback-
propagation system for hypercubes. Symp. Applied Computing,
71-77.

Wu, C.H., Ermongkonchai, A., & Chang, T.C. (1991a). Protein clas-
sification using a neural network protein database (NNPDB) system.
Proc. Anal. Neural Net Appl. Conf., 29-41.

Wu, C.H., McLarty, J.W., & Whitson, G.M. (1991b). Neural networks
for molecular sequence database management. Proc ACM 19th
Comp. Sci. Conf., 588-594.

Wu, C.H. & Whitson, G.M. (1991). Neural network database systems
for genetic sequence classification. Proc. 8th Int. C o d . Math.
Comp. Model. (in press).

Wu, C.H., Whitson, G.M., & Montllor, G.J. (b990). PROCANS: A
protein classification system using a neural network. Proc. Int. Joint
Conf. Neural Networks (June) II , 91-95.

865-884.

1869-1871.

