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Abstract 

Recently we developed methods for  the construction of knowledge-based mean fields from  a data base of known 
protein structures. As shown previously, this approach can be used to calculate ensembles of probable  confor- 
mations  for short fragments of polypeptide chains. Here we develop procedures for  the assembly of short frag- 
ments to complete three-dimensional models of polypeptide chains. 

The amino acid sequence of a given protein is decomposed into all possible overlapping fragments of a given 
length, and  an ensemble of probable  conformations is calculated for each fragment.  The fragments are assem- 
bled to a complete model by choosing appropriate  conformations  from  the individual ensembles and by averag- 
ing  over equivalent angles. Finally a consistent model is obtained by rebuilding the conformation from the average 
angles. From  the average angles the local variability of the  structure can  be calculated, which  is a useful criterion 
for the reliability of the model. 

The procedure is applied to  the calculation of the local backbone  conformations of myoglobin and lysozyme 
whose structures have been solved by X-ray analysis and thymosin &, a polypeptide of 43 amino acid residues 
whose structure was  recently investigated by NMR spectroscopy. We demonstrate that substantial fractions of the 
calculated local backbone  conformations  are similar to the experimentally determined structures. 

Keywords: knowledge-based prediction; molecular force field; protein folding; protein modeling; statistical 
mechanics 

The calculation of polypeptide and protein conforma- 
tions from  amino acid sequences belongs to the most in- 
teresting problems in molecular biology. A wealth of 
information on protein systems  has  accumulated from ex- 
perimental and theoretical studies but in spite of enor- 
mous  efforts the problem is still unsolved. 

Folding and unfolding of many protein chains are re- 
versible processes that can be induced by changing the 
physical parameters of the environment. This has been 
demonstrated 30 years ago on ribonuclease (Anfinsen, 
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1973) and has  been subsequently confirmed on  a number 
of different proteins. From these studies the conclusion 
has  been drawn that the folding of protein chains depends 
solely on  the  amino acid sequence and the surrounding 
solvent and  that  the native state corresponds to the min- 
imum of the free energy of the protein-solvent system, 
which  is  accessible  in the  approach to equilibrium. 

In principle it should be possible to simulate the pro- 
tein-solvent system  by suitable energy functions or mo- 
lecular force fields. Over the last two decades a number 
of attempts have been made to calculate native three- 
dimensional protein folds from  amino acid sequences. 
Many of these approaches rely on  a seemingly  simple  rec- 
ipe  involving two problems: (1) construction of a suitable 
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molecular force field for  the protein-solvent system and 
(2) search for the global minimum on the molecular en- 
ergy surface. 

Several  semiempirical force fields have  been  developed 
that  are used  in macromolecular modeling studies (e.g., 
Weiner & Kollman, 1981; Burkert & Allinger, 1982; 
Brooks et al., 1983; van Gunsteren et  al., 1983; Carson 
& Hermans, 1985). Most of these force fields are based 
on Coulomb’s law for electrostatic forces, the Lennard: 
Jones potential  as a model of core repulsion, and Van der 
Waals interactions and harmonic and periodic terms for 
covalent interactions and  rotatable  bonds, respectively. 
These force fields are important tools for the study of the 
stability and motions of macromolecular  systems  in  vacuo 
but the simulation of solvent effects still  poses an enor- 
mous problem. 

Recently we presented a novel approach  for  the con- 
struction of a knowledge-based molecular force field 
based on the compilation of potentials of  mean force 
from  a  data base of known protein structures (Sippl, 
1990). A major strength of these potentials is that they 
contain all forces that stabilize the native states of solu- 
ble proteins including solvent effects. 

We demonstrated that this force field can be  used to 
model the complex conformational behavior of peptide 
fragments (Sippl, 1990), and we have shown that the 
force field is able to identify the native fold of a large 
number of globular proteins among several thousand al- 
ternatives  (Hendlich  et al., 1990;  Sippl & Weitckus,  1991). 
The results indicate that this approach provides a reason- 
able model for protein-solvent systems and  therefore 
could be  used for the calculation of protein folds from 
amino acid sequences. 

To reach this goal we have to concentrate on several 
theoretical and technical problems. A  major technical 
problem is the search for the global minimum on the mo- 
lecular energy surface. An exhaustive search of the con- 
formational space of a polypeptide is computationally 
prohibitive, and therefore it is necessary to develop alter- 
native procedures. 

A very promising route  for the development of effi- 
cient algorithms is to search the  data base of known pro- 
tein structures for possible models  of an unknown fold. 
We have shown,  that the knowledge-based mean field is 
able to correctly identify globin folds for the most  dis- 
tantly related globin sequences even if the force field is 
constructed from a data base devoid of globins (Sippl & 
Weitckus, 1991).  Recently we have  generalized this ap- 
proach by allowing  gaps in the sequence and/or structure 
(unpubl.). 

It is clear, however, that in spite of the growing data 
base of known structures the unknown fold of a given  se- 
quence will,  in  many cases, have no counterpart in the 
data base. In such cases the unknown fold has to be con- 
structed from scratch. In  the present study we develop 
and apply procedures that can be  used to construct back- 

bone conformations from the conformational preferences 
of short fragments. 

Our strategy is to calculate  ensembles  of probable con- 
formations for short overlapping  fragments along the en- 
tire protein sequence. The fragments are assembled to a 
complete three-dimensional model by choosing appro- 
priate conformations  from  the ensembles.  Because the 
preferred conformation of isolated short fragments are 
determined from interactions within the fragment, the re- 
sulting model is optimized with  respect to the local inter- 
actions only. 

We apply the procedures to the calculation of the lo- 
cal backbone conformations of myoglobin and lysozyme 
whose structures are known from X-ray analysis and to 
thymosin p4, a polypeptide of 43 amino acids whose 
conformational preferences have been determined by 
NMR methods, and we show that  the results of our cal- 
culations agree  with  many of the local structural features 
of these molecules. 

Mean force potentials 

We briefly  review  the  concepts  used to compile the poten- 
tials of mean force from  a  data base of known protein 
structures and the  calculation of ensembles for short pep- 
tides. A detailed account of the concepts involved is 
found in Sippl (1990) and Hendlich et al. (1990). 

The probability densityf( r )  of a particular interaction 
is approximated by the relative frequencies g ( r )  of the 
corresponding interatomic distances. The distances are 
sampled  in  intervals r from a  data base of known protein 
structures (Bernsteiri et al., 1977). The potentials are ob- 
tained from the inverse Boltzmann law  by 

E F b d ( r )  = -ksTIn[gFbd(r)] - kBTIn [ZFbdl,  (1) 

where a and b denote amino acids, c and d correspond to 
specific atoms of a and b (e.g., a = Ala, c = N of Ala, 
and b = Val and d = CB of Val), k is the separation of a 
and b along the amino acid  sequence (or structural level), 
and ks and  T  are Boltzmann’s constant  and  absolute 
temperature, respectively.  Zpb  is the Boltzmann sum or 
partition function of the potential. 

To use the potentials consistently we have to introduce 
an appropriate reference state. We are interested in the 
relative energies  of polypeptide conformations with  re- 
spect to one particular sequence. In this case the appro- 
priate reference state is the probability density averaged 
over all amino acid pairs. Thus, the potential of mean 
force of the reference state is 

where g z d ( r )  is relative frequency of atoms c and d as a 
function of distance r ,  and Z‘T~ is the corresponding 
partition function. Note that the reference state is defined 
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as  an average over all types  of amino acid pairs but not 
over atom types or different values  of k. 

We obtain the specific interactions between two atoms 
c and d of amino acids a and b of sequential separation 
k by subtracting the reference state energy from the po- 
tential of mean force 

AEFbd(r )  = E F b d ( r )  - E z d ( r )  

This is the net potential of mean force with  respect to the 
average conformation in the  data base (Sippl, 1990). 

The problem of sparse data is treated as reported pre- 
viously (Sippl, 1990). 

AEFbd(   r )  = -k,T In [ 1 + 

ma,b is the  absolute frequency of the  amino acid pair 
(a ,  b )  with sequential separation k in the  data base, and 
u controls  the relative weight  of one measurement with 
respect to the reference state. CFbd, which  is indepen- 
dent of the  conformational variable s, contains the par- 
tition functions ZFbd and Z z d ,  which are constants for 
a given temperature. 

The calculation of the  total net  energy AE( S ,  C )  of an 
amino acid sequence S in a particular conformation C is 
straightforward once the net potentials of mean force 
have been compiled from the data base. The distance in- 
tervals r for all atom-atom pairs are calculated from  the 
distances of conformation C, the net energy is obtained 
from the associate potentials, and  the sum over all these 
individual interactions yields the  total net  energy: 

A E ( S , C )  = C A E F b d ( r j j ) ,  
ij 

where a,  b,  c,  d, and k are  functions of the atom indices 
i and j .  

Calculation of probable conformations 
for short fragments 

The identification of probable  conformations  for  a  par- 
ticular amino acid sequence requires a search for low 
conformational energies on the potential surface E( S ,  C )  
as a function of the conformational variables of C. In the 
case of oligopeptides the problem can be  solved efficient- 

ly. Our strategy uses a pool of conformations C,, p = 
1, . . . , N prepared from the proteins in the data base. A 
protein of  sequence  length L contains L - 1 + 1 fragments 
of length I, so that  for small 1 we obtain  a considerable 
number of different conformations. For 1 < 10 the current 
data base yields on the order of N = 20,000 fragments. 

Once the pool is constructed from the data base, prob- 
able  conformations  are identified as follows. The se- 
quence of interest, S ,  is mounted on all conformations 
C,,p = 1, . . . , N in the pool and  the associated total net 
energies AE( S ,  C,) are calculated (Equation 5) .  Now the 
pool is equivalent to a statistical ensemble of identical 
peptides  folded up in a variety of conformations. We ob- 
tain the most probable conformations of S by skimming 
off the conformations of  lowest  energy from the pool. In 
a last step the ensemble of most probable conformations 
is clustered in terms of conformational similarity. For 
ease  of reference the summary of these procedures re- 
quired to calculate ensembles  of probable conformations 
is called the Boltzmann Device (Sippl, 1990). 

The  data base of protein conformations used to com- 
pile the potentials and to prepare the pool of conforma- 
tions consists of 98 individual protein chains extracted 
from the Brookhaven Protein Data Bank. The potentials 
of mean force are sampled  as discrete functions. In view 
of the sparse data sets, we used a grid  of 20 intervals, 
which  is sufficient to sample the main features of the po- 
tentials. As in our previous study, u, the weight  of one 
measurement, was  set to 1/50, and R T =  0.512 kcal/mol 
(Hendlich et al., 1990; Sippl, 1990). 

In the present study the molecular force field consists 
of the 25 interactions among the  atoms N, C", C', 0, 
and CO. Because there are 400 pairs of amino acids, we 
have a  total of 25 x 400 = 10,000 potentials on a partic- 
ular level k. Polypeptides of sequence length 1 consist of 
1 - 1 structural levels k,  so that energy calculations on 
hexapeptides involve on the  order of  50,000 individual 
potentials. 

With the exception of the C' atoms, the force field 
used in this study does not contain any side chain atoms 
and is therefore incomplete. However, the mean force 
potentials of the backbone atoms to a considerable  extent 
capture the behavior of the associated side chain interac- 
tions. Nevertheless, the neglect  of  explicit  side chain in- 
teractions must  be taken into account when interpreting 
the results. 

Strategies to connect fragments contained 
in ensembles of overlapping peptides 

The basic assumption in our  approach is that  the struc- 
tures  contained in the ensembles calculated from  the 
Boltzmann Device reflect the conformational preferences 
of short  fragments.  Combinations of such fragments 
along the entire amino acid sequence should therefore 
yield a model structure that reflects the local  preferences, 
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i.e.,  a-helix,  P-strand,  turns, and irregular  structures. 
However,  it is clear at  the  outset  that in  general  such 
models will not describe the overall  fold  because  nonlo- 
cal  interactions  are neglected. 

Nevertheless, locally  optimized  models  constitute the 
first  step  toward  the  calculation  of  complete  tertiary 
structures,  provided  that  such models to a  considerable 
extent resemble the local  backbone  structures  found  in 
native conformations. Obviously, subsequent refinements 
of locally optimized  models will be  most successful if 
large  parts of the local backbone  conformations  are  cor- 
rect and  if,  in  the absence of the  known  tertiary  structure, 
unreliable  parts  of  a  model can  be identified. 

Therefore,  the goals of the present study are (1) the de- 
sign of strategies that  can be used to assemble  complete 
backbone  conformations  from ensembles of overlapping 
fragments, (2) the development  of  criteria that  are help- 
ful  in  identifying  incorrect or unreliable  parts  of  the 
model  without  reference to known  native  folds, and (3) 
the  evaluation  of  the success of  the  methods  in  the  cal- 
culation  of locally optimized  models for  myoglobin, ly- 
sozyme, and  thymosin p4. 

Before we start, we have to  recall the complex  struc- 
tural  features of individual  ensembles (see Sippl [1990] 
for  the terminology used). Stable fragments contain a sin- 
gle type of conformation, whereas flip-flop,  metastable, 
and  unstable  fragments  contain a range  of  conforma- 
tions.  In  addition,  the  behavior  of  fragments  can  change 
dramatically when sliding along  the  amino acid sequence 
by a single residue, i.e., two  adjacent  fragments  can have 
completely  different structural preferences. 

Many of these features are illustrated by the ensembles 
calculated for 10 consecutive  overlapping  hexapeptide 
fragments of thymosin p4 corresponding to  the sequence 
Glu 21-Thr-Gln-Glu-Lys-Asn-Pro-Leu-Pro-Ser-Lys-Glu- 
Thr-Ile-Glu-Gln 36 (Fig. 1). Fragments 21 and 30 produce 
stable  a-helical  conformations, whereas the ensembles 
obtained  for  fragments 22-29 are  flip-flop (e.g., fragment 
22 preferring  turnlike  and  extended  conformations), 
metastable,  and  unstable.  The ensembles contain a  vari- 
ety of conformations including  &strands  (fragment 25) 
and turn-structures (e.g., fragments 27 and 28). The  con- 
formational preferences of  fragments 29 and 30 are  quite 
incompatible,  although  they  overlap by five residues. 

In view of this complexity many strategies are conceiv- 
able, which could  be used to  construct  complete  back- 
bone  conformations  from these ensembles. The design of 
such strategies basically involves two  operations  that have 
to be defined: (1) extraction of structural  information 
contained  in an individual ensemble and (2) combination 
of  this  information  for consecutive  fragments. 

Both  operations  can be  defined in a large  number of 
ways and  they  can be  implemented as interactive or  au- 
tomatic  procedures.  Here we present two fully automatic 
versions based on different  definitions  of the basic oper- 
ations.  The first  strategy uses rather  crude  and simple 

rules and  as a by-product yields a  measure of the  local 
variability of the resulting models. The second is a refine- 
ment of the  former. 

The  procedures will be  presented  along  the  following 
lines: We define the basic operations  for  the first strategy, 
illustrate the calculations involved using thymosin P4 as 
an example, and  compare  the results to model conforma- 
tions  derived from NMR  measurements.  In  addition we 
calculate  models for myoglobin and lysozyme and  com- 
pare  the results to  the known  X-ray  conformations. Fi- 
nally, we use an alternative set of rules, which yields an 
improvement in the quality of the local backbone  confor- 
mations. 

Basic operations 

The first  strategy uses the largest  cluster of an ensemble 
to  represent the  structural preferences of a  particular 
fragment.  In  the case of thymosin p4 residues 21-36, these 
are  the clusters in the left column  of  Figure 1. Individual 
clusters contain several closely related conformations. We 
define  the most  typical or average conformation  as  the 
central  conformation  in each cluster. The central  confor- 
mation is identified as  that  structure  that  has minimal 
root  mean  square (rms) error of spatial  superimposition 
(Sippl & Stegbuchner, 1991) to all other  conformations 
in  the cluster.  Hence, the  central  conformation in the 
largest  cluster is used to represent the  conformational 
preference  of  individual  fragments. 

This  definition yields a unique  structure  for  each  frag- 
ment,  and it is a  reasonable  choice  in  the  case of stable 
or metastable  fragments.  However, using this definition, 
a large amount of structural  information on flip-flop and 
unstable  fragments is discarded. 

The second operation involves the  combination of suc- 
cessive fragments  along  the  chain.  Two  adjacent  hexa- 
peptide  fragments  overlap by five amino acid  residues. 
Therefore,  any  two  adjacent  fragments  can be  joined to 
yield a consistent structure  for  the resulting heptapeptide, 
provided the  conformations  contained in the respective 
ensembles are superimposable in the overlapping regions. 
Once  the  heptapeptide is constructed we can proceed  in 
either the N- or  C-terminal direction by adding  the next 
hexapeptide  along the sequence. 

Figure 2 shows the  spatial  orientation of the  central 
conformations  obtained  from  the largest clusters of frag- 
ments 21-30 (Fig. 1) after superimposition of the overlap- 
ping  parts.  The  structures do  not fit  exactly on each 
other,  but it is obvious  that  the  superimposed aggregate 
starts with an a-helix  turn,  continues  into a relatively ir- 
regular extended structure,  and terminates in an a-helical 
turn. Figure 4 shows the  complete aggregate of thymosin 
p4 assembled from  the largest  clusters of all ensembles. 
Although  the aggregate consists of individual hexapeptide 
fragments, an overall model for  the thymosin P4 confor- 
mation is discernible. The  structure  starts with an N-ter- 
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Fig. 1. Ensembles of hexapeptide fragments 21-30 
of thymosin p4 calculated from  the Boltzmann De- 
vice (Sippl,  1990). The fragments cover the sequence 
Glu 21-Thr-Gln-Glu-Lys-Asn-Pro-Leu-Pro-Ser-Lys- 
Glu-Thr-Ile-Glu-Gln 36. Fragment 21, for example, 
corresponds to the hexapeptide Glu  21-Thr-Gln-Glu- 
Lys-Asn 26. Any two adjacent hexapeptides overlap 
by five residues. The ensembles contain the 30 con- 
formations of lowest  net  energy and they are repre- 
sented as clusters of similar conformations.  The 
clusters are ordered from left to right by decreasing 
size. Only the five largest clusters are shown. Note 
that some ensembles contain a single  type of confor- 
mation (e.g., ensemble 30), others  contain several 
clusters of rather similar conformations (e.g., ensem- 
bles 21 and 25), and some contain conformations of 
quite distinct type (e.g., ensembles 22 and 27). 

30 
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minal arm, followed by a long  kinked  a-helix. Then  the 
conformation continues into  an extended conformation, 
and residues 30-43 form a  C-terminal cy-helix. As can be 
inferred  from Figure 4 some  parts  of  the  superimposed 
fragments are  quite incompatible, especially in  the region 
of the helix kink  of the N-terminal helix. 

In general the aggregate obtained by superposition will 
contain regions of  incompatible  adjacent  fragments.  It is 
therefore necessary to apply  a  suitable  averaging  proce- 
dure  to  obtain a consistent model from  the superimposed 
aggregate. One possibility is to average  over  equivalent 
atoms of the  individual  fragments.  However, in  regions 
of incompatible fragments this results in gross distortions 
of covalent bonds  and valence angles. The local  geome- 
try  can be  preserved by averaging  over  dihedral  angles 
along  the polypeptide  backbone and by rebuilding the 
chain  from the average angles. With the exception of the 
N- and  C-terminal residues a particular  backbone  dihe- 
dral, 4, $, or w ,  is found in six overlapping hexapeptides. 

Mean  values are  obtained by averaging  equivalent an- 
gles over the individual fragments. Because angles are pe- 
riodic  quantities,  it is necessary to  take  the average  over 
the sine and cosine  functions, which can be  calculated 
in  the following way. We seek an average  over n angles 
a l ,  cy2,. . . ,CY,. Each  angle can be  represented  as a two- 
dimensional vector whose  components  are xi = sin(cyj) 
and y j  = cos(ai) .  Because sin2(cyi) + cos2(cyi) = 1 ,  the 
(xi, y i )  are  unit vectors  originating  from  the center of 
the unit circle. Then 

1 
n 

x =  - E x ;  and 
1 
n Y =  -CY, 

represent the  coordinates  of  the  average  vector.  In  gen- 
eral X’ + Y 2  < 1 ,  so that we have to normalize ( X ,   Y )  

Fig. 2. Superimposed aggregate of all frag- 
ments shown in Figure 1 .  The aggregate is 
formed  from  the  overlapping  fragments  by su- 
perimposing the central conformations of the 
largest  clusters in each  ensemble  (right  column 
in Fig. I) .  The  N-terminus  (residue 21) is  at  the 
bottom. 

_I - x  
X = -  and Y = f ,  

- Y  

L L 

where 

L = m .  

From  this we get the average  angle as 

Cr = sign ( X / L )  arccos ( Y/L) . (9) 

The procedure yields a  unique  average  angle Cr as long 
as X 2  + Y 2  # 0. If X 2  + Y 2  = 0 the individual  unit vec- 
tors  add  up  to  the  zero vector, and  the average  angle is 
undefined.  This  happens  for  example if  we average  over 
the three angles -120, 0, 120. The result is satisfying be- 
cause  in this case  there is no value that  can be  considered 
as a meaningful  average  over  these  angles. 

The length L of  the average  vector  provides a natural 
estimate of the  quality of the average. If L = 1 ,  then all 
angles for which the average is calculated  must  be  equal. 
On the  other  hand, if L = 0, the angles are completely un- 
related,  and  the average  angle can be  chosen  randomly. 
We define the variability u of Cr as 

v = l - L .  (10) 

The  average  structures  obtained  from  the  superim- 
posed  aggregates of Figures 2 and 4 are  shown in Fig- 
ures 3 and 5 .  The consensus  structures  are  quite  similar 
to  the superimposed  aggregates,  the  main  difference be- 
ing the  more  pronounced kink between the  two N-termi- 
nal helices (Figs. 4, 5 ) .  

As a  by-product,  averaging yields the variability u of 
individual  dihedrals.  High  variabilities  point to  unrelia- 
ble or undefined regions in  the model conformations. AS 
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Fig. 3. Average conformation of the superimposed 
aggregate shown in Figure 2. The average conforma- 
tion was calculated by averaging over equivalent 
backbone dihedrals derived from the central confor- 
mation of the largest cluster of the individual en- 
sembles  (Fig. 1) and by rebuilding the chain from the 
average angles. 

Fig. 4. Superimposed aggregate obtained by 
superimposing all hexapeptide fragments of 
thymosin a,. The N-terminus is at the  bottom. 

Fig. 5. Average conformation  obtained from the 
fragments shown in Figure 4. 
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Fig. 6 .  Variability of the backbone dihedrals + and $ of the calculated 
thymosin & model shown in Figures 4 and 5 (+ = V, J ,  = A ) .  

shown in Figures 2  and 3, some consecutive fragments 
have quite different  conformations in their overlapping 
parts resulting in a large rms error of superposition. 
Hence, it is immediately clear that in this part of the 
chain the resulting  consensus structure is quite unreliable. 
This is also  evident from the variability of the backbone 
angles obtained by averaging  over the fragments. Regions 
of  high confidence  have  variabilities u < 0.25, whereas for 
u > 0.5 the dihedrals are largely undetermined. 

Most of the  backbone angles of the  thymosin p4 
model shown in Figure 5 have  low variability (Fig. 6). 
Angles  of  high variability are concentrated at the helix 
kink (residues 11-13) in the extended part of the  confor- 
mation (residues 19-30) and at the start of the C-termi- 
nal helix (residues 31-33). 

Variabilities of backbone angles indicate the local re- 
liability of constructed models. They are evaluated inde- 
pendently of any experimental evidence so that this is a 
most important  tool in assessing the quality of a model 
for  a yet undetermined structure. In  addition, regions of 
high uncertainty may actually correspond to regions of 
high  flexibility in the molecule and may indicate the dy- 
namical  behavior of the polypeptide chain. Regions  of  low 
variability are not necessarily correct.  In  the following 
section we compare the calculated  thymosin p4 model  with 
conformations obtained from experimental information. 

Comparison of the calculated thymosin B4 model 
with  structures  derived from NMR measurements 

Zarbock et al. (1990) have  investigated the conformation 
of thymosin p4 in alcoholic solution. Figure 7 shows the 
variabilities of backbone angles calculated from five 
models of thymosin p4 derived from NMR constraints. 
The average angles and variabilities are calculated from 
the equivalent angles  in the five models. The  constraints 
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used to calculate the NMR-derived structures consisted of 
a set  of  180 approximate interproton distance constraints, 
33 9 constraints obtained for JNHa coupling data and 23 
4 dihedral angles identified on the basis of short-range 
nuclear Overhauser effects (NOEs). These constraints 
were  used in a combined distance geometry energy min- 
imization calculation (Holak et al., 1989a,b). All calcu- 
lated  structures  satisfy  the  distance  constraints.  The 
structures contain two  helical  regions  extending from res- 
idues 4 to 16 and 30 to 40. The relative orientation of the 
two helices could not be determined due to the lack of 
long-range NOEs. 

The  variability is very  low in the  a-helical regions 
(Fig. 7) similar to the low variability in the correspond- 
ing regions of our model (Fig. 6). The variability of the 
NMR models is high in the regions  between the helices 
(residues 20-30) and at the N-terminus of the C-terminal 
helix. This agrees to a considerable extent with the vari- 
abilities obtained  from  our model, the main differences 
being the low variability of our model at the N- and  C- 
termini, which  is  high in the NMR-averaged structures 
and the high variability of our model at residues  11-13, 
which is low in the NMR structures. 

Figure 8 shows the deviation of the average angles  of 
our model from the NMR-derived structures. The differ- 
ences are small  in the a-helical regions. Large differences 
occur in the variable regions between the helices and at 
the N- and C-termini of the molecule. In  summary,  our 
model and the NMR  models  agree  in  regions  of  high con- 
fidence, the large differences being concentrated in re- 
gions of low reliability. 

The NMR studies on thymosin p4 were carried out in 
solutions of 60% trifluorethanol-d3 and 50% hexafluor- 
isopropyl-d2. In aqueous solutions thymosin p4 seems to 
behave like a  random coil. The  CD  and NMR spectra in 
water show no obvious regular structure. Addition of al- 

0 10 20 30 40 

Fig. 7. Variability of the backbone dihedrals + and J ,  obtained by aver- 
aging over five conformations obtained from NMR constraints (+ = V, 
J ,  = A ) .  
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Fig. 8. Deviation of average I#I and $ angles of  the model of thymosin 
p4 from  the respective average  angles  calculated from five NMR- 
derived structures (@I = V, J. = A ) .  

coho1 stabilizes the secondary structure of the molecule. 
On the  other  hand,  the potentials used in this study are 
derived from data obtained from protein crystals, and it 
is an interesting question why the calculated models re- 
semble conformations stabilized in alcohols. We  will re- 
turn to this question in a later section. 

Calculated models for myoglobin and 
lysozyme backbone conformations 

Using  this  same strategy, we calculated backbone confor- 
mations for sperm  whale  myoglobin (1MBA) and hen  egg 
white lysozyme  (6LYZ). We emphasize that in these cal- 
culations we removed all globins and lysozymes from the 
data base. Hence the  data base  did not contain closely or 
distantly related members of the respective protein fam- 
ilies. 

Figures 9 and 10 show the differences in backbone an- 
gles of the calculated  myoglobin and lysozyme conforma- 
tions  and  the variabilities obtained  from averaging. In 
most  cases, large errors in the models correspond to high 
variabilities, but it should be noted that overall the vari- 
abilities are  rather conservative in the sense that  the vari- 
ability is also high in some regions of rather small errors 
(e.g., between residues 50-60 of myoglobin). 

The  errors in # and t+b in the model myoglobin confor- 
mation with  respect to the X-ray structure, when averaged 
over the whole sequence, are 21 and 41 degrees, respec- 
tively. For lysozyme these numbers are 33 and 45. The 
average error in # is generally  much  smaller  as compared 
to $, which  is due to the restricted range of # as can be 
inferred from  a  Ramachandran  map. 

As discussed above,  the strategy used is rather crude 
because by using only the most prominent cluster a large 
amount of structural  information is discarded from  the 
ensembles and is not available in assembling the final 
model. We therefore investigated a  different strategy, 
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Fig. 9. A: Variability of backbone 6 and $ angles of the calculated 
model  of  myoglobin IMBA. B: Deviation from the respective  angles  cal- 
culated  from  the X-ray coordinates. C: Deviation of 6 and +b of the 
model generated using the improved strategy from the respective X-ray 
values (6 = V, $ = A ) .  

which compares the variabilities of # and t+b angles  in the 
ensembles. A particular # (or $) along the amino acid  se- 
quence is contained in several overlapping fragments 
(i.e., six in the case of hexapeptides). We calculate the 
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Fig. 10. Same as Figure 9 for lysozyme 6LYZ. 

variability of this angle by averaging over all structures 
contained in each of the ensembles. In the case of hexa- 
peptides this results  in six average values for  a particular 
6 or 4, and we choose the average  angle of least  variabil- 
ity  when assembling the model. By averaging over all 
conformations in the ensembles we retain all structural 

information, and by choosing the angle  of  least variabil- 
ity we use the strongest structural determinant for this 
angle. 

Using this method,  the average errors in 9 and $ be- 
ing 17 and 32 (1MBA) and 32 and 48 (6LYZ), respec- 
tively, are smaller as compared to the former method. 
Figures 9C and 1OC show the errors in  these  model struc- 
tures as compared to the respective  X-ray structures. The 
model calculated for thymosin P4 shows a few changes 
in regions of  high variability, but these  differences are in- 
distinguishable from  the  former model  when compared 
to the averaged structures derived from NMR studies. 

The errors plotted in  Figures 9 and 10  express the qual- 
ity  of the calculated models in quantitative terms. To 
present the quality of the local structures in a more com- 
prehensive way we show a few detailed comparisons of 
calculated structures and X-ray conformations in  Fig- 
ures  11-14. Figure 11 shows the calculated structure  for 
residues 3 1-50  of myoglobin superimposed on the X-ray 
structure. This region contains the C-helix,  which is cor- 
rectly  predicted. The major difference between  predicted 
and X-ray structure is found at both helix-termini  where 
the calculated conformation  protrudes  into different di- 
rections due to a few large errors in dihedral angles (see 
corresponding region in Fig. 9C). It is noteworthy that 
the  conformations  on  both ends of the fragment shown 
in Figure 11 agree very  well with  the  X-ray conformation. 

Figure 12 shows the calculated structure  for residues 
79-108  of IMBA. Again the calculated local conforma- 
tion agrees fairly well with the X-ray conformation.  In 
Figure 13 we show the calculated  region 1-40 of lysozyme 
superimposed on the known conformation. The major 
error in this  region is found at the kink  in front of the sec- 
ond helix. Finally, Figure 14 shows the results obtained 
for the 0-strand region 38-57 of lysozyme,  which  has a 
distorted angle in each &strand. 

Ranking the quality of a number 
of different models 

If we use different strategies a number of models can be 
generated for  a single amino acid  sequence. The 4-G vari- 
abilities indicate the degree of uncertainty of these mod- 
els but they are of little help in estimating the relative 
quality of  several models. 

Hendlich et al. (1990)  have  recently demonstrated that 
the  total net  energy calculated from  the mean force po- 
tentials can be  used to identify  native  protein  folds among 
a large  number of incorrect conformations. The  same ap- 
proach can be used to estimate the quality of individual 
models  of unknown protein folds. Models that resemble 
the native  fold should have  low  energy  with  respect to all 
structures in a large pool of conformations. 

We demonstrate the application of this approach in the 
case of thymosin p4. A pool of conformations is con- 
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Fig. 11. Calculated  backbone  structure 
for residues 31-50 of myoglobin lMBA 
(bold  lines)  superimposed on the X-ray 
conformation. 

Fig. 12. Calculated  backbone  structure  for  resi- 
dues 79-108 of myoglobin lMBA (bold lines) su- 
perimposed on the  X-ray conformation. 

Fig. 13. Calculated  backbone  structure  for  residues 
1 - 4 0  of lysozyme 6LYZ @old lines)  superimposed on 
the  X-ray conformation. 
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structed from the data base of known protein folds as  re- 
ported previously (Hendlich et al., 1990). In  the case of 
thymosin P4 consisting of  43 amino acids, we obtain  a 
pool of  18,552 fragments of length i = 43 from the cur- 
rent data base. We add the calculated model and five 
models  derived from NMR constraints (Zarbock et al., 
1990). Then the  total net  energy (Equation 5 )  of the thy- 
mosin P4 sequence is evaluated with  respect to all con- 
formations in the pool, and the conformations are ranked 
with  respect to their total net energy. 

The  data in Table 1 show the ranking of the individual 
conformations in the pool. The  structure of lowest total 
net  energy is fragment 80-122 from 1PP2-R (rattlesnake 
phospholipase Az).  The calculated model ranks at posi- 
tion 8. In  addition, Table 1 shows the positions of the 
structures obtained from NMR constraints, ranging from 
77  (B4TC15) to 377 (B4TC02). Thus, in terms of the total 
net  energy, the calculated structures as well as the models 
derived from NMR  measurements  belong to the preferred 
conformations of thymosin P4. 

The  conformation of lowest total net  energy 1PP2-R- 
80  has many features in common with the model struc- 
tures but  the  C-terminal part is quite irregular, containing 
only a single  helix turn (Fig.  15). In Table 2  the  confor- 
mations in the pool are ranked with  respect to the  short- 
range energy contributions calculated for k = 1, . . . ,lo. 
1PP2-R-80 has considerably higher  energy  in this range 
as compared to the calculated model. The low total net 
energy  of 1 PP2-R-80 is mainly due to favorable medium- 
and long-range contributions. When ranked with  respect 
to the short-range energy,  1PP2-R-80 appears on position 
495 (Table 2). 

Top positions with respect to the short-range contri- 
butions  are occupied by fragments from hemerythrin 
(1 HMQ-A-40) and  myohemerythrin (2MHR-40). As 

Fig. 14. Calculated backbone structure 
for residues 38-57  of lysozyme 6LYZ 
(bold lines) superimposed on  the X-ray 
conformation (bold lines). 

shown in Figure 16 the  conformation of 1HMQ-A40 
consists of two a-helices separated by a kink. The con- 
formation is similar to the models  derived from NMR 
measurements and mean force calculations, but the a- 
helices are longer, they are more regular, and they are 
closely packed in an antiparallel configuration. With re- 
spect to the short-range energies,  the  calculated  model  oc- 

Table 1. Total net energies of several models of thymosin p4 

Total net energy Short-range  energyb 

Model“ 

lPP2-R 
lPP2-R 
lLDX 
4ADH 
IPP2-R 
1 LDX 
IPP2-R 
Construct 

B4TC 15 
B4TC28 
B4TC04 
B4TC22 
B4TC02 

IHMG-B 

Rank 

80 1 
76 2 

22 1 3 
323 4 
77 5 

220 6 
79  7 

1  8 
74 9 

1 16 
1 129 
1 177 
1 249 
1 376 

A E ( s , c , )  

-102.5 
-99.3 
-97.2 
-95.9 
-95.4 
-94.8 
-93.2 
-93.1 
-93.1 
-78.8 
-74.0 
-70.1 
-65.9 
-60.5 

Rank AE(S,C,,) 

494 -35.7 
893 -29.2 
351 -38.5 
301 -40.1 
75 -43.3 

993  -28.1 
52 1 -35.2 
24 -53.9 

160 -44.3 
1,495 -23.2 

702 -32.0 
414 -37.3 

2,011 -19.0 
748 -31.4 

discussed in the  main  text. B4TC02, B4TC04, B4TC15, B4TC22, and 
a Conformation  “construct” was calculated from  the mean field as 

B4TC28  were derived from distance constraints (Zarbock  et al., 1990); 
the remaining codes are identical to  the codes used by the  Brookhaven 
Protein Data Bank (Bernstein et al., 1977). The numbers refer to the first 
residue in the respective fragment (i.e., 1PP2-R-80 corresponds to res- 
idues 80-122 of lPP2-R). 

Net energy AE(S,C, )  calculated for sequential separations k = 
1,.  . . , 10. 
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Table 2. Short-range net  energies of several  models 
of thymosin &a 

Short-range  energy Total net  energy 

Model Rank AE(S,C,) Rank AE(S,C,) 

IHMQ-A 40 1 -65.0 2,184 -26.9 
2MHR 40 2 -62.9 1,464 -35.5 
2MHR 38 3 -62.9 1,156 -40.3 
2HHB-B 94 4 -60.8 1,090 -41.5 

lPHH 328 6 -59.8 513 -55.5 

lPHH 326 8 -57.9 429 -58.9 

Construct 1 24 -53.9 8 -93.1 
B4TC04 1 414 -37.3 177 -70.1 
B4TC28 1 703 -32.0 129 -74.0 
B4TC02 1 748 -3 1.4 376 -60.5 
B4TC 1 5 1 1,494 -23.2 76 -78.8 
B4TC22 1 2,010 -19.0 249 -65.9 

IPRC-M 114 5 -60.2 1,690 -32.5 

2CCY-A 7 I -58.6 3,040 -18.5 

2HHB-B 96 9 -57.8 2,287 -25.9 

a See footnotes to Table I .  

cupies  position 25. The  short-range  positions of the 
models derived from NMR constraints range from 414 
(B4TC04) to 2,010 (B4TC22). 

In Table 3  the  total net energy is split into the contri- 
butions of the various structural levels. This allows the 
identification of those structural levels that  are most fa- 
vorable for  a  particular model. Among the conforma- 
tions of  lowest total net energy, the calculated model  has 
the most favorable short-range energy  (i.e., levels  1-5)  of 
-39.9 kcal/mol.  The short-range energy of 1PP2-R-80 
being - 10.4 kcal/mol is quite unfavorable. The stabiliz- 
ing contributions in 1PP2-R-80 occur  in the medium and 
long range. In  contrast, the medium- and long-range en- 
ergies  of the calculated model contribute little to its low 
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total net energy. This clearly reflects the fact that  the 
model was built from local interactions alone. 

Similarly, 1HMQ-A-40, a  conformation of favorable 
short-range energy (Table 2), has a  rather high total net 
energy of -26.9 kcal/mol due to unfavorable medium- 
and long-range interactions. Obviously, the close  associ- 
ation of the helices  in this conformation is favored by 
interactions with  respect to the original amino acid  se- 
quence of hemerythrin. In contrast, the sequence of thy- 
mosin &, folded up in the 1HMQ-A-40 conformation 
produces quite  unfavorable medium- and long-range in- 
teractions, although both sequences favor the same local 
fold. 

The analysis of the energy contributions clearly  shows 
that the most favorable conformations, although having 
comparable total net  energy, are stabilized by interactions 
from different structural levels. The calculated  model  has 
a low short-range energy but rather high medium- and 
long-range contributions. On the other hand, 1PP2-R-80 
and  other  conformations of  low total net energy are 
stabilized by medium- and long-range interactions (Ta- 
bles l ,  3). 

Similar calculations show that the models obtained for 
myoglobin and lysozyme are top models  in terms of the 
short-range energy,  whereas the medium- and long-range 
energies are  unfavorable. These results indicate that it 
should be possible to considerably refine the models  by 
optimizing the nonlocal interactions. 

We are now  in a position to discuss  possible  causes for 
the similarity of the calculated  model  with conformations 
derived from NMR  measurements  in  alcoholic solutions. 
There  are two features of our  approach  that we have to 
emphasize  when  discussing  this  issue. First, our approach 
calculates ensembles  of conformations for oligopeptide 
fragments that  are assembled to a complete model. If a 
large number of the ensembles is unstable, i.e., contains 
a range of different conformations, and if many overlap- 

Fig. 15. Conformation of fragment  1PP2- 
R-80 of phospholipase A2. This confor- 
mation has  the  lowest  total  net  energy  with 
respect to the  thymosin p4 amino acid  se- 
quence. 
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ping fragments are incompatible, then the variability of 
most  of the dihedral angles will be very  high. In this case 
the results  would  indicate that the molecule  does not have 
a preferred conformation behaving like a  random coil. 
Most of the ensembles corresponding to the a-helical re- 
gions in the model  of thymosin & are stable and com- 
patible (see for example fragments 21 and 30 in  Fig. 1). 
The high variabilities are concentrated in the irregular re- 
gion, residues 20-30. Hence, in principle the method is 
able to identify polypeptides that behave like random 
coils, but the calculations clearly favor conformations 
consisting of two a-helices. 

Second, the  potentials of mean force  are compiled 
from  a  data base of globular protein structures deter- 

Fig. 16. Conformation of fragment IHMQ-A 40-82 from 
hemerythrin. This conformation has the lowest  net  energy 
in the  short range k = 1, . . . , 10  with  respect to the thymo- 
sin b4 amino acid sequence. 

mined by X-ray analysis. The potentials contain all kinds 
of forces that  contribute to the stability of native protein 
folds including solvent effects. Hence, the potentials are 
averages  over different environments of the  individual in- 
teractions ranging from the hydrophobic interior of pro- 
tein molecules to the fully exposed surface. 

We may argue that the environment in globular pro- 
teins on average is hydrophobic, and therefore, the force 
field should reflect the interactions in organic solvents 
more closely as compared to aqueous  solutions.  This 
would  explain the agreement between our model and the 
conformations  obtained  from NMR studies in alcoholic 
solution. At first sight this explanation seems reasonable. 
Note however that by calculating the net potentials we 

Table 3. Contribution of individual topological levels to the total net energy 
in several models of thymosin Pda 

Model 

IPP2-R 
lPP2-R 
1 LDX 
4ADH 
lPP2-R 
1 LDX 
lPP2-R 
Construct 
IHMG-B 
B4TC 1 5 
B4TC28 
B4TC04 
B4TC22 
B4TC02 

Rank 1-5  6-10  11-15  16-20  21-25  26-30 31-35 

80 1 -10.4 -23.1 -13.5 -17.2 -14.9 -13.6 
76 2 -26.0 -17.4 -3.7 -14.8 -17.2 -8.5 

22 1 3 -32.8 -11.2 -3.8 -10.6 -14.2 -13.0 
323 4 -30.2 -10.2 -0.6 -8.9 -18.8 -12.3 
77 5 -22.2 -15.5 -6.1 -14.8 -15.8 -10.6 

220 6 -25.1 -13.4 -7.5 -11.0 -12.6 -11.5 
79 7 -16.5 -19.2 -8.3 -14.0 -14.8 -10.1 

1 8 -39.9 -13.9 -10.0 -13.8 -9.6 -2.0 
74 9 -32.3 -19.2 -5.6 -20.2 -9.5 -2.6 

1 76 -8.8 -14.4 -4.8 -12.4 -19.6 -8.9 
1 129 -19.5 -12.5 -4.6 -5.4 -11.5 -10.5 
1 177 -25.0 -12.3 +3.3 -7.7 -15.0 -7.5 
1 249 -20.0 +1.0 -1.9 -3.3 -17.3 -10.8 
1 376 -22.1 -9.3 +3.8 -6.3 -10.7 -8.5 

-5.6 
-6.8 
-8.8 
-9.3 
-5.0 
-8.8 
-5.0 
-3.2 
-2.9 
-6.2 
-6.7 
-4.8 
-7.0 
-5.6 

36-40 Total 

-4.0 - 102.5 
-4.1 -99.3 
-2.7 -97.2 
-5.8 -95.9 
-4.2 -95.4 
-4.4 -94.8 
-4.7 -93.2 
-0.9 -93.1 
-0.6 -93.1 
-3.7 -78.8 
-3.4 -74.0 
-1.0 -70.1 
-5.7 -65.9 
-1.7 -60.5 

a The  total net energy  is split into  contributions  from several ranges. The header of each column (e.g.. 1-5) defines the respec- 
tive k-range. See footnotes  to  Table 1 for  the remaining symbols. 
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subtract  the reference state  from  the mean force poten- 
tials. The reference state corresponds to the mean force 
potential obtained by averaging over all amino acid pairs 
so that much of the average background is removed from 
the potentials. 

The energy contributions from the different structural 
levels indicate an alternative explanation. All conforma- 
tions that have  very  low short-range energies  (Table 2) do 
have rather high energies  in the medium and long range 
(Tables 1, 3). This can be  explained if  we assume that the 
amino acid  sequence of thymosin p4 produces a conflict- 
ing force field. The  short-range  contributions favor two 
a-helices (see  Figs. 5 ,  16) but the medium- and long-range 
forces favor more extended structures (Fig. 15), i.e., the 
two helices interact unfavorably via the medium- and 
long-range forces. 

In fact, in the conformation of  lowest  net  energy, 1PP2- 
R-80, the C-terminal helix  is reduced to a single  helix turn 
(Fig. 15). The comparatively high short-range energy of 
this conformation is balanced by the gain in the medium 
and long ranges. In  aqueous  solution  the medium- and 
long-range forces may  be too strong to allow the  forma- 
tion of a-helices, whereas the  addition of alcohol may 
screen these forces inducing the formation of a-helices. 
Because our model was built solely from  short-range in- 
teractions,  the  unfavorable  medium-  and  long-range 
forces did not enter the calculation. If this explanation is 
correct it should be impossible to considerably improve 
the medium- and long-range energies and at the same 
time  retain  the  favorable  short-range energies of the 
model. We are investigating  this  issue  in our current stud- 
ies on energy minimization. 

Discussion 

We presented a method that can be  used to calculate 
models for unknown protein folds from  amino acid se- 
quences having favorable local energies. The procedure 
uses the most probable conformations for short fragments, 
which are calculated from  a knowledge-based  mean  field. 
The overlapping fragments are assembled to a complete 
model by averaging over dihedral angles along the poly- 
peptide. Substantial parts of the calculated models agree 
fairly well with the corresponding local structures known 
from X-ray or NMR studies. It is noteworthy that these 
results are obtained using a  data base  devoid  of  even dis- 
tantly related  proteins so that the knowledge-based  molec- 
ular force fields for myoglobin, lysozyme, and thymosin 
p4 do not contain  any specific information linking their 
amino acid sequences with the respective structures. 

When designing a model for  a protein fold it is very 
important  that the qualities of the proposed conforrna- 
tions can be judged without reference to the native fold, 
because  in many cases no such information will be avail- 
able. The procedures presented in this work  yield at least 
three criteria that are independent of any experimental in- 

formation on the native conformation of the molecule. 
(1) The variabilities of individual angles provide an esti- 
mate of the local reliability and flexibility of the models, 
(2) the comparison of  the total net  energy  of a model with 
the energies obtained from a large pool of conformations 
shows  whether the proposed  model is among the most fa- 
vorable structures,  and (3) the decomposition of the to- 
tal net energy into  contributions  from various structural 
levels identifies those parts of a model that  are energeti- 
cally unfavorable. 

Only a (yet unknown) fraction of all possible amino 
acid sequences adopt  stable three-dimensional folds. 
Hence, in the prediction of native protein conformations 
from amino acid sequences one faces two problems. The 
first problem is to locate the accessible global minimum 
on  an energy surface, which reasonably models the pro- 
tein solvent system. The second concerns the stability of 
the global  minimum. If the minimum is  wide and shallow 
or if there are several or many minima of comparable en- 
ergy scattered in conformation space, then the molecule 
will  be unstable. Driven by thermal collisions, the mole- 
cule will fluctuate among many different conformational 
states. 
No long-range NOES have  been observed in the NMR 

experiments on thymosin p4. This is compatible with the 
view that the molecule  has ordered local structure but an 
ill-defined tertiary fold. The mean force calculations yield 
essentially the same conclusions as those inferred from 
experimentation: To a considerable extent the molecule 
has ordered backbone  structure  but  no preferred spatial 
arrangement of local structural elements. 

Figures 1 1-14 show that  a single large error in # or \I. 
sends the chain into the opposite direction from the  X-ray 
structure. Expressed in energetic  terms there are two pos- 
sible causes for large errors. (1) The mean field favors a 
particular fold that differs from the native conformation 
(large error  and low variability), or (2) the mean field 
does not favor a particular fold  (large error and high vari- 
ability). Most of the large errors in the calculated mod- 
els are associated with average angles  of  high variability 
(Figs. 9, lo), Le., there are several conformational states 
of comparable energy. 

The models generated in this study are optimized with 
respect to local interactions. Large (local) errors in # or 
$ have a strong effect on the overall  fold  as well as on the 
nonlocal,  i.e.,  medium-  and  long-range, energies. It 
should  be  possible to refine and considerably  improve the 
models by including nonlocal forces and by minimizing 
the total net  energy as a function of dihedral angles. The 
first step in  such refinements will concentrate  on angles 
of high variability, keeping angles of high confidence 
fixed. Compared to the variation of all backbone dihe- 
drals in protein molecules, this approach reduces the 
complexity of the  search problem in  conformational 
space by several orders of magnitude. 

We note  that  the procedures used in this work are un- 
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refined prototypes. There is a vast  number of  possibilities 
for the design of more  powerful procedures. We mention 
a few points that  are likely to improve the calculations. 
(1) In  the present study we reported calculations using 
hexapeptides  as the basic  building  blocks.  Obviously, the 
calculations can  be carried out using a number of differ- 
ent fragment sizes. Our preliminary  results  show that the 
models  can be improved using larger  fragments. (2) Mod- 
els calculated for  different fragment sizes can be com- 
bined, which should be helpful in removing some of the 
uncertainties of the local folds. (3) In the case of flip- 
flop, metastable, and unstable fragments the ensembles 
contain  a large amount of information  on the structural 
preferences. It is conceivable that more sophisticated 
rules will  yield more accurate models. 

The strategies presented in this work are fully auto- 
matic and unambiguous.  This is a desired feature in terms 
of repeatability of the calculations. The drawback is that 
automatic procedures often fail in situations where a 
skilled  user  easily finds a useful solution. If  we are inter- 
ested  in the conformation of a particular protein it is clear 
that we  will try to incorporate all available information 
on that molecule. For this reason we are currently imple- 
menting an interactive version of the program. 

Finally we want to emphasize that the force field  used 
in this study is not complete. We used only interactions 
among the backbone atoms (including @) and the mod- 
els  were built from short-range interactions k < 6 only. 
The interactions among the remaining side chain and 
backbone atoms as well as the interactions correspond- 
ing to large sequential separations (i.e., nonlocal forces) 
have  been  neglected. These interactions are very impor- 
tant  for  the stability of protein conformations,  and it is 
indeed surprising that many of the structural features of 
protein conformations can be captured and reproduced 
by the reduced set of interactions used  in this study. 
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