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Abstract 

A  neural network classification method is developed as  an alternative approach  to the large database  search/ 
organization  problem.  The system, termed Protein Classification Artificial Neural System (ProCANS), has been 
implemented on a  Cray  supercomputer for rapid superfamily classification of unknown proteins based on the in- 
formation content of the neural  interconnections. The system employs an n-gram hashing function that is simi- 
lar to  the k-tuple  method for sequence encoding. A collection of  modular  back-propagation networks is used to 
store  the large amount of sequence patterns. The system has been trained and tested with the first 2,148 of the 
8,309 entries of the annotated  Protein Identification Resource protein sequence database (release 29). The entries 
included the electron transfer proteins and  the six enzyme groups (oxidoreductases, transferases, hydrolases, lyases, 
isomerases, and ligases), with a total of 620 superfamilies. After a total training  time of seven Cray central  pro- 
cessing unit (CPU) hours, the system has reached a predictive accuracy of 90%. The classification is fast (i.e., 
0.1 Cray CPU second per sequence), as it only involves a  forward-feeding  through  the networks. The classifica- 
tion time on a full-scale system embedded with all known superfamilies is estimated to be within 1 CPU second. 
Although the training  time will grow linearly with the number of entries, the classification time is expected to re- 
main low even if there is a 10-100-fold increase of sequence entries. The  neural database, which consists of a set 
of weight matrices of the networks, together with the  ProCANS software, can be ported to  other computers and 
made available to  the genome community. The rapid and accurate superfamily classification would be valuable 
to  the organization of protein sequence databases and  to  the gene recognition in large sequencing projects. 
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The continuing rapid growth of the molecular sequenc- 
ing data has  generated a pressing  need for advanced  com- 
putational tools to analyze and manage the data. An  ideal 
computer tool should  allow the interpretation of  genomic 
information from the sequences and permit easy organiza- 
tion of the information into a database to facilitate infor- 
mation retrieval. Currently, a database search for sequence 
similarities represents the most direct computational ap- 
proach to the analysis of genomic information (Doolittle, 
1990). There exist good algorithms and  mature software 
for this task. Sequence comparison algorithms based on 
dynamic programming (Needleman & Wunsch, 1970) have 
emerged as the most  sensitive methods but have a high 
computational cost  of order N 2  with  respect to sequence 
length N. The FastA program (Pearson & Lipman, 1988) 
identifies related proteins rapidly using a  lookup table to 
locate sequence  identities (Lipman & Pearson, 1985). The 
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Quicksearch method (Devereux, 1988) provides an even 
faster but less  sensitive search against the database  that 
is represented with a sparse hash table.  A BLAST ap- 
proach (Altschul  et al., 1990), which directly approximates 
alignments that optimize a measure of local similarity, 
also permits fast sequence comparisons. In contrast to the 
above methods that  are designed for pairwise compari- 
sons,  a profile analysis method (Gribskov et al., 1987) 
provides search against information from protein fami- 
lies instead of individual proteins using dynamic pro- 
gramming alignment. Even  with the rapid advancement 
of new search methods, the database search is becoming 
computationally intensive and increasingly more forbid- 
ding due to the accelerating growth of sequencing data. 
It is desirable to develop methods with a search  time that 
is not constrained by the  database size. 

Equally important to the development of new database 
search tools is the organization of  second generation da- 
tabases (Pabo, 1987) according to biological principles 
from which related information can be  readily extracted. 
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The most notable example of a second generation data- 
base is the  PIR  (Protein Identification Resource) protein 
sequence database, which  is organized with the superfam- 
ily concept (Sidman et al., 1988). A second generation 
database, however, is much more difficult and time-con- 
suming to organize than  a raw sequence database.  The 
time necessary to annotate an entry  and place it into  the 
PIR database according to the superfamily is about four 
times that needed for  preparation of a raw entry (Barker 
et al., 1990). This is because in order to place a new  se- 
quence entry, its degree of similarity to all other entries 
in the database needs to be determined by using a  data- 
base search. 

The neural network technique has its origins in efforts 
to produce a computer model of the information process- 
ing that takes place in the nervous system (Rumelhart & 
McClelland, 1986). One can simply view a neural net- 
work as a massively parallel computational device, com- 
posed of a large number of simple computational units 
(neurons). The neurons communicate through a rich  set 
of interconnectigns with variable strengths (weights), in 
which the learned information is stored. Artificial neural 
networks with back-propagation (Rumelhart & McClel- 
land, 1986) currently represent the most popular learning 
paradigm and have been successfully  used to perform a 
variety of input-output mapping tasks for recognition, 
generalization, and classification (Dayhoff, 1990). In 
fact, neural networks can approximate linear and nonlin- 
ear discriminant analysis with much stronger capability 
of class separation (Gallinari et al., 1988; Asoh & Otsu, 
1990; Webb & Lowe, 1990). 

As a technique for computational analysis, neural net- 
work technology is  very  well suited for the analysis of 
molecular  sequencing data. The  perception  learning  algo- 
rithm developed by Rosenblatt in the  late 1950s was 
adapted to sequence pattern analysis by Stormo et al. 
(1982) in an attempt to distinguish  ribosomal  binding  sites 
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from nonbinding sites. More recently, back-propagation 
networks have  been  used to predict protein secondary 
structure (Qian & Sejnowski, 1988; Holley & Karplus, 
1989; Kneller et al., 1990) and tertiary structure (Bohr 
et al., 1990), to distinguish  protein-encoding  regions from 
noncoding sequences (Lapedes et al., 1990), to detect 
DNA-binding sites  (O’Neill, 1991), and to predict bacte- 
rial promoter sequences  (Demeler & Zhou, 1991). We 
have  been applying back-propagation networks for pro- 
tein classification as an approach to solve the large data- 
base search/organization problem (Wu & Whitson, 1991; 
Wu et al., 1990,  1991a,b). This  paper  describes the present 
state of the Protein Classification Artificial Neural Sys- 
tem (ProCANS), which is scaled-up from a pilot protein 
classification system (Wu et al., 1990) and was termed 
Neural Network Protein DataBase (NNPDB)  system  pre- 
viously  (Wu et al., 1991a,b). 

Results 

Training  and prediction set 

The modular network architecture permits an incremental 
development of the  ProCANS system, i.e., individual 
modules can be trained and optimized one at a time. The 
current system  has four database modules trained and an- 
alyzed for seven protein.functiona1 groups, consisting of 
620 superfamilies and 2,148 entries of the annotated PIR 
protein sequence database (Table 1). These include the 
electron transfer proteins and the six  enzyme groups (ox- 
idoreductases, transferases, hydrolases, lyases, isomer- 
ases, and ligases). The number of superfamilies for each 
network  module is an optimum value of  between 100 and 
200. If the number is too small (e.g., 28 for  the electron 
transfer proteins), then the network gives too many false 
positives (Wu & Whitson, 1991). If the number is too 
large  (e.g., 305 for electron transfer proteins, oxidoreduc- 

Table 1. PIR protein entries used to train and test ProCANSa 

Database Protein Number of superfamilies: Number of entries: 
module functional group total (begin-end) total (train + test) 

EO Electron transfer proteins 28  (1-28) 385 (266 + 119) 

Subtotal 148 (1-148) 753 (557 + 196) 

TR Transferases 157 (1 49-305) 499 (383 + 116) 

HY Hydrolases 178 (306-483) 584 (455 + 129) 

Oxidoreductases 120 (29-148) 368 (291 + 77) 

LI Lyases 66 (484-549) 196 (156 + 40) 
Isomerases 23 (550-572) 47 (41 + 6) 
Ligases 48 (573-620) 69 (64 + 5) 

Subtotal 137 (484-620) 312 (261 + 51) 

Total 620 ( 1-620) 2,148 (1,656 + 492) 

a The total numbers of superfamilies and entries for each database module are underlined. 
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tase,  and transferases), then  the network takes a long 
time to train (unpubl.). 

Among the 2,148 entries, 1,656  were  used for training, 
and the remaining 492  were  used for prediction  (Table 1). 
The prediction set  was compiled by using  every third en- 
try  from superfamilies with more than two entries. Dur- 
ing the training phase, each database module was trained 
with  its  own training entries (i.e., 557,  383, 455, and 261 
entries, respectively, for the  four  database  modules, 
named EO, TR,  HY, and LI). During  the prediction 
phase, every database module was tested  with  all 492 pre- 
diction entries concatenated from entries of individual 
database modules. 

Network  parameters 

Network configuration 
The  number of input units (size of input layer) is the 

number of input  patterns created from  the selected n- 
gram encoding method.  The number of output units is 
the number of superfamilies of the database module, with 
each unit representing one superfamily. The  optimum 
number of hidden units is between  100 and 300,  which  is 
a number close to the output size. Large hidden layer 
sizes resulted in poor convergence speed and predictive 
accuracy probably due to the overlearning of  unnecessary 
details. 

Training parameters 
The learning rate (11) and  the momentum term (CY) are 

important to the network learning in speeding conver- 
gence and avoiding local minima (Weiss & Kulikowski, 
1991). Their optimum values are  the learning rate of  be- 
tween  0.2 and 0.8 with a momentum term of between  0.2 
and 0.3. A high momentum term of greater than 0.6 re- 
sulted in very  slow convergence. For  the initial weight 
matrix,  random weights ranging from -0.5 to 0.5 were 
used. The results presented below are based on the net- 
works with  200 hidden units, learning factor of 0.8, mo- 
mentum term of 0.3, and bias term of  -1.0. 

Stopping  parameters 
The training can be terminated when it is converged to 

within a certain tolerance or when a fixed number of 
training epochs (iterations) has been reached. The toler- 
ance is a user-defined value of  root mean square (RMS) 
error. Training curves are plotted to identify reasonable 
tolerance and epoch parameters (Fig.  1). The percentage 
of trained patterns (i.e., the percentage  of  known patterns 
that  are correctly classified after training) is directly re- 
lated to the RMS error. The RMS error decreased  quickly 
from 0.8 to 0.4 with trained  patterns increased from 21 
to 85% during the first 400 iterations. The network con- 
verged to an RMS error of 0.33  with 89% trained  pat- 
terns after 800 iterations. The degree  of  learning appeared 

RMS ERRORS 

Fig. 1. The  training  curves of the  neural  network  illustrated by the  TR 
database module with  the a2 encoding method. 

to reach a plateau in the 90% range. The  further  train- 
ing  of another 800 and 1,600 iterations only  decreased the 
RMS error slightly to 0.294 and 0.289  with  91.4 and 
91.6% trained patterns. Although the convergence  speed 
is highly dependent on the encoding methods chosen 
(shown below), similar training curves were observed for 
all network modules. Thus, the network modules were 
trained from only  800 iterations and then compared for 
their convergence speed and predictive accuracy. 

Effects of encoding schema 

It has  been demonstrated (Wu et al., 1991a) that  the en- 
coding method is the most important  factor  that  affects 
system performance. Encoding methods are designated 
by a two-character code: the first character is a letter des- 
ignating the  alphabet set; the second character is a digit 
representing the order of the n-gram. Three observations 
were made: (1) among the four  alphabet sets, the  amino 
acid and exchange group alphabets gave a much higher 
predictive accuracy (83-89%) than did the hydrophobic- 
ity alphabets (58-76%),  with a2 (bigrams of amino acid) 
and e3 (trigrams of exchange group) being the best two 
encoding methods; (2) important n-gram patterns can be 
concatenated into  one long input vector to improve pre- 
diction  results, such as the  concatenation of the  a1 
(monograms of amino acid), a2, el (monograms of  ex- 
change group), e2 (bigrams of exchange group), and e3 
patterns in cat1 encoding (Wu  et al., 1991a); and (3) pre- 
diction results (i.e., classification scores) from best per- 
forming encoding modules can be combined with an 
averaging function to improve the sensitivity and speci- 
ficity of the system (i.e., more patterns identified with 
fewer false positives) (Wu & Whitson, 1991). 

The input vectors  used  in  previous  studies  (Wu & Whit- 
son, 1991; Wu et al., 1991a)  were  essentially “count”vec- 
tors that represent the n-gram counts. However, the order 
information in the sequence string is not preserved. The 
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present  study  evaluates the  addition of a second  vector, 
the  “position” vector that  notes  the positions of n-gram 
patterns on the sequence. The value of each neuron in the 
position vectors is the average position of each n-gram on 
the sequence  string, scaled to  fall between 0 and 1. With 
the  two types of vectors, each n-gram  pattern  can be rep- 
resented  in  three ways: count vector  only,  position vec- 
tor only, and  both vectors.  Preliminary  studies  showed 
that  for most encoding methods, best prediction accuracy 
was obtained with both vectors,  followed by count vec- 
tor only,  then  position vector only  (unpubl.). 

This  study used 10 encoding  modules, with 5 encoding 
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methods  represented by count vector only, and  the  same 
5 methods  represented by both  vectors. The encoding 
methods  chosen  involve  the  concatenation of various 
amino  acid  and exchange group  patterns. These are  a2, 
ae12 (al ,  a2, e l ,  and e2 concatenated), a2e2 (a2  and e2), 
a2e3  (a2 and e3), and ae123 (al,  a2,  el, e2 and e3). The 
10 encoding  modules thus  are  a2, ae12,  a2e2,  a2e3, and 
ae123, which use count vectors, and  ba2,  bael2, ba2e2, 
ba2e3, and bae123, which use both vectors. Tables 2  and 
3  summarize  the  training  and  prediction  results, respec- 
tively, for  the various encoding modules after training for 
800 iterations. 

Table 2. Training summaries of the four database modules after 800 iterations 

Database 
module 

EO 

TR 

HY 

LI 

Encoding 
method 

a2 
a2e2 
ae12 
a2e3 
ae 123 
ba2 
ba2e2 
bael2 
ba2e3 
bae 123 

a2 
a2e2 
ae12 
a2e3 
ae123 
ba2 
ba2e2 
bael2 
ba2e3 
bae 123 

a2 
a2e2 
ae12 
a2e3 
ae123 
ba2 
ba2e2 
bae 12 
ba2e3 
bae 123 
a2 
a2e2 
ae12 
a2e3 
ae123 
ba2 
ba2e2 
bae  I2 
ba2e3 
bae123 

___” 

Network 
configuration: 

input x hidden X output 
- 

400 x 200 x I48 
436 x 200 x 148 
462 x 200 x 148 
616 x 200 x 148 
678 x 200 x 148 
800 x 200 x 148 
872 x 200 x 148 
924 x 200 x 148 

1,232 x 200 x 148 
1,356 x 200 x 148 

400 x 200 x 157 
436 x 200 x 157 
462 x 200 x 157 
616 x 200 x 157 
678 x 200 x 157 
800 x 200 x 157 
872 x 200 x 157 
924 x 200 x 157 

1,232 x 200 x 157 
1,356 x 200 x 157 

400 x 200 x 178 
436 x 200 x 178 
462 x 200 x 178 
616 x 200 x 178 
678 x 200 x 178 
800 x 200 x 178 
872 x 200 x 178 
924 x 200 x 178 

1,232 x 200 x 178 
1,356 x 200 x 178 

400 x 200 x 137 
436 x 200 x 137 
462 x 200 x 137 
616 x 200 x 137 
678 x 200 x 137 
800 x 200 x 137 
872 x 200 x 137 
924 x 200 x 137 

1,232 x 200 x 137 
1,356 x 200 x 137 

Number of 
connections 

109,600 
116,800 
122,000 
152,800 
165,200 
189,600 
204,000 
214,400 
276,000 
300,800 

11 1,400 
118,600 
123,800 
154,600 
167,000 
191,400 
205,800 
216,200 
277,800 
302,600 

115,600 
122,800 
128,000 
158,800 
171,200 
195,600 
210,000 
220,400 
282,000 
306,000 
107,400 
114,600 
119,800 
150,600 
163,000 
187,400 
201,800 
212,200 
273,800 
298,600 

Cray CPU 
time 
6) 

7,766 
8,325 
8,668 

10,732 
11,614 
13,305 
14,340 
15,225 
19,260 
21,021 

5,546 
5,902 
6,134 
7,571 
8,187 
9,491 

10,000 
10,508 
1 3,404 
14,624 
6,710 
7,096 
7,372 
9,092 
9,754 

11,154 
12,013 
12,629 
16,041 
17,515 
3,666 
3,918 
4,101 
5,161 
5,429 
6,186 
6,664 
7,009 
9,384 
9,909 

- -~ 

RMS 
error 

0.4384 
0.4257 
0.1897 
0.3742 
0.2472 
0.3416 
0.2202 
0.2243 
0.2543 
0.1896 

0.3313 
0.3429 
0.2019 
0.3926 
0.2607 
0.2980 
0.2286 
0.2229 
0.2892 
0.2846 
0.3722 
0.3510 
0.2255 
0.4546 
0.2695 
0.2966 
0.2653 
0.1817 
0.3146 
0.2045 
0.4108 
0.3817 
0.2770 
0.3663 
0.2478 
0.2628 
0.2770 
0.2700 
0.3096 
0.1959 

Trained  patterns: 
number  trained/total (070) 

450/557 (80.79) 
458/557 (82.23) 
537/557 (96.41) 
479/557 (86.00) 
523/557 (93.90) 
492/557 (88.33) 
530/557 (95.15) 
529/557 (94.77) 
521/557 (93.54) 
537/557 (96.41) 
341/383 (89.03) 
338/383 (88.25) 
368/383 (96.08) 
324/383 (84.60) 
357/383 (93.21) 
349/383 (91.12) 
363/383 (94.78) 
364/383 (95.04) 
351/383 (91.64) 
352/383 (91.91) 

392/455 (86.15) 
399/455 (87.69) 
432/455 (94.95) 
361/455 (79.34) 
404/455 (88.79) 
415/455 (91.21) 
423/455 (92.97) 
440/455 (96.70) 
410/455 (90.1 1) 
436/455 (95.82) 
217/261 (83.14) 
223/261 (85.44) 
241/261 (92.34) 
226/261 (86.59) 
245/261 (93.81) 
243/261 (93.10) 
241/261 (92.34) 
241/261 (92.34) 
236/261 (90.42) 
25 1 /26 1 (96.17) 
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Table 3. Prediction summaries of the system with four database modules after 800 iterationsa 
____ 

Encoding 
method 

a2 
a2e2 
ae12 
a2e3 
ae123 
ba2 
ba2e2 
bael2 
ba2e3 
bae 123 
Avg. 
a e 1 2 ~  
ae123b 
Avg. 

_ _ _ _ ~  

CPU 
time 

6 )  

43 
46 
49 
59 
63 
71 
77 
81 

I06 
123 

_____~ 

Accuracy at 0.01 

TC (070) IC (070) UN (070) 

80.28 15.45 3.86 
79.67 12.80 7.32 
90.04 9.35 0.61 
79.88 14.63 5.28 
87.40 10.16 2.44 
83.94 8.94 6.91 
86.38 7.52 6.10 
87.60 11.59 0.81 
85.57 9.15 5.28 
87.20 9.55 3.25 
90.04 7.93 1.83 
84.15 15.24 0.61 
83.94 13.62 2.44 
85.57 12.60 1.83 

TC (070) 

74.59 
73.17 
79.27 
73.17 
79.88 
75.20 
78.66 
78.05 
77.64 
78.05 
80.69 
78.66 
79.47 
80.49 

Accuracy at 0.3 

IC (070) UN (070) 

1.02 24.39 
1.42  25.41 
1.83 18.90 
0.41 26.42 
0.81 19.31 
0.81  23.98 
0.81 20.53 
1.02 20.93 
1.22 21.14 
0.81 21.14 
1.02 18.29 
2.44 18.90 
I .22 19.31 
1.22 18.29 

TC (070) 

62.40 
61.18 
68.29 
62.40 
69.31 
61.99 
67.68 
66.87 
66.26 
67.07 
67.28 
68.29 
69.31 
67.28 

Accuracy at 0.9 

IC (070) UN (070) 

0.20 37.40 
0.20 38.62 
0.00 31.71 
0.00 37.60 
0.00 30.69 
0.61 37.40 
0.41 31.91 
0.61 32.52 
0.41 33.33 
0.41 32.52 
0.00 32.72 
0.00 31.71 
0.00 30.69 
0.00 32.72 

- 

a The predictive accuracy is shown at  three threshold values, 0.01,0.3,  and  0.9,  and expressed with three  terms: TC (the percentage of total cor- 
rect patterns),  IC  (the percentage of incorrect patterns),  and UN (the percentage of unidentified patterns).  The  total  number of correct  patterns 
is the  total of correct  first-fit,  second-fit,  and  third-fit  patterns.  The  average (Avg.) encoding method used the combined outputs of the ae12 and 
ae123 encoding  methods. 

Only  correct  first-fit  patterns  are  counted  as  correct  patterns. 

Convergence speed 
The choice of encoding  methods  greatly  affects  the 

convergence  speed of the  network.  After 800  iterations, 
the  encoding  modules converged to a tolerance level of 
between 0.18 and 0.45 RMS error, with the percentage of 
trained  patterns  ranging  from 79 to  97% (Table 2). Be- 
cause  the RMS error is directly  related to  the percentage 
of trained  patterns (Fig. l),  the latter is used as  an indi- 
cator  of  the convergence  speed. To  compare  the conver- 
gence speed of various  encoding  methods, the percentage 
of  trained  patterns  of each  method was calculated by 
adding  the  total number of trained  patterns from all four 
database  modules  and dividing by the  number of train- 
ing patterns (i.e., 1,656). The resulting  percentages  of 
trained  patterns  for  the 10 encoding  methods  in descend- 
ing order were 95.3, 95.2, 95.1, 94.0, 92.3, 91.7, 90.5, 
85.6,  84.5, and 83.9,  respectively, for  ae12,  bae123, 
bael2, ba2e2, ae123, ba2e3,  ba2,  a2e2, a2,  and a2e3. It 
appears  that (1) encoding  methods  that  incorporated  a1 
and  el n-gram  patterns  (i.e., ae12 and ae123) converged 
faster,  and (2) in  general,  methods that used both  count- 
ing and position  vectors converged faster  than  those  that 
used only  count vectors. 

Predictive  accuracy 
The weight files generated  after 800 iterations were 

used for prediction. The predictive accuracies were mea- 
sured  at  threshold  values  ranging  from 0.01 to  0.9.  The 
threshold is a cut-off level for  the classification  scores, 
above which the  superfamily  identification is made.  At 
lower  threshold  values,  more  superfamilies were identi- 
fied, which resulted in a higher sensitivity (more  true pos- 

itives), but a  lower  specificity (more  false positives). 
Figure  2  shows  the  effect of threshold on  the sensitivity 
and specificity. At a low threshold of 0.01, more  than 
90%  of  the  prediction  patterns were correctly  classified, 
with 9% false positives. On  the  other  hand,  at a high 
threshold of 0.9,  although only 68%  of  the  patterns were 
correctly classified, the false positive was completely elim- 
inated.  When  both sensitivity and specificity are consid- 
ered,  the 10 encoding  methods  ranked  from best to worst 
are ae12, ae123, ba2e2, bael2, bae123, ba2e3,  ba2, a2, 
a2e2, and a2e3 (Table 3). Generally, a low degree of train- 
ing (especially below 90%  training) results  in  a low pre- 

100 ~Q"".."".... D...".."""~""""~" 
""""" 

95- ,p---- 
SPECIFICITY 

a ( . , . . ,  . . . . . . . . . . . . . . . . . . . . .  , , , .  

0 0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 I 

THRESHOLDS 

Fig. 2. The  effects of threshold on the sensitivity and specificity of Pro- 
CANS classification illustrated by the ae12 encoding method.  The sen- 
sitivity is the percentage of total  correct  patterns;  the specificity is 
1 - the percentage of total incorrect patterns. 
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dictive accuracy, as found in a2, a2e2, and a2e3. The 
performance of these  encoding  methods is improved  with 
the addition of position vectors (Le., ba2, ba2e2, and 
ba2e3)  because methods that use both counting and po- 
sition vectors generally converge faster. On the other 
hand,  a high  degree  of training does not necessarily  give 
better prediction. For instance, ae123,  which is 92.3% 
trained, predicts better than bae123, which is 95.2% 
trained. Overall, ae12 and ae123 are considered the best 
encoding modules due  to their high predictive accuracy, 
fast convergence rate, and small network size. The small 
network size makes them faster to train  and classify, as 
shown below. The  output values  of  ae12 and ae123 en- 
coding modules can be combined  (i.e.,  averaged) to 
slightly increase the sensitivity and specificity (Table 3). 
The predictive accuracy discussed above is based on the 
criteria defined in the Materials and methods section, 
with the  number of correct patterns being the total of cor- 
rect first-fit, second-fit, and third-fit patterns. The  results 
obtained by using only first-fit as correct patterns are 
similar at higher thresholds of 0.3 and 0.9, but the sen- 
sitivity is lowered from 90 to 85% at a low threshold of 
0.01 (Table 3). 

CPU time for  training  and classification 

The central processing unit (CPU) time for both training 
and classification is directly proportional to the number 
of neural interconnections and  the number of patterns, 
the training time is also directly related to the number of 
iterations. In the present network model, all neurons are 
fully connected in a  forward fashion (i.e., feed-forward 
network). Thus,  the  total number of neural connections 
of the network is the total number of connections  between 
the input and hidden  layers and the connections between 
the hidden and  output layers. This can be  expressed  by: 

12 
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Fig. 3. The  relationships  between  the  number of neural  interconnections 
and  the  training  and classification time illustrated by the EO database 
module. The  training  time  shown  is for 557 patterns  with 800 iterations; 
the classification time shown is for 492 patterns. 

total connections = (number of input units x number of 
hidden units) + (number of hidden units x number of 
output units). Figure 3 shows the linear relationship be- 
tween the number of neural connections and  the CPU 
time for  both training and classification. 

The  total training time of the current system, which 
consists  of four database modules and 1,656 training pat- 
terns, is 7.3 and 9.7 Cray CPU hours, respectively, for 
the ae12 and ae123 encoding methods. Although it takes 
a long time to train  a neural network, the classification 
is speedy because it involves only  a  forward-feeding 
through  the network. The classification time of the sys- 
tem is the  total classification time of all four  database 
modules. It takes 49 and 63 CPU seconds, respectively, 
to classify all 492 prediction patterns using the ae12 and 
ae123 encoding methods (Table 3). This averages to ap- 
proximately 0.1 CPU second  per pattern. 

Discussion 

ProCANS is an alternative to other  database search 
methods with two advantages. First, it  is a classification 
system that can directly aid database organization. Sec- 
ondly,  the classification is fast and is not constrained by 
the database size. The current system is capable of clas- 
sifying the superfamily of an unknown electron transfer 
protein or enzyme within 0.1 Cray CPU second with a 
more than 90% accuracy. As  with other search methods, 
the major task for superfamily identification is to distin- 
guish true positives from false  positives.  With the present 
system, 100% specificity (i.e., no false positives) can be 
achieved at a high threshold of 0.9, with a 68% sensitiv- 
ity. Therefore,  one can use ProCANS to screen a large 
number of unknown  protein sequences and give true 
identifications to more than two-thirds of the query se- 
quences quickly. The rapid and  accurate superfamily 
identifications provided by ProCANS would  be particu- 
larly  valuable to the organization of protein sequence da- 
tabases (e.g., the preliminary PIR  database with  12,837 
unclassified entries and the unverified PIR database with 
12,354 unannotated entries) and to the gene recognition 
in large sequencing projects. 

The  classification  time on  a full-scale  system  embedded 
with  all known superfamilies is estimated to be about 
four times that of the present system (well within one 
Cray CPU second), because the full  system is about  four 
times larger. (The current system  has 620 superfamilies 
trained with four  database modules, whereas the com- 
plete  system will have 2,589 superfamilies trained by  14 
database  modules.) Unlike other  search  methods, in 
which search time depends strongly on database size, the 
classification  time of ProCANS is expected to remain low 
even if there is a 10-100-fold increase of sequence  entries. 
This is because (1) although the number of  sequences  in 
the  database increases the number of superfamilies is 
likely to remain small, as most  sequences will  be  classi- 
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fied into  one of the  known  superfamilies  (Doolittle, 
1989), and (2) the classification time is directly propor- 
tional to the total number of neural connections, not the 
number of superfamilies. (As an example, given an ae12 
network configuration of 462 x 200 x 100, if the num- 
ber of superfamilies doubles, then the classification time 
would increase only 18% instead of 100Vo.) Training the 
network, however, is directly related to the number of 
training  patterns, so the time needed to  train each mod- 
ule will increase  considerably. Therefore, we  will continue 
to use the multiprocessor Cray  for training the system. 

ProCANS has two  useful products: a neural database, 
which consists of a set  of  weight matrices that embed su- 
perfamily information in the neural interconnections af- 
ter iterative trainings, and a system software that utilizes 
the neural database  for rapid protein classification. The 
encoding schema used  in  preprocessing makes the neural 
database essentially a neural network presentation of the 
lookup (hash) tables built from the protein sequence da- 
tabase.  The neural database and the system software can 
be ported to other  computer  platforms easily. We have 
implemented a back-propagation neural network system 
on  an intel iPSC hypercube, termed HANS (hypercube 
artificial  neural system) (Whitson et al., 1990). The 
weight  files trained on the Cray have  been ported to the 
hypercube and used to classify proteins successfully. 

The predictive accuracy of the current system is about 
90%, which is slightly lower than  that of the FastA  da- 
tabase search method (Pearson & Lipman, 1988).  (A  sys- 
tematic  comparison of ProCANS with other  search 
methods including FastA and BLAST [Altschul et al., 
19901  is being conducted  and will be published else- 
where.) The accuracy is expected to increase with an en- 
hanced encoding method and/or neural network design 
and with  increased database entries for training. With the 
modular  architecture, it is easy to incorporate  other en- 
coding  schemes without affecting the present  system.  The 
accumulation of more sequence entries in the  PIR  data- 
base should improve accuracy because more patterns 
would  be available for network training,  and it was ob- 
served that only one single  closely  related training pattern 
is required for the unknown entry to be classified with a 
high classification score (unpubl.).  The network should 
have enough capacity to hold the  information embedded 
in the training patterns even  with a 10-100-fold increase in 
the sequencing data.  A typical ae12 network module in 
the present  system  has  approximately  120,000 neural inter- 
connections (i.e., weights). With an average of  300-500 
training  patterns used for each network,  the present 
weight matrices are quite sparse. In  fact, it has  been sug- 
gested that a back-propagation network can average 10 
patterns per  weight  (Weiss & Kulikowski, 1991). 

The  ProCANS system can be updated easily to reflect 
the growth of the  database by retraining the neural net- 
works. The system can also be adapted for other protein 
classification schemes. For example, the new proposed 

scheme for  PIR database organization according to align- 
ment groups,  rather  than superfamilies (Barker et al., 
1990), can be  readily  implemented  with the ProCANS de- 
sign. The same design concept has been extended to the 
classification of  nucleic  acid  sequences. A preliminary  re- 
sult showed a 92% accuracy for RNA classification by 
using a pentagram encoding for ribonucleotides (unpubl.). 

Materials and methods 

ProCANS design 

ProCANS was designed to embed superfamily informa- 
tion from the PIR  database  and used as an associative 
memory to classify proteins based on  the underlying in- 
formation contents. The system  employs  two  design prin- 
ciples  (Wu et al., 1991b):  (1) sequence encoding schema 
(used  in the preprocessor) to extract information from the 
sequence  string  without  knowing  what  kind of features in 
the underlying training data set are recognized by the net- 
work,  and (2) modular network architecture (used in the 
neural network  classifier) to allow the scaling-up of back- 
propagation networks for the processing  of large and 
complex molecular databases. 

Sequence  encoding schema 
The sequence encoding schema has three major com- 

ponents: (1) sequence interpretation, to interpret each se- 
quence string with several different biological meanings 
for maximal information retrieval; (2) n-gram extraction, 
to extract patterns from sequence strings; and (3) pattern 
transformation, to convert the n-gram patterns to real- 
valued input vectors. 

Sequence interpretation 
Each amino acid residue of the sequence string can be 

attached with various biological meanings and repre- 
sented by different  alphabet sets. The alphabet sets of 
ProCANS include amino acids (20 letters), exchange 
group (6 letters), structural  group (3 letters), and hydro- 
phobicity group (2 letters). The six exchange groups  are 
derived from the PAM (percent accepted mutations) ma- 
trix, which represents the conservative  replacements found 
in homologous sequences through evolution (Dayhoff, 
1972). The two hydrophobicity groups, hydrophobic and 
hydrophilic, and the three structural groups, ambivalent, 
external,  and  internal, are adopted  from Karlin et al. 
(1989). 

The n-gram extraction 
In other studies that use neural networks (e.g., Qian & 

Sejnowski, 1988; Lapedes et al., 1990),  each amino acid 
(or nucleotide) residue of the sequence string is repre- 
sented by an indicator vector  of  20 (or 4) input units. The 
length of the  input vector, thus, is  20 x n (or  4 x n) ,  
where n is the total number of residues  in the string. The 
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major  advantage of such representation is the preservation 
of  the sequence  of residues along  the sequence  string. 
This representation, however, is not suitable for detecting 
sequence  similarities where long and varied-length se- 
quences are  to be compared.  The key element  of the se- 
quence  encoding  schema  presented  here is a  hashing 
function, called the  n-gram  extraction method,  that was 
originally used by Cherkassky  and Vassilas  (1989) for  as- 
sociative database retrieval. The n-gram extraction method 
extracts  various  patterns  of  n  consecutive residues from 
a sequence string and gives the number of occurrences of 
all possible letter  pairs,  triplets,  etc. The  total number of 
possible patterns  from each  n-gram  extraction is m", 
where m is the number of different letters in an alphabet. 
The concept  of the n-gram  method is similar to  that  of 
the k-tuple method.  The  latter has been successfully ap- 
plied to sequence  analyses,  such  as the  comparison of k- 
tuple  locations  for  database search  (Lipman & Pearson, 
1985) and  the statistical  analysis of k-tuple patterndfre- 
quencies for sequence discrimination and analysis (Karlin 
et  al., 1989; Claverie et al., 1990). The hashing  function 
has several advantages: (1)  it  is sequence length invariant; 
(2) it is residue  insertion and deletion  invariant; (3) it 
allows classification based on localized regions of simi- 
larity; and (4) it does  not  depend upon  the a priori rec- 
ognition of certain specific patterns. 

Pattern transformation 
The  n-gram  patterns  are  transformed  into real-valued 

input vectors, with each unit of the vector (input  neuron) 

C. Wu et al. 

representing an n-gram.  The value of each  neuron is the 
product  of  the  n-gram  count  and weight, scaled to fall be- 
tween 0 and  l.  The  count is the  number of times the n- 
gram  appears in the sequence  string. The weight of  each 
amino  acid is the  measure of its  frequency of occurrence 
in  nature. 

Modular network architecture 
It has been known  that  back-propagation networks do 

not scale up very well from small systems to large  ones. 
A collection of small  networks,  however,  has been dem- 
onstrated to be an effective  alternative to large  back- 
propagation  networks  (Kimoto  et  al., 1990; Lendaris & 
Harb, 1990). The network architecture used involves two 
levels of modularization,  the  database  modularization 
and  the encoding  modularization (Wu et al., 1991b). 

Database modularization 
The training set derived from  the  PIR  database is bro- 

ken down to multiple sets according to functional  groups, 
with each set trained by a separate  network  module, 
called the  database  module (Fig. 4). The  protein  func- 
tional  groups  in  the  PIR  database  include  the  electron 
transfer  proteins,  the six enzyme  groups, enzyme inhibi- 
tors,  growth  factors,  hormones, toxins, immunoglobulin- 
related  proteins,  heme-carrier  proteins,  chromosomal 
proteins,  ribosomal  proteins,  fibrous  proteins,  contrac- 
tile system proteins,  lipid-associated  proteins,  organelle 
proteins, membrane  proteins, bacterial proteins, bacterio- 
phage  and plasmid  proteins,  and viral proteins. 

Protein  Classification  Artificial Neural System 

Database  Module 1 (EO) 

1 

2 

148 
Amino ~ ~ s ~ ~ r  Input Layer Hi&nhyer Output ~ a y m  

Sequence Acid -I Database  Module 2 (TR) 

Input Layer Hidden Layer Output Layer 

Database  Module 3 (HY) 

I Database  Module 4 (LI) 

Postprocessor protein - superfamily 

Fig. 4. The  database  modularization of ProCANS. 
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Encoding modularization 
The sequence encoding performed by the preprocessor 

results in a large number of input neurons. The large in- 
put vector  will  be  decomposed into multiple  vectors,  each 
corresponding to one or a few n-gram extractions and 
trained by a separate encoding module (Fig. 5 ) .  

ProCANS implementation 

The  ProCANS system software has three components: a 
preprocessor program to create from input sequence  files 
the training and prediction patterns,  a neural network 
program to classify input patterns,  and  a postprocessor 
program to summarize classification results and  report 
superfamily identifications (Wu et al., 1991a). All three 
programs have  been implemented on the CRAY Y-MP 
81864 supercomputer of the  UTCHPC (University of 
Texas, Center for High Performance  Computing). 

The neural network program, termed  CANS (Cray Ar- 
tificial Neural System), is a set of programs and  subrou- 
tines intended to be a tool for developing neural network 
applications. A CANS interface program serves as an au- 
tomated neural network generator using  user-defined pa- 
rameters. The main driver makes calls to appropriate 
drivers for different learning algorithms, including back- 
propagation, competitive learning (Rumelhart & Zisper, 
1986), Hopfield, and Kohonen (Wasserman, 1989). The 
user-input parameters include network configurations 
(number of neurons for each layer), network parameters 
(learning factor, momentum term, bias term, error thresh- 

old, number of iterations,  and maximum runtime), and 
weight matrix option (initialization with random weights 
or normally distributed random weights,  reading from a 
weight file, or prediction  with  trained  weights).  The  back- 
propagation  program module contains,  among  other 
routines, a back-propagation module for training, a clas- 
sification  module for prediction, and utility programs for 
weight initialization and saving. 

Neural network model 

The neural network used in this research is a three-layered, 
feed-forward network that employs a back-propagation 
learning algorithm. The three layers are: one  input layer 
to provide input information, one output layer to collect 
output, and one hidden layer to capture  information in 
nonlinear parameters. The functions used  in the neural 
network model are discussed  below (Rumelhart & Mc- 
Clelland, 1986). 

Feed-forward calculation 
Feed-forward calculation (change of state function) is 

used to determine the output of each neuron (Equations 
1 and 2). The net input to each neuron is given by 

neti = O,K,, 
.i 

where 0, represents the output from the neuronj in the 
preceding  layer and w, represents the connection weight 

Database Module 1 (EO) 

Encoding Module 1 (A2) 
1 1 

AA 1 
AC 2 

w loIl 

Amino PreProcessor 
Acid 

Sequence Encoding Module 2 (E3) 

1 1 
111 1 
112 2 

1 

666 
216 148 

148 

PostProcessor Protein - Superfamily 

Fig. 5. The encoding modularization of ProCANS. 
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between neurons i and j .  The  output  from each neuron 
is  given  by 

where 0 is a bias term,  and f is a nonlinear activation 
(squashing) function. 

Back-propagation learning 
Back-propagation learning  applies the generalized  delta 

rule to recursively calculate the error signals and  adjust 
the weights (Equations 3-7). The  error signal at  the  out- 
put layer is  given  by 

Ai = f ’ (net;)(T,  - Oi) ,  (3) 

where T, is the target value, andf ’ (ne t i )  is the first de- 
rivative of the activation (squashing) function, which can 
be described by 

f ’ (ne t j )  = O;(l - Oi). (4) 

The  error signal at the hidden layer is  given  by 

The error signals are then used to modify the weights  with 
the following: 

where r]  is the learning rate and a is the momentum term. 

Learning control 
The error function that back-propagation minimizes  is 

a sum square error function, which  is a function of  weights; 
and back-propagation is  really just a gradient descent ap- 
plied to this function (Equation 8) 

where p represents training patterns. 
The weights are iteratively modified for every pattern 

being read in until the system is converged to the toler- 
ance or until a fixed upper limit on the epochs is reached. 
The tolerance is a user-defined  value of RMS error, which 
is the  square  root of the sum square  error (E) calculated 
from all patterns across the entire training file. 

ProCANS evaluation mechanism 

The main criterion used to evaluate the performance of 
ProCANS is the classification  accuracy for the prediction 

patterns. During the prediction phase, each pattern is 
classified on all four database modules. The values of the 
620 output units represent the classification scores of the 
620 superfamilies. The classification score ranges from 
1 .O (perfect match) to 0.0 (no match). Superfamilies of 
the three highest  scores are identified as the first-fit, sec- 
ond-fit, and third-fit. The predictive  accuracy is expressed 
with three terms: the  total number of correct patterns 
(true positives), the total number of incorrect patterns 
(false  positives), and the total number of unidentified pat- 
terns (false  negatives). A protein entry is considered to be 
accurately classified if one of its three best  classifications 
matches the target value (the known superfamily number 
of the entry) with a classification score above a certain 
threshold. Thus, the total number of correct patterns is 
the total of correct first-fit, second-fit, and third-fit pat- 
terns. Three best fits are chosen because many proteins 
are composed of multiple domains that may  be arbitrarily 
classified into different superfamilies, and even homol- 
ogous domains may be placed in different superfamilies 
(Barker  et al., 1990). The  predictive  accuracy is  measured 
at threshold values  ranging from 0.01 (low stringency) to 
0.9  (high  stringency)  in  terms  of  sensitivity and specificity. 
The sensitivity is the percentage of total correct patterns; 
the specificity is 1 - the percentage of total incorrect pat- 
terns. 
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