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Abstract 

Efforts to  predict  protein  secondary structure have  been  hampered  by the apparent structural plasticity of local 
amino  acid  sequences.  Kabsch  and  Sander (1984, Proc. Natl. Acad. Sci. USA 81, 1075-1078) articulated  this  prob- 
lem  by demonstrating  that  identical  pentapeptide  sequences  can  adopt  distinct  structures in different  proteins.  With 
the  increased  size  of  the  protein structure database  and  the  availability of  new methods to characterize structural 
environments, we revisit  this  observation of structural plasticity.  Within a set of proteins with  less than 50% se- 
quence  identity, 59 pairs of identical  hexapeptide  sequences  were  identified.  These  local  structures  were  compared 
and  their  surrounding  structural  environments  examined.  Within a protein  structural class ( d a ,  /3/& a/p, a + /I), 
the structural similarity of sequentially  identical  hexapeptides  usually  is  preserved.  This  study  finds  eight  pairs 
of identical  hexapeptide  sequences that  adopt  6-strand  structure in one  protein  and  a-helical  structure in the  other. 
In none of the  eight  cases do the members  of  these  sequence  pairs  come from  proteins within the same  folding 
class.  These  results have implications for class dependent  secondary structure prediction  algorithms. 
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The  amino acid  sequence  of  a  protein  codes for a unique 
three-dimensional (3D) structure.  Unraveling  this  code 
has  proven extremely  difficult.  Protein  folding is deter- 
mined  by a complex  interplay  between  the  local  and 
global  preferences  of  individual  amino  acid  residues 
within the sequence. In  an  effort  to simplify the  compu- 
tational complexity  of the  protein  folding  problem, local 
structure  has been sought  as  the nidus for  the subsequent 
tertiary  condensation of the  chain.  Secondary  structure 
features  may be  building  blocks for  tertiary  structures. 
This is supported by spectroscopic  studies that detect  sta- 
ble helical structure  (Marqusee & Baldwin, 1990; Wright 
et  al., 1990; Lyu  et  al., 1991) and  &turns  (Wright et al., 
1990) in  short, isolated  polypeptides.  Studies that recog- 
nize the  preferential  protection of amide  protons  that  par- 
ticipate  in  secondary  structure  early in  the folding process 
(Roder  et  al., 1988; Hughson  et  al., 1990) also  lend  cre- 
dence to this approach.  Thus,  secondary  structure is a log- 
ical  intermediate  in  predicting  protein  tertiary  structure. 
Moreover,  some sequences contain sufficient information 
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to independently  code for regular  local  structure. In spite 
of the regularity  of  this  local  structure, the general  suc- 
cess of  secondary  structure  prediction  for an individual 
sequence  without  additional  experimental data  has failed 
to  exceed 65%. 

In 1984, Kabsch and  Sander  noted  that  the  Brookha- 
ven Protein  Data Bank  (PDB; Bernstein et al., 1977) con- 
tained  examples  of  sequentially  identical  pentapeptides 
that  adopted substantially  different  structures  (Kabsch & 
Sander, 1984). Another research group  later  found  pairs 
of identical hexapeptides that  adopted  different  structures 
(Wilson et al., 1985). The immediate  impact of these find- 
ings on secondary  structure  prediction  efforts was clear: 
exclusively local sequence composition and ordering were 
insufficient to accurately  predict  secondary  structure. 
In  an  attempt  to circumvent the  pentapeptide  dilemma, 
larger groups  of  amino acids  (e.g., 9-17 residues) were 
considered as a possible  folding unit.  Wodak  and col- 
leagues  demonstrated  that  the  current  database of pro- 
teins  of  known  structure was, unfortunately, too small to 
supply  statistically  relevant information  about longer se- 
quence  patterns  (Rooman & Wodak, 1988). 

Recently, the  pace  of  protein  structure  determination 
by  X-ray  crystallography and NMR  spectroscopy  has  ac- 
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celerated.  In  light  of  this, we have revisited the  question 
of  the  structural integrity  of  local  sequences and extend 
the  observations of Kabsch and  Sander (1984) and Wilson 
et al. (1985) to include a large set of  hexapeptide sequences. 
This  study  finds eight pairs of identical  hexapeptide se- 
quences that  adopt  @-strand  structure  in  one  protein  and 
a-helical  structure  in  the  other.  In  none  of  the eight cases 
do  these  sequence  pairs come  from  proteins within the 
same  folding class. Thus, it is possible that class depen- 
dent  secondary  structure  prediction  algorithms  may  of- 
fer a  practical  route to circumvent the  structural plasticity 
dilemma. 

Results 

Background 

An n-mer is a  subsequence of a  protein  containing n con- 
secutive residues. For example, DEHKTL is a  hexamer 
( n  = 6) taken  from a  rhinovirus  coat  protein.  An  n-mer 
has  many  attributes  that emerge from  the association with 
a  protein  from which the subsequence is drawn.  This is 
particularly  true when the protein’s  tertiary  structure is 
known.  Attributes  can  include a set of phi-psi angles, a 
secondary  structure  assignment,  and a solvent-accessible 
surface  area  for  the  fragment in the context of the  folded 
protein.  The  subsequence  DEHKTL is also  found in he- 
merythrin. The set of  DEHKTL, rhinovirus  coat  protein, 
and  hemerythrin comprise an n-mer pair.’ This  study is 
concerned with n-mer  pairs  and  the  conformations 
adopted by each  n-mer  in  their respective proteins.  Some 
examples are  shown in the kinemages. 

The  data set for  this  study is composed of 59 n-mer 
pairs  (where n is at least 6) found in an  examination  of 
316  proteins  from  the  Brookhaven  Protein  Data Bank 
(version of July 15, 1990). Each  pair  contains an identi- 
cal  residue  sequence found in  two  proteins  that have no 
more  than 50% sequence identity after  the  two  protein se- 
quences are aligned. Each n-mer pair is categorized by the 
degree  of  similarity between the local  structures  adopted 
by an identical  sequence in each  protein.  Four catego- 
ries - same structures, distinct regular structures, distinct 
loops, and different structures-are detailed in the Meth- 
ods section.  Briefly,  n-mer  regions with essentially  the 
same local structures  are  grouped in the first  category. 
Distinct regular structures have the  same assigned second- 
ary  structure within the  range of the local  sequences, but 
the local  structures  are  sufficiently distinct  as  judged by 
a root mean  square  deviation between matched a-carbon 

~. .___ 

’ This  n-mer  pair  may be referenced by a  tuple  notation,  {DEHKTL, 
lr08, 1 hmq),  where  DEHKTL is the  n-mer  sequence  and lr08 and  lhmq 
are  the  PDB  entry  identifiers  for  rhinovirus  coat  protein  and  hemeryth- 
rin,  respectively. The  ordering of the  PDB  entry  names is arbitrary, so 
[ DEHKTL, 1198, lhmq) and [ DEHKTL,  Ihmq, lrO8) refer to  the  same 
n-mer  pair. 

- -~ - 

positions. Similarly, the distinct loops category has n-mer 
pairs with both  n-mer segments  in loop  conformations 
where the  loops  adopt  structurally distinct  aperiodic  con- 
formations. Finally, there is a category for  different struc- 
tures.  Within  the  category of different  structures,  there 
is a subcategory (disparatestructures) of eight n-mer pairs 
that show alpha  structure in one  protein  and  beta  struc- 
ture in the  other. 

Tertiary structural class  and 
local structure differences 

Information  on  the tertiary structural class of a given pro- 
tein can  contribute to superior  secondary  structural class 
predictions (Kneller et al., 1990). One  of  the motivations 
for revisiting the  identical  n-mer  problem was to see if 
tertiary  structural class could  be used to characterize  the 
examples of identical peptide sequences that  adopt signif- 
icantly different  structures in different proteins. The con- 
cept of “tertiary  structural class” was introduced by Levitt 
and  Chothia (1976), who  defined five classes: d a ,  P/@,  
a/@, a + @, and  irregular.  Each  protein  can be assigned 
to one of these classes based on  the  composition,  order- 
ing, and  the  spatial placement  of its secondary  structure 
features. For example, ala- and @/@-class proteins  are 
primarily  composed of a-helices  and  &strands, respec- 
tively. a/@-Class  proteins  are generally composed of al- 
ternating  a-helices  and  @-strands, while (Y + @-class 
proteins  tend to have  clustered a and P areas.  With  each 
n-mer  pair, the tertiary  structural classes of both  proteins 
are  noted. 

The relationships between the  tertiary  structural class 
attributes  of  each  n-mer  pair  and  the local structure  char- 
acterizations are shown in Figures 1  and 2. Figure 1 shows 
a breakdown of n-mer  pairs with respect to  the  four cat- 
egories of local structure  differences.  Each group is fur- 
ther  divided to show  whether the  n-mer  pair represents 
proteins  from  one  or  two  tertiary  structural classes. The 
bar  graph shows that n-mer  pairs with different local 
structure generally  represent  a  pair of proteins  from  dif- 
ferent  tertiary  structural classes. At  the  other end of the 
local structure  spectrum, more often  than  not, same struc- 
ture  pairs represent proteins  from  the same tertiary  struc- 
tural class. 

Only  two  n-mer  pairs, (KDLRRA, Sacn, lgdl)  and 
(VAGAAA,  Isbt, 2rub), contain  different local structures 
and come  from  the  same  tertiary  structural class. All four 
proteins - aconitase,  glyceraldehyde-3-phosphate  dehy- 
drogenase,  subtilisin, and  rubisco - are  a/@-class  pro- 
teins. As seen in Figure  2,  17% of the a/P-a/P pairs have 
different  local  structure. Because a/@-class  proteins  con- 
tain  a  mixture of helical and  strand  structures, tr/@-class 
proteins  might be expected to have  more  different  struc- 
ture  pairs  than  any  other  tertiary  structural class. 

When  the  different  structure  group is further refined 
to include  only  pairs  where one local structure is part  of 
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an a-helix  and  the  other a  P-strand, all eight examples 
match  proteins  from  different  tertiary  structural classes 
(see Table 1). Arguably, this result is not surprising because 
it is unlikely to find strands in a/a proteins or helices in 
P / P  proteins. Closer examination  of these eight examples 
shows  only  two cases where the  tertiary  structural class 
pairing involves both a/a and P / @ .  The  other six exam- 
ples pair one of the  “pure” tertiary  structural classes (a /a  
or P / @ )  with one of the mixed classes (a/P or a + P). Ter- 
tiary  structural class appears  to be correlated with the  in- 
fluences played by “long-range”  interactions. 

Accessible surface area 

It is likely that  protein folding  represents  a  balance be- 
tween the  hydrophobic  effect  driving  the  chain  toward  a 
compact  organization  and  the  conformational  entropy 

Fig. 1. Summarized  tertiary  structural  class  pairing  and  n-mer 
structure  differences.  This bar  graph  presents  the  tertiary  struc- 
tural class congruence  for  each of the  four local structure  groups 
of  n-mer  pairs  described in the text. Each  bar is labeled for  one 
of the  four  groups  and divided into  two boxes. The upper boxes 
show  the  number of pairs  where  both  constituent  proteins  are 
members  of  the  same  tertiary  structural  class.  The  lower  boxes 
show  the  number  of  pairs  where  each  protein is characterized 
by different  tertiary  structural  classes. 

lost by adopting a single native state  (Kauzmann, 1959; 
Chan & Dill, 1990). Solvent-accessible surface  area was 
introduced in an attempt  to  quantify  the  hydrophobic ef- 
fect (Lee & Richards, 1971) and was subsequently  shown 
to  correlate with thermodynamic  measures  of a  side 
chain’s preference  for  an  organic  or  aqueous  phase 
(Chothia, 1974). For  our purposes, the accessible surface 
area of a residue or set of  residues (segment) can be used 
to describe the environment of a residue or segment. Most 
of  the  n-mer  pairs have segments with similar accessible 
surface  areas (see Fig. 3). This is sensible given the rela- 
tionship between the  hydropathy of a segment and  the de- 
gree to which it is likely to be  buried or exposed. One 
outlier,  apparent in the lower right-hand  corner  of Fig- 
ure 3 ,  is the  sequence IGHLAT  found in both  lactate de- 
hydrogenase (61dh) and tyrosyl-transfer RNA synthetase 
(2tsl).  Although  lactate  dehydrogenase is a  dimer,  only 
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Fig. 2. Tertiary  structural class pairing and  n-mer  structural dif- 
ferences.  This  bar  graph  contains 10 bars.  Each  bar is divided 
into  four  boxes.  The  left  five  bars  represent  the  number of n- 
mer  pairs  where  one  constituent  protein  belongs to a given class 
(e.g., cx/P in the  first  bar)  and  the  other  protein belongs to some 

E N  0 1  other  class.  The  right  five  bars  represent  the  number of n-mer 
m 
[r 
w 

a pairs  where  both  proteins  belong  to  the  same  tertiary  structural 

5 e .  
0 Each  n-mer  pair is tallied  twice-once  for  each  protein in the 

5 

class.  Note  that  no  n-mer  pair  contains  two  dol-class  proteins. 

n-mer  pair. The box  divisions  (parts) of each bar  show  struc- 
ture group counts  and  percentages.  Using  the  first  bar ( d 0 - X )  
as  an  example,  the  bottom  part (I) shows different struc- 
lure n-mer  pair  counts,  the  lower  middle  part ( lZZJ, l  shows 
distinct loops counts,  the  upper  middle  part (-1 shows dif- 
ferent  conformations of similar  structure counts,  and  the  top 
part (m) shows same structure n-mer  pair  counts.  Some 
bars do not  contain  all  four  parts.  The  percentage  breakdown 

dp-x p/p-x da.x =+D.X Irreg.X dp a+B ,rreg between  each of the  four  groups  within  each  bar is printed in 
the  corresponding  box. 

- 
a, 
0 
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Tertlary Structural  Class  Palrlng 
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Table 1. Different structure n-mersa 
~~~~~ " 

~~~ 

LLKANV 
~ ~~ 

12.2% 2.78 A 1 
lllllllaaaaa 4mdh 99A- 104A ff / P  
llblbbbbbbbb 1 sgt 127-132 P I P  

FGVGSA 8 070 2.84 A 2 
lbbbbbllbbbb 2er7 263E-268E P / P  
aaaaalaaaaaa lmba 97- 102 CY /ff 

SGSSAT 12.3%  2.87 A 3 
bbbbllbbbbbb 3fab 61L-66L P I P  
bbbllaaaaaaa 3bcl 110-1  15 CY/P 

DEHKTL 6.7% 3.14 A 4 
lllllllbbbbb 1 r08 2,161-2,211 P / P  
aaaaaaaaaaaa 1 hmq 22A-27A ff Iff 

NAAIRS 14.5%  3.54 A 5 
laaaaaaaaaaa 3Pfk 16-21 CY / P  
llllllbbbbbl 2tmn 96E-101E P I P  

VDLLKN 14% 3.68 A 6 
llbbbbbbllbb 2hla 36B-41B CY+@ 
aaaaaaaaaaaa 3wrp 15-20 CY /CY 

LKAAGA 14% 3.76 A 7 
bbbbbblllaaa lctf 5-10 ff / P  
aaaaaaallxxx 1 mba 140-145 01 Iff 

LGQLGI 16.9%  4.51 A 8 
aaaaaaaallll 7api 283A-288A ff / P  
lllllllbbbbb 2tbv 135A-140A P I P  

~~~ "" ~ "" 

a Each  three-line  entry  includes  the  following  information: 

Row 1: The  n-mer  sequence,  the  sequence  identity  between  the  two 
chains,  the  RMS  deviation  between  the  two  n-mers,  an  identifi- 
cation  number  used  in  Figure  4. 

Rows  2  and 3: A  secondary  structure  assignment,  the  PDB  identifier, 
the  residue  numbers,  the  tertiary  structural  class of the  relevant 
chain. 

the  monomer was considered in the original n-mer  search. 
The n-mer  segment  (residues 7-12) in  this  enzyme  forms 
a highly exposed loop in the monomer  that is buried when 
forming  the  dimer  interface.  There is no apparent rela- 
tionship  between  any local  substructural  group  and  the 
variation between paired accessible surface  areas.  Not  sur- 
prisingly, the six points  representing  n-mer  pairs of dis- 
tinct  loops  have  large accessible surface  areas  in  both 
proteins  in keeping with the general  propensities of loops 
in  proteins.  Thus, it appears  that these  n-mer  sequences 
have  sufficient  backbone conformational plasticity to 
adopt  quite distinct  structures  as  long  as  the  side  chain 
preferences for  hydrophobic or hydrophilic environments 
can be  met. 

A more  subtle  measure  of  a  local  protein  environment 
can be constructed  from a combination of solvent acces- 
sibility and  backbone  conformational preferences. The 
3D profile  method (Bowie et al., 1991) has been success- 
fully used to  compare alternative  model  structures  (Luthy 
et  al., 1992). This  method was used to  compare  the envi- 
ronments of segments described by n-mer  pairs  that  adopt 
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Fig. 3. Accessible surface  areas  of  n-mer  pairs.  Each  point of this  plot 
shows  a  pair  of  accessible  surface  areas  for an n-mer  pair.  A  global  ac- 
cessible  surface  area is computed  for  each  of  the  106  proteins.  An  ac- 
cessible  surface  area is calculated  by  adding  the  accessible  surface  area 
contributions  for  each  of then  residues of one  protein in an n-mer  pair. 
Since  there is no  natural  ordering of the  proteins  in  an  n-mer  pair,  the 
protein  segment  with  the  lower accessible surface  area is assigned to  the 
y-axis  (vertical),  placing  all  points  at or below  the  line y = x. Open 
squares (0) represent  same  structure  pairs. Filled squares (W) represent 
pairs  with  similar  secondary  structure  but  different  tertiary  structure. 
Open  circles (0) represent  pairs  where  neither  region is in  a helix or 
strand,  but  the  two  loops  are  not  similar.  Finally,  filled  circles (0) 
represent  pairs  with  different  local  secondary  (and  generally  tertiary) 
structures. 

different  structures. A 3D  profile  score is computed  at 
each residue based on three  factors: (1) the  area of the res- 
idue  buried in the  protein  and inaccessible to solvent; 
(2)  the  fraction of side  chain area  that is covered by polar 
atoms (oxygen and nitrogen); and (3) the local secondary 
structure. In examining  alternative  models, a 3D  profile 
score is generated  for each  model and  then  compared. 
Moreover, by computing a local 3D score  over  a  moving 
window  along  a  modeled  chain,  a  poorly  modeled seg- 
ment  in an otherwise  accurate  model  should  stand out 
with a low score. Based on this  example,  the  local  3D 
score  of  a  native  n-mer  segment was compared with the 
score of an alternative segment - the same segment mod- 
ified by replacing the secondary structure assignment with 
that of the paired segment. An example for  the n-mer pair 
(VDLLKN, 2hla, 3wrp) is presented in Table 2 .  Four 3D 
profiles were generated  for each  instance of an n-mer of 
interest: (1) the  n-mer itself; (2 )  the n-mer with the  alter- 
native  secondary  structure; (3) the  n-mer plus  three  up- 
stream  and  three  downstream residues; and (4) the n-mer 
plus  three  upstream  and  three  downstream  residues with 
the  alternative  secondary  structure. 

The 3D  profile  method was applied to n-mers  from 
the different  structure  subgroup.  Unfortunately,  the  pro- 
file scores  failed to provide  adequate  contrast over  these 
short regions of the  chain. In 6 of 11 cases the native 
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Table 2. Example of 3 0  profile and secondary  structure swapa 

A - Environment File for Normal  Trp aporepressor for Residues 23-28 
Environments of Residues in: 3wrp 

ResN  Nam Ab 
23  VAL  83 .O 

Fp SS Env . 

24  ASP  54.6 
0.76 H P2 

25  LEU 65.6 
0.90 H P2 
0.67 H P2 

26  LEU  121.7  0.36 H B1 
27  LYS  69.6 
28 ASN 58.5 

0.82 H P2 
0.84 H P2 

~~~ ~ 
~~~ ~~~~ 

B.I. Cohen et al. 

B - Verify 3D Plot Results File for Normal Trp aporepressor for Residues 23-28 
Quality: 1.33oooO 

Sequence position accumulated 3D-1D 

V 1 
Score  Score . . 

D 2 
-0.48  -0.48 
-0.20 0.28 

L 3 -0.55 
L 4 0.72 

-0.35 
1.27 

K 5 1.33 
N 6 1.28  -0.05 

0.61 

C - Environment File for Swapped Trp aporepressor for Residues 23-28 
Environments of Residues  in: 3wrp 

ResN Nam Ab Fp SS Env 
23 VAL 83 .O 0.76 C P2 
24 ASP 54.6 0.90 c P2 
25 LEU 65.6 0.67 S P2 
26 LEU 121.7 0.36 S B1 
27 LYS 69.6 0.82 S P2 
28 ASN 58.5 0.84 S P2 

D - Verify 3D Plot Results File for Swapped Trp aporepressor for Residues 23-28 

Sequence position accumulated 3D-1D 

V 1 -0.88 
D 2 -0.39 

-0.88 
0.49 

L 3 -1.69 -1.30 

Quality: 1.13oooO 

Score Score . . 

L 4 -0.56 
K 5 0.03 

1.13 
0.59 

N 6 -0.13 -0.16 
~~~ ~~ 

~~~~ ~~~~~~~~~~ . . ~~ 

~~ ~ ~ 

~~~ -. 

a In  this  example,  the  n-mer  pair  (VDLLKN,  2hla,  3wrp) is considered.  First,  residues 15-20 
of  tryptophan  aporepressor  (3wrp)  are  run  through  the  3D  profile  programs.  The  3D  profile is 
done  in  two  steps.  First,  the  PDB  entry is analyzed  to  produce  the  table  shown  in  part A. This 
table is then  fed  to  a  second  program  that  produces  the  score  shown  in  part B. The  “swapped” 
version of the  n-mer is produced  by  replacing  the  secondary  structure (SS) column  of  the  part 
A table  with  the  secondary  structure of the  n-mer  in  the  paired  protein.  In  this  case,  the  second- 
ary  structure  assignments  from  human class 1  histocompatibility  antigen  (2hla) residues 36B-41B 
are used as  shown  in  part C. Part D shows  the  score  for  the  swapped  n-mer  segment.  In order 
to look at  a  larger piece of the  polypeptide  chain,  this  same  method-  3D  profiles  on  a  segment 
with  the  native  and  then  swapped  secondary  structure-  was  used  on  segments  that  included  the 
n-mer  sequence  and  three  residues  upstream  and  downstream  on  the  protein. 

structure scored  better than  the swapped  structure.  With 
the  larger window  (three additional residues at each end 
of a  segment), the native structures  scored essentially the 
same.  Here,  in 6 of 10 cases (an  n-mer  sequence  at  the 
N-terminus of a  protein  eliminated  one  of the original 11 
cases) no significant  change was observed. Two  of  the 10 
protein  examples went either to  or  from higher  native 
scores when the window was enlarged. A real change in 
secondary  structure  could  also influence the  other  two 
factors. For example, an edge ,&strand will expose  a  dif- 

ferent set of residues than  an a-helix with the  same se- 
quence  located in the  same  general  part  of  the 3D 
structure. The simple act of swapping secondary structure 
assignments does  not  account for  other changes.  Presum- 
ably,  these  sequences can be  accommodated  in  both ge- 
ometries, but  are  not ideally suited to either. Thus,  the 3D 
profile method is not suited to recognize the correct match 
of local  sequence and  structure. 

In  an  attempt to  quantitate  the  conformational ambiv- 
alence of the n-mer pair sequences, we investigated the ac- 
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curacy of secondary  structure prediction  algorithms  as 
applied to these  peptides. Our analysis consisted of  three 
parts.  First,  the  Chou-Fasman  secondary  structure pre- 
diction algorithm (as implemented in the computer program 
CONFORM [Molecular Biology Information Resource, 
19891) was applied to  the n-mer  sequences.  Next,  a  rela- 
tionship between amino acid  composition  and  secondary 
structure  content suggested by several prediction  methods 
was explored. Finally, the residue compositions of the seg- 
ments of the  structurally  different  n-mer  pairs where tab- 
ulated  and  compared  to  the  compositional biases. 

Chou-Fasman  prediction on n-mer pairs 

Are  the sequences of the most structurally  disparate n-mer 
pairs  composed  of  residues  that  are  known to be  struc- 
turally  ambivalent? The Chou-Fasman  prediction  method 
is based on  the observed  propensities of  amino acids to  
participate  in  particular types of secondary  structure  fea- 
tures  (Chou & Fasman, 1978). This  method uses these 
propensities as  a measure in evaluating sequence windows 
for possible a-helix or 0-strand  structure. The  CONFORM 
program  only  reports results for a given secondary  struc- 
ture  type if the results are  above a certain  threshold. If  
the  n-mer sequences in the proteins  of the  structurally 
different  subcategory were conformationally  ambiguous, 
then  Chou-Fasman  could  report  both  a-helix  and  P-strand 
propensities above  the  threshold (exemplified by points 
in the  upper  right-hand  quadrant  of Fig. 4) or  both  pro- 
pensities below the  threshold.  Incorrect  predictions on 
these  regions  would  still  be  interesting if the  Chou- 
Fasman  method  encounters  strong signals for  both heli- 
cal and extended structure.  In  one  case,  (NAAIRS,  3pfk, 
2tmn-E)  (points A5 and B5 on Fig. 4), Chou-Fasman 
correctly predicts an a-helix  for  the n-mer segment in 3pfk 
and a &strand  for  the segment in  2tmn-E.  This predic- 
tion  requires the successful incorporation of conforma- 
tional  preferences from  the  flanking regions. In  general, 
Chou-Fasman predicts an a-helix for six of the eight cases 
where an a-helix is found in the n-mer  region.  Similarly, 
Chou-Fasman  predicts a @-strand in four  of  the eight 
cases where  a strand is actually assigned in the region. 
These  predictions  are consistent with the 55-65% accu- 
racy  expected for  secondary  structure  prediction.  The 
Chou-Fasman  method generally reports  that  both  a-helix 
and  0-strand  are plausible  in the 16 n-mer  regions.  In 
only  one case  does  Chou-Fasman  fail to report  that  both 
a-helix  and  @-strand were possible conformations  for  at 
least one  member  of  the  n-mer  pair.  In  this one example, 
(FGVGSA, 2er7-E, lmba)  (points  A2  and B2 on Fig. 4; 
structures  shown in Kinemage 4), the  Chou-Fasman  pre- 
dictions are totally reversed- a-helix  for  the segment con- 
taining a  &strand  and  &strand for  the segment containing 
an a-helix.  These  results  highlight  the need for  struc- 
turally  context  dependent  secondary  structure  prediction 
algorithms. 
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Fig. 4. Chou-Fasman results. This  plot  shows  the results of running  the 
program  CONFORM  on  the  eight  n-mer  pairs listed in  Table 1. Rather 
than  standard  Chou-Fasman (P,) and (Po)  results, CONFORM gives 
the  number of standard  deviations  above  a  pure  chance of an  alpha or 
beta  conformation.  The  letter A is used to  plot  a  point  for  an  n-mer 
found  in  a  helical  conformation while the letter B plots  a  point for an 
n-mer  in  a  strand  conformation.  The  number next to  the  point  relates 
to  the  numbering  scheme  established in Table I .  Note  that  alpha  and 
beta  standard  deviations (SDs) below a  value of 1 .O have  no  meaning 
in  the  context of these  results. 

Amino acid composition and 
secondary  structure  content 

Although  secondary  structure preferences of amino acids 
may  not be strong  enough to accurately  predict  locations 
of secondary  structure  features, amino acid composition 
has been used to successfully predict the secondary  struc- 
ture  content of a protein, a surrogate  for  protein  tertiary 
structural class. The  major difference is that  proteins with 
a mixture of a-helix  and  0-strand  structures  are  not  fur- 
ther  divided into 01 + @ or a/@ classes. Within  the last 10 
years,  statistical  approaches to  secondary  structure con- 
tent  prediction based on amino acid  composition have 
yielded relatively good (-80%) results  (Sheridan et al., 
1985; Klein & DeLisi, 1986). Even  better  results were re- 
ported by Muskal  and Kim (1992), using  a tandem  com- 
putational  neural  network. 

Why is amino acid composition  information useful for 
the  prediction of secondary  structure  content? To revisit 
this  question, we examined  the  residues involved in the 
80 structures  from which the  n-mer  pair  data set was de- 
rived. Residues that  participate in regular secondary struc- 
ture were grouped  into  one of three  categories: alpha, 
parallel  beta, or  anti-parallel  beta. These are collected  in 
a triangle  plot  (Fig. 5 )  that shows the  backbone  confor- 
mational  preferences  of  each amino acid. The triangle 
plot  presentation  leads to  several observations.  Not  sur- 
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Fig. 5. Normalized  amino  acid  attraction to secondary  structure  type. 
A triangle  plot  allows  the  easy  plotting of three  coordinates  on  a  plane. 
In  this  figure,  the  coordinates  are  the  normalized  fractional  population 
of each  amino  acid  in or-helices, parallel  P-strands,  and  anti-parallel 
/%strands. For  example,  isoleucine  appearance  in pieces of regular sec- 
ondary  structure is described by the  triple [0.24,  0.46, 0.301 and is ap- 
propriately  plotted  in  the  triangle.  The  figure  shows  only  the  central 
region of a  triangle  plot. A full version of this  triangle  plot  would  have 
three  types of secondary  structure  units (or-helices, parallel  /3-strands, 
and  anti-parallel  P-strands) represented at  the vertices. This  plot presents 
the  normalized  data  points  for  each  amino  acid  and  isobars for each of 
the  three  implicit  vertices. 

prisingly,  proline lies most  distant  from  alpha  structure, 
whereas glutamate  tends to  gravitate  toward  alpha  struc- 
ture. A  similar  relationship  can be seen for parallel  beta 
structure: isoleucine and valine favor  this  structure,  and 
glutamine  and  tryptophan avoid it.  Threonine is prefer- 
entially seen in  anti-parallel  beta  structure.  Although iso- 
leucine and valine are  most  commonly  found in  parallel 
beta  structure, leucine is found in the center of the  trian- 
gle, equally compatible with all three structure types. Care 
must  be  taken in interpreting  these preferences for statis- 
tically rare  amino  acids.  For  example,  tryptophan is the 
least commonly occurring amino acid in protein sequences. 
This  sample  contains  only 288 tryptophan residues, well 
below the average  of  1,094 seen for  the  other 19 amino 
acids.  Similar  care  should be used in  analyzing  the  struc- 
tural biases of histidine, cysteine, and  methionine. 

The relative likelihood that each amino acid will appear 
in  a  protein  within  an a/a ,  p/@, or a/6 protein is plot- 
ted  in  the  triangle format in Figure 6. A comparison of 
Figures 5 and 6 suggests that  enrichment in  some  amino 
acids  may be the  hallmark of a  protein within a  particu- 
lar structural class. For example, lysine is uncommon  in 
@//3 proteins.  On  the  other  hand,  threonine is common in 
anti-parallel  P-strands  and in @/0 proteins.  When  the 
amino acid composition of the n-mer pair sequences is an- 
alyzed,  leucine and  alanine  are seen to be the most  com- 
mon  components (see Fig. 7). The relative  paucity of 
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Fig. 6. Normalized  amino  acid  attraction to tertiary  structure  content 
class.  This is another  triangle  subplot  as  described  in  Figure 5 .  Three 
secondary  structure  content classes-all alpha, all beta,  and  alpha/beta- 
would  be  represented  at  the  vertices of a full triangle. The  data  points 
for the 20 amino  acids  have  been  normalized so that  each of the  three 
secondary  structure  content  classes  occurs  in  equal  numbers. 

cysteine,  methionine,  tryptophan,  and tyrosine  may re- 
late to their  infrequent  occurrence  in  protein  sequences. 
From  an  examination of Figure 6 ,  it is clear that leucine 
and  alanine  are near the center of the triangle plot.  This 
suggests that these amino acids are  compatible with sev- 
eral  folding  motifs. Perhaps this  explains  their common 
occurrence within n-mer  pairs.  Presumably, the lack of 
proline residues in  n-mer  pairs reflects the power of the 
conformational restriction  imposed by the pyrrolidine 
ring. 

Discussion 

The  rapid expansion of the  protein  structural  database has 
created  an  opportunity  to reexamine  a  paradigm  first 
posed by Kabsch and  Sander (1984): Locally identical se- 
quences are  compatible with heterogeneous  structures. 
Initially,  this was clear for  pentapeptides,  but  this work 
and  the work of Wilson et al. (1985) extend the concept 
to hexapeptides. We expect that  as  the  structural  database 
grows,  heptamers,  octamers,  and even longer  identical 
sequences will be found with distinct  structures.  Zhong 
and  Johnson (1992) synthesized peptides that would ap- 
pear to favor  a-helical  structure based on a  Chou-Fasman 
prediction  but that actually  are found in 6-strand regions 
of proteins.  Circular  dichroism spectroscopy experiments 
show  these  peptides can be  induced to fold into either 
a-helical or 0-strand  conformations by varying the sol- 
vent environment. Recent results  from Shoham  (pers. 
comm.) suggest that a 15-residue peptide from cholera- 
toxin adopts  different  structures in solution as determined 
by NMR, in the  context of the  protein by X-ray  studies, 
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and when bound  to a monoclonal  antibody. On the  sur- 
face,  this  dissociation  of  sequence  from  structure  would 
seem to  create immense  difficulties for  fragment-based 
aspects  of  homology  model  building  algorithms and  for 
de  novo  structure  prediction  algorithms  that exploit  a 
buildup  procedure (Vasquez & Scheraga, 1988) or second- 
ary  structure  prediction  methods. We suggest that  the 
folding class of a protein  provides  a  global  constraint on 
the local conformation  of these conformationally  ambiv- 
alent  peptides that  favors a particular  backbone  geometry. 
Perhaps  this explains why structurally  distinct  n-mers 
tend  to be found in proteins  from distinct folding classes. 
Alternatively, it may  be  possible to exploit  a  family  of 
aligned sequences to avoid  making a prediction for a  con- 
formationally  ambiguous region of one  particular sequence 
(Benner & Gerloff, 1991; Russell et al., 1992; Rost et al., 
1993). 

There  are  two specific implications of this observation. 
First,  secondary  structure  prediction  algorithms  are un- 
likely to improve unless class or  motif  dependent  infor- 
mation is incorporated  during  their  development. Until 
recently,  there  have not been enough  examples  in  each 
class to constitute a statistically meaningful database.  This 
has  begun to change-algorithms  directed at predicting 
the  secondary  structure  locations  in a/a proteins  are  more 
accurate  than their  unbiased  counterparts (Kneller et al., 
1990; Presnell et al., 1992). In a prediction  of  the  struc- 
ture  of IL-4 (Curtis  et  al., 1991) in advance  of  the  NMR 
structure  determination (Smith et al., 1992), the helical re- 
gions  of  this a/a protein were predicted with 90% fidel- 
ity.  Second,  peptide  fragment  databases  of  the  types 
constructed by Unger et al. (1989) or Rooman et al. (1992) 
could be improved.  Presumably,  fragment  databases 
drawn  from  proteins within a given structural class will 
contain higher quality  information  for  protein  homology 
model  building  studies.  This  has been borne  out in a pre- 
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Fig. 7. Scaled  frequencies of amino  acids  in  different 
structure  n-mer pairs. This  bar  graph  shows  normalized  ap- 
pearance  frequency  for  each of the  20  amino  acids  in  the 
identical  sequences  of  the  eight  n-mer  pairs  in  the  subclass 
of disparately  different  for  the  set  of  different  structure 
pairs.  The  normalized  appearance  frequency  for  each 
amino  acid is calculated by counting  the  number of appear- 
ances  of  the given amino  acid  and dividing by the  expected 
number  of  appearances  (based  on  actual  counts  in  the  en- 
tire PDB) in  a  random  sample  equal  to  the size of the  to- 
tal  number  of  residues  in  all  different  structure  pairs. For 
example,  histidine  occurs  nine  times  in  disparately  differ- 
ent  structure  pairs.  Given  a  total of 48 residues in dispa- 
rately  different  structure  pairs (1/48 = 2.1%)  and  an 
expected  appearance  rate of 2.2070, histidine  appears 
slightly less than would be expected. The  number over each 
bar gives the  actual  appearance  counts.  The  dash-dot  line 
shows  the  mean  normalized  appearance  frequency, while 
the  dotted line above  the  mean line and th'e dashed line be- 
low give the 75 and 25 percentile  normalized  appearance 
frequencies,  respectively. 

liminary  fashion by the work of Chothia  and colleagues 
(1989) on immunoglobulin  structures. 

It is somewhat  puzzling  that  the  n-mer  pairs  that 
adopted distinct  structures  occupied  remarkably  similar 
environments  within  the  proteins  from which they were 
extracted.  Certainly,  from  the  standpoint of solvent  ac- 
cessibility, these sequences achieved a  comparable degree 
of  burial in each  protein.  This is consistent  with the im- 
portance of the  hydrophobic  effect  in  organizing  protein 
tertiary  structure.  Even  the  conformationally sensitive 
3D-1D profiles of Eisenberg and coworkers (Bowie  et al., 
1991)  were unable to shed light on the environmental pref- 
erences of  the  conformationally  ambivalent sequences. 
We conclude that  proteins  are sufficiently plastic that suit- 
able  environments  can  be  created  for specific peptide se- 
quences  even when they adopt distinct  conformations. 
Perhaps  the mechanism by which this  accommodation is 
made will be clear from  the  study  of  additional examples 
of  this phenomenon. 

Methods 

A data set was constructed  from  the Brookhaven  Protein 
Data Bank (version of July  15,1990) by selecting all unique 
protein chains. Where  two chains have identical sequences 
(e.g., the A and C  chains of hemoglobin or two  versions 
of flavodoxin), only one  structure was chosen. This choice 
was based on the resolution  of the crystal  structures  and 
the availability of non-a-carbon  coordinates.  The initial 
data set consisted of 366 chains  from 316 proteins. 

To speed the  search  of  the  PDB sequences,  a  hash ta- 
ble algorithm was employed.  Briefly,  a  hash  system is 
composed  of a table  (a set of pigeonholes) and a hash 
function  that assigns  each  object  (in  this  case 5-mers) to  
a slot (see Sedgewick, 1983). A toy example of a hash sys- 
tem  for 5-mers  could  include  a table with 20 slots and a 
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hash  function  that assigned 5-mers to a  slot based on the 
first  residue of the  5-mer.  Although  different 5-mers 
might be assigned (hash) to  the same  slot,  all  identical 
5-mers would necessarily hash to  the  same  slot.  Within 
each  slot,  the 5-mers were searched for 5-mer pairs. The 
5-mer pairs were extended to longer  n-mer  pairs  where 
possible, and initially all n-mer  pairs where n was greater 
than 5 were considered. 

It is not  surprising  that  many  long  n-mer  pairs  can be 
found in  pairs of homologous  proteins  (e.g.,  lactate de- 
hydrogenases [21dx,  51dh] from  different  organisms). 
These  n-mer  pairs are  not  of interest for this study.  Af- 
ter  performing pairwise  alignments  (Smith & Smith, 
1990), any n-mer  pairs  containing  proteins that have at 
least 50% pairwise  residue  identity were excluded from 
further  study. 

The 50% pairwise  residue  identity  cutoff removes in- 
tersequence  similarities,  but it fails to deal with interpair 
similarities.  Redundant  n-mer  pairs  occur when two or 
more sequentially  similar  proteins contain n-mers that 
pair with an n-mer  in a different  protein. For example, 
VDLLKN is found in human class I histocompatibility 
antigen  (lhla),  trp repressor  (2wrp), and  trp  aporepres- 
sor (3wrp). The  n-mer  pair between 2wrp and 3wrp is 
eliminated because of the obvious sequence similarity, but 
two largely redundant  n-mer  pairs  remain:  (VDLLKN, 
lhla,  2wrp)  and  (VDLLKN,  Ihla,  3wrp).  One of these 
two  n-mer  pairs is assumed to contain  redundant  infor- 
mation  and is removed from  further  consideration. 

The 106 protein  domains were each visually assigned 
to a  tertiary  structural class.  These  assignments are  con- 
sistent with previous  taxonomic  studies  (Sternberg & 
Thornton, 1978; Richardson, 1981). The pair of tertiary 
structural classes associated with each constituent  protein 
serves as  an  attribute of each  n-mer  pair. 

The  n-mer  pairs  can be divided into  four categories 
from a comparison  of  the  3D  structures of the residues 
in the  two proteins:  identical  sequence, same  structure; 
identical sequence, different structure; identical sequence, 
distinct  structure version; or  identical  sequence, distinct 
loops. These four categories are referred to as  local  struc- 
ture difference groupings.  The first  consideration  in  the 
grouping  process  requires an assignment  of  regular sec- 
ondary  structure.  Secondary  structure assignments are 
made  using the  computer  programs DSSP  (Kabsch & 
Sander, 1983) for  strand assignments and  DEFINE (Rich- 
ards & Kundrot, 1988) for helix assignments. The decision 
to use these two  programs was based on our experience 
comparing  algorithmic  assignments with observations of 
structures on a graphics workstation.  The use  of a-carbon 
positions  in  DEFINE  and  hydrogen  bonding  patterns in 
DSSP  accounts  for  different  results  from  the  two  pro- 
grams.  For example, the lack of consideration of hydrogen 
bonds  in  DEFINE leads to  some false  positive  @-strand 
assignments. Although we have generally found  DEFINE 
to be superior  for assigning helices (e.g., (NDSTVL, 

labp,  Ihds-A)),  there was one  n-mer  pair,  (LKKSAD, 
21dx, 21hb),  where  the  DSSP  identified  a  break between 
two helices that  DEFINE failed to find in a residue-based 
assignment (see Kinemage 2). N-mer  pairs  that have reg- 
ular  secondary  structure  in  one  member  and  a  different 
secondary  structure or aperiodic  structure  in  the  other 
member are clearly in the  different  structure  group. On 
the  other  hand, similar  secondary  structure  assignments 
for  both members do not  guarantee  a same structure  group- 
ing. For example,  two  n-mers  may  contain  6-structure, 
one in the N-terminal four residues and  the  other in  the 
C-terminal  four  residues. In this  case, the  root mean 
square (RMS)  deviations will  be too large to consider  the 
structures to be the  same. When  neither  member of an 
n-mer pair  contains regular secondary structure,  the RMS 
deviation and a structural  loop classification  (Ring et al., 
1992) provide  tools  for  a  quantitative  comparison of the 
two  structures.2  Finally,  assignments  are  checked by vi- 
sual  observations of the n-mer  pair on a graphics  termi- 
nal.3  Figure 8 demonstrates  that a 1.5-A RMS  deviation 
usefully separates  structurally  similar  n-mers  from  their 
structurally  distinct  counterparts.  The  only exception to 
this  dividing line is for  the pair  (CKSSQS,  lmcp, lalc).  
Here, a 6-strand is found in an immunoglobulin fragment 
(Imcp), while the  a-lactalbumin  (lalc) subsegment forms 
a  loop.  The backbone  structure of the region in lalc is sim- 
ilar to  a  strand,  but  the local  environment  lacks  a neigh- 
boring  strand  for hydrogen  bonding (see Kinemage 1). 

The  Chou-Fasman predictions were performed on a 
computer with the  CONFORM  program.  The  entire se- 
quence of a protein  chain  that  contains  the  n-mer of in- 
terest was used as input to a  CONFORM  run. This means 
that residues  upstream and  downstream  from  the n-mer 
sequence  could  also  contribute to the  n-mer region's pre- 
dicted  secondary  structure. 

Supplementary material on Diskette Appendix 

File Cohen.kin  (KINEMAGE  directory)  contains  four ki- 
nemages. The first  two give a sense of some of the details 
involved in  making  judgments on questions of structural 
similarity.  Certainly,  RMS  deviation is one  measure of 
structural similarity.  Kinemage  1  presents an n-mer  pair 
with  a low RMS  deviation between the  backbones  of  the 
two  relevant  protein  segments, but  different  secondary 
structure assignments  (strand versus turn). Kinemage  2 
shows a problem  in relying on  automated secondary struc- 

'The  loop  alphabet is composed of four  characters  (U, J, Z, L) 
based on  the virtual  dihedral  angles  formed  by  the or-carbons of  the  tet- 
rapeptide.  An  n-residue  n-mer is characterized  by n - 3 overlapping  tet- 
rapeptides. For example,  the  conformation of a hexamer (the  usual  case 
in  this  study) is described by a  three-letter  word.  Distinct loop confor- 
mations  form  different  words. 

The  n-mer  pairs were viewed on  a Silicon Graphics Iris using UCSF 
MlDAS software  (Ferrin  et  al., 1988). The n or-carbons of  both  mem- 
bers of  each  n-mer  pair were superimposed using a  least-squares  fit.  The 
RMS error is based on  this  fit. 

~~~ ~~ 
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Fig. 8 .  Root  mean  square  and  sequence  similarity.  The  RMS  deviation 
between the  proteins  in  each  n-mer  pair is plotted  against pairwise aligned 
sequence  similarity.  The  n-mer  pairs  are  divided  into  four  nonoverlap- 
ping  groups based on  the similarity between the  local  secondary  and  ter- 
tiary  structure  of  the  region  composed of the  n-mer  residues  in  each 
protein.  Unfilled  squares  represent  same  structure  pairs.  Open  squares 
(0) represent  same  structure  pairs.  Filled  squares (M) represent  pairs 
with  similar  secondary  structure  but  different  tertiary  structure.  Open 
circles (0) represent  pairs  where  neither  region is in  a helix or strand, 
but  the  two  loops  are  not  similar. Finally, filled circles (0) represent pairs 
with  different  local  secondary  (and  generally  tertiary)  structures. 

ture assignments.  Here, one of the  n-mer segments is 
given two  different  secondary  structure assignments by 
two  assignment programs.  The final  two  kinemages of- 
fer representative results of this  study. Kinemage 3 shows 
a pair of similar local structures embedded in  proteins  that 
belong to  different  tertiary  structural classes. Kinemage 
4  portrays an example  of an n-mer  in  a helical conforma- 
tion in one  protein and a strand  conformation in another. 

An ASCII tab-separated listing of the 59 n-mer  pairs 
appears in the SUPLEMNT directory (file Cohen.SUP). 
The first  record  has  column  headings. 
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c 

Figure added in proof (see  alsofacingpage). An example of a helix and strand with the same hexapeptide sequence. The sequence 
NAAIRS is found in both (A) thermolysin (2tmn) and (B) phosphofructokinase (3pfk). Stereo pairs of the relevant fragment 
of the protein together with the  surrounding environment are shown. A: In the p/p domain of thermolysin, the  NAAIRS 
subsequence begins a  &strand. 
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B: In the dp-class  protein,  phosphofructokinase, NAAIRS can  be seen as part of an a-helix. 


