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Abstract 

Protein  structures  come in families.  Are  families  “closely knit” or  “loosely knit” entities? We describe a mea- 
sure of relatedness  among  polymer conformations. Based  on  weighted distance  maps,  this  measure  differs  from 
existing  measures  mainly in two  respects: (1) it is computationally fast, and (2) it can compare any  two proteins, 
regardless of their  relative  chain  lengths or degree  of similarity. It does  not  require  finding  relative  alignments. 
The  measure is  used  here to determine  the  dissimilarities  between  all 12,403 possible  pairs of 158 diverse  protein 
structures from the Brookhaven  Protein  Data  Bank (PDB). Combined with minimal  spanning  trees  and  hier- 
archical  clustering  methods, this measure is used to define structural families. It is  also  useful  for  rapidly  searching 
a dataset of protein structures for specific  substructural  motifs. By using an  analogy t o  distributions of Euclid- 
ean distances, we find that  protein families are  not tightly knit entities. 
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Pioneering  work  over  the  past 20 years  has  shown that 
proteins  fall  into  families  of  related  structures  (Levitt & 
Chothia, 1976; Richardson, 1981; Richardson & Richard- 
son, 1989; Chothia & Finkelstein, 1990). How  many  fam- 
ilies are  there?  Are  the families  “tightly knit”  or “loosely 
knit”? That is, do two  proteins within a family have much 
greater  structural similarity than  two  proteins  from  dif- 
ferent  families? If so, they are tightly  knit. What  can we 
learn  about  the forces  of  protein  folding and  evolution 
from observing  how  proteins  cluster into families? 

In order to address  these  questions, it is necessary to  
have  a  suitable  measure of the  structural similarity be- 
tween proteins,  because a “family”  relationship  can  only 
be  defined  in  terms of some  degree of similarity.  Several 
measures of structural similarity  have been developed 
(Remington & Matthews, 1978; Taylor & Orengo, 1989; 
Rackovsky, 1990; Sali & Blundell, 1990). There is no un- 
derlying fundamental principle dictating  that  one similar- 
ity  measure is better than  others. Ultimately, the concept 
of  “similarity” is based upon  some  criterion  arbitrarily 
chosen  for a  particular  purpose  (Maggiora & Johnson, 
1990). For example, a common measure of structural sim- 
ilarity is the  root mean  square (RMS) deviation of atomic 
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positions  after  superposition.  RMS is a  useful  distance 
metric for  comparing structures that  are nearly  identical: 
for example,  when  refining or  comparing  structures  ob- 
tained from X-ray  crystallography or NMR  experiments. 
However,  RMS is of limited  value  as  a  general  measure 
of similarity because it is a  “maximum  likelihood  estima- 
tor” of the  standard deviation between two  structures only 
if the individual errors  are  Gaussian-distributed with zero 
mean  (Beers, 1957). The  Gaussian  distribution  assump- 
tion  can be  reframed  as an assumption  that  the  differ- 
ences  between  two  compared  structures  arise  from 
fluctuations  that  obey a  square-law  potential.  A  square- 
law potential is only a  good  approximation  for small con- 
formational deviations. If  two  structures  are  not  in  the 
same  energy well, or if errors  are  large, RMS will lose its 
underlying  justification. In addition,  the use of an RMS 
distance  criterion to  compare  two  protein  structures re- 
quires  making  assignments in which atom i of protein  1 
“is  equivalent to”   a tomj  of protein 2. When  comparing 
proteins with  little  sequence  identity  or  unequal  chain 
lengths,  this  requires  making  arbitrary  decisions. 

Some  similarity  measures  require  making  structural 
alignments  of  one  protein with the  other (Taylor & Or- 
engo, 1989; Sali & Blundell, 1990). When  there is a  bio- 
logical or  evolutionary basis for making these alignments, 
such  methods  have  the  advantage of allowing  a high de- 
gree of structural  discrimination  among highly similar 
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proteins.  For  proteins  that  are  not highly similar,  how- 
ever, making alignments requires making  certain  arbitrary 
choices about  the possible locations of insertions and de- 
letions  and  the choices of gap penalties.  These  decisions 
can be computationally intensive. 

Rackovsky (1990) has  developed a similarity  measure 
that  compares  distributions  of  conformations of chain 
segments up  to  four residues  in  length.  Whereas it cap- 
tures  structural  information  of residues close together 
in  sequence, our interest  here is to  capture  information 
about  contacting residues at all separations  along  the 
chain. 

Our  purpose here is better  served by yet a different 
measure  of  structural relatedness. The following  ques- 
tions  motivate  the need for a  different  measure.  What is 
the shape of protein  conformational space? What is a use- 
ful  “reaction  coordinate”  along which a  protein  folds to 
its  native  state? In models of proteins,  such  as  those  in- 
volving chains on lattices,  how  similar is a  model  confor- 
mation to  the  true native conformation?  To  address these 
questions, we need a similarity measure for which the  two 
most  important criteria are (1) that it must be able to com- 
pare  any  two  conformations,  no  matter how different, 
and (2) that it must  entail  making  the fewest possible ar- 
bitrary decisions. Furthermore,  the  measure must  avoid 
comparing  structures based on microscopic  details  such 
as  hydrogen  bond angles, since these are  not  appropriate 
for some  low-resolution models. Many such problems do 
not involve insertions,  deletions,  or  gaps,  and  therefore 
do not require that a similarity measure have sophisticated 
alignment  machinery. 

If an  algorithm  that measured structural relatedness 
were computationally  efficient  enough,  it  could  also  be 
put  to  other uses. For  example,  since  the  number  of 
known  protein  structures is P = 100-1,000 (depending 
on whether we choose all known  structures, or whether 
they  are selected in some way to avoid  repeats of nearly 
identical molecules), the  number of pairwise comparisons 
involved is [ P  x ( P  - l)] /2 = 104-106. If we could  com- 
pute all these pairwise “distances,” we could  measure the 
interrelatedness  among  proteins  to  learn how  they clus- 
ter into families.  Different  similarity  measures  make dif- 
ferent  trade-offs between  speed, number  of  arbitrary 
decisions, and  discrimination. By choosing a measure that 
is as simple, fast  to  compute,  and  nonarbitrary  as pos- 
sible, we trade  off  the degree  of  discrimination  among 
highly similar  proteins  obtained by other  measures,  but 
the  latter is less important  for  our  purposes. 

The outline of this paper is as follows. We first  introduce 
the  algorithm  for  measuring dissimilarity. (It measures 
“dissimilarity” because it is 0 for identical  structures,  and 
increases as  the  structural similarity between two  proteins 
diverges.) We call it CONGENEAL  (CONformational 
GENEALogy) because it compares  conformations  and  can 
generate  family  trees  describing  their  relatedness.  Much 
of this  paper is devoted to showing that  CONGENEAL 

is a reasonable  measure  of  relatedness.  For  example,  in 
one test we show that it is a useful tool  for searching da- 
tabases  of  protein  structures to locate specified substruc- 
tures within  proteins. We then  apply  this  measure to  the 
pairwise comparison of 158 diverse protein  structures and 
use clustering  algorithms to identify families. Finally, we 
compare  the dissimilarity  distribution  of  protein  struc- 
tures to simulations of points  distributed in d-dimensional 
Euclidean spaces to explore  the  tightness with which pro- 
teins  cluster into families. 

CONGENEAL: A dissimilarity measure 

The  CONGENEAL dissimilarity  measure  compares the 
weighted distance  maps of two  polymer conformations 
(see Fig. 1). The weighted distance map of a  protein  chain 
conformation  that has N residues is an N x N matrix  in 
which each  matrix  element ( i ,  j )  is a weight, w, equal to 
the  distance, d,,,, between the  a-carbons of residues  i 
and j ,  raised to a power - p  ( p  > 0):  

Two residues that  are  adjacent in  space are assigned a 
large  weight,  whereas  two  residues that  are  far  apart in 
space have a  small weight. Because the  matrix is symmet- 
ric, it is only necessary to  compute  the  upper (or  lower) 
triangle of the  matrix.  The difference between the weighted 
distance  map  and  the  contact  map,  first  introduced by 
Liljas and  Rossmann (1974), is that, in the  former,  the 
weights are assigned from a  continuous  range  of values 
whereas,  in the  latter,  only weights of 0 or 1 are used to 
indicate  whether  or  not a pair of residues are  adjacent. 

The  distance dependence  in Equation 1 resembles that 
of intermolecular  forces.  For  the  purpose  of  dissimilar- 
ity  measures, however, there are no underlying principles 

Fig. 1. Weighted  distance  maps of crambin  with p = 2 on the  left  and 
p = 6 on the  right.  The  height of the  peaks  corresponds  to  the  magni- 
tude of the  weight, w. 
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that direct us to choose a particular value of p .  We have 
investigated p = 1, 2,  4,  and 6 .  When p = 6,  only  the 
closest neighbors contribute to  the weighted distance map. 
Whenp = 2, pairs of residues separated in space by greater 
distances also  contribute. We compare  different values of 
p below,  but the  qualitative results are  found  to be sensi- 
bly independent  of p .  We mainly use p = 2. 

We now describe how the dissimilarity score is obtained 
from  the weighted distance  maps for two  conformations. 
Given  two  proteins, R and S, let r;, be the  distance be- 
tween residues i and; in  protein R and let sjj be the dis- 
tance between residues i and; in protein S. First, consider 
a simple case. When R and S have the  same  chain  length, 
N,  and have a direct residue-to-residue alignment,  the dis- 
similarity between the  two  proteins is given by: 

N N  

If two  proteins  have  identical weighted distance  maps, 
then d(  R ,  S) = 0. 

Now,  in  order to compare  proteins with different  chain 
lengths and  unknown alignments, we define a score based 
upon sliding one  map  across  another, similar to a corre- 
lation  function.  That is, if two  proteins, R and S, have 
chain  lengths M and N ,  respectively, where A4 I N, then 
we calculate a series of dissimilarities  as  follows: 

where the  range of “offsets,” 7, of one weighted distance 
map relative to  the  other varies from  -M/2  to N - MI2 
for a total  of  Ndifferent alignments. The dissimilarity be- 
tween the  proteins R and S is then  obtained by finding  the 
offset  for which the similarity is greatest: 

d ( R , S )  = min(d’(R,S,T)). (4) 

This  procedure  alone,  however, is not sufficient to 
specify  a  score,  since the sliding of distance  maps  means 
that some (i,;) pairs of one  conformation will sometimes 
go  unpaired with (i’,;’) pairs  in  the  other.  For  example, 
if 7 = - 5 ,  then  the residue  pair (l,3)R of protein R will 
be  compared to a  nonexistent  pair (-4,-2)s of  protein 
S. Therefore,  there  are  two  additional steps  in the scor- 
ing  method.  First,  the weighted distance  maps  are  made 
periodic (i.e.,  “wrapped  around”) so that residue pairs  are 
defined  for all  offsets.  In this  way, the  number of com- 
pared residue pairs is the  same for all alignments.  Second, 
because a  “wrapped-around’’ weighted distance map may 
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imply  some  structural  features  that  are  not  present  in 
the  actual  conformation (e.g., a helix can move from  the 
N-terminus  end  of a conformation  to  the  C-terminus 
end), a randomization  procedure is used to ensure that  the 
dissimilarity score and alignment do not  contain  artifacts 
from using  periodic weighted distance  maps.  The  ran- 
domization  procedure is as follows. For  any  comparison 
of  residue  pairs, ( i , j ) R ,  (i’,;’)s, involving  a  wrapped- 
around residue  pair, a difference weight is not  added  di- 
rectly to the dissimilarity score. Instead, these weights are 
collected in separate bins based on contact  order  (the  con- 
tact  order  for residue  pair (i ,;)  is defined as 1; - i I, i.e., 
the  separation of the residues along  the  chain).  The binned 
distance weights from  one  conformation  are  then  ran- 
domly matched with the binned distance weights from  the 
other  conformation  and  then  added  to  the dissimilarity 
score. In practice,  the  offset  that gives  rise to  the best 
alignment of two  proteins  contains few references to non- 
existent (i.e.,  wrapped-around) residue pairs,  and several 
different  methods  that we tried for  treating them gave 
similar  results. 

When  comparing  a  larger  protein with a  smaller one, 
CONGENEAL  finds  the  part  of  the  large  protein  that is 
most  similar to  the weighted distance  map of the smaller 
protein.  This  feature  makes  CONGENEAL useful for 
rapidly finding specific substructures within different  pro- 
teins  in a structural  database. To search  a database  for a 
specific  substructure,  CONGENEAL is used to generate 
scores  between the  substructure  and  each  protein in the 
database:  a  small  score  for  some  alignment with a given 
protein  locates that  motif within the  protein. 

Validation of the dissimilarity measure 

How  can  one validate a dissimilarity  measure? For  any 
two  proteins,  different measures can predict different de- 
grees of relatedness. As noted  before,  there is no funda- 
mentally  correct  measure  of  relatedness.  Therefore, the 
validation  of  a  dissimilarity  measure  ultimately  depends 
on whether it seems sensible in  light of other knowledge. 
In  the  section  below, we characterize  CONGENEAL in 
the following ways: 

Pairwise tests. (a) Finding sequence alignments. 
When  two  different  proteins  contain  the  same  sub- 
structure, a dissimilarity  measure  should  find the 
sequence  alignment for which the  structures most 
closely superimpose.  (b) Using aprobeprotein struc- 
ture to search the database. A dissimilarity measure 
should  find  related  proteins or substructures  in  a 
search of a structural  database. 
Cluster analysis. We compare 158 proteins pairwise 
and  apply clustering  algorithms to ask  whether the 
dissimilarity  measure  finds sensible family relation- 
ships among  them. We use two  types of clustering 
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methods:  minimal  spanning  trees  and  hierarchical 
trees  based on agglomerative  clustering. 

All protein  coordinates were obtained  from  the  Brook- 
haven Protein  Data Bank (PDB) (Bernstein et al., 1977; 
Abola  et  al., 1987). The set of 158 protein  structures was 
derived from  Appendix 3  of Protein Architecture (Lesk, 
1991). Table  1 lists the proteins and their PDB filenames. 

Pairwise tests 

Finding sequence alignments 
To first  choose  a few examples,  it is reasonable to be- 

lieve that sperm whale myoglobin (lmbd)  and  the A  chain 
of  human  hemoglobin (1 hho-a)  are closely related pro- 
teins, that  sperm whale myoglobin and  the  orange  subunit 
of superoxide  dismutase (2sod) are  unrelated, and  that  the 
lysozymes from  T4 bacteriophage (31zm) and  from hen 
egg white (llyz)  are  only  distantly  related. Figure  2  shows 
the dissimilarity score as a function of alignment for these 
three  comparisons using CONGENEAL with eitherp = 2 
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Fig. 2.  Plots of dissimilarity score versus alignment. For A-C, p = 2. 
For D-F, p = 6. A and D show the comparison of sperm whale myo- 
globin with human  hemoglobin. B and E show the comparison of two 
unrelated proteins: sperm whale myoglobin and superoxide dismutase. 
C and F show the comparison of two weakly similar proteins: T4 (bac- 
teriophage) lysozyme and hen egg white lysozyme. 
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o r p  = 6.  The  point  at which the  score  dips to a minimum 
( 1 )  indicates the degree of similarity between the two  pro- 
teins, and (2) gives the  offset (Le.,  shift) of  one sequence 
starting  position  relative to  the other  sequence for which 
the  structures  bear closest resemblance. 

For  the  three pairwise protein  comparisons  mentioned 
above,  CONGENEAL  finds  the expected  relationships. 
Sperm  whale  myoglobin is found  to be  similar to the 
A  chain  of  human  hemoglobin with an offset  of -6 resi- 
dues.  On  the  other  hand,  Figure 2B indicates that  there 
is no similarity  between  sperm  whale  myoglobin and  the 
orange  subunit of superoxide dismutase. The dissimilarity 
measure  finds  hen egg white  lysozyme and  T4  bacterio- 
phage lysozyme to have  only a small degree of similarity. 
In  this  case, the best score is obtained  at  an offset  of -26 
residues, in agreement  with the  observations  of  Reming- 
ton  and  Matthews (1978) and  Rossmann  and  Argos 
(1976), who  noted  that when  residues 1-80 of the  phage 
lysozyme are aligned with residues 27-106 of  the hen egg 
white  lysozyme,  there is overlap of the active  sites. 

Using a probe  to search the database 

When  a  probe  protein  or  substructure is scanned through 
a protein  database, a dissimilarity  measure  should prop- 
erly rank  order  the  proteins by their similarity to the  probe. 
Below we show three examples - the helix-turn-helix DNA 
binding  motif,  the EF  hand calcium  binding motif,  and 
the  globin  fold - for which the dissimilarity  score  identi- 
fies closely related  protein conformations. 

1. DNA binding motif. A number  of  proteins  are 
known to have similar helix-turn-helix substructures  that 
bind  DNA. X Cro, X repressor, 434 Cro, 434 repressor, 
trp repressor,  and  catabolite gene activator  protein  (CAP) 
all have sequence similarity in  a region of 22 amino acids, 
corresponding to  the helix-turn-helix structural  motif 
(Ohlendorf  et  al., 1983). How widely distributed is the 
helix-turn-helix motif throughout  the protein  database? 
We use CONGENEAL  to search the  dataset  for  the helix- 
turn-helix conformation.  In  our  search,  the helix-turn- 
helix substructure is defined as the 23-residue stretch from 
434 Cro  starting with methionine 15 and ending with gly- 
cine 37. As a simple  test,  Figure  3  shows the result  of 
aligning the 434 Cro helix-turn-helix substructure with 
the full 434 Cro protein.  The deepest  minimum  in Fig- 
ure  3  correctly  identifies the  proper alignment with itself, 
and  the  score  of 0 indicates that it is an exact  match.  The 
other  three minima correspond to  the three  other  turns be- 
tween helices found in Cro. 

The 434 Cro helix-turn-helix DNA binding  substruc- 
ture was then scanned  across the  dataset  of 158 proteins. 
The distribution  of  dissimilarity  scores is shown  in Fig- 
ure  4. Several proteins are  found  to have helix-turn-helix 
substructures  similar to  that of 434 Cro.  Table 2 lists the 
20 proteins with the greatest  similarities to  the target  sub- 
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Table 1. Key  to 158-protein dataset 
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. 

Code 

451c 
155c 
256b 
1 aat 
labp 
2abx 
2act 
1 acx 
6adh-a 
3adk 
2ait 
lalc 
2alp 
4ape 
7api 
3aPP 
2apr 
2atc-c 

2atc-r 

2aza-a 
3b5c 
1 bds 
3blm 
1 bp2 
3c2c 
2ca2 
8cat-a 
lcbp 
1 cc5 
1 ccr 
2ccy-a 
2cdv 
2ci2 
3cln 
1 cms 
2cna 
5cpa 
2CPP 
5cpv 
lcrn 
lcro-o 
2cro 
1 cse 
lctf 

~ ~~ 

lctx 
Scyt 
2CYP 
3dfr 
5ebx 
I ecd 
lefm 
2enl 
Zest 
letu 
2#4-h 
2#4-1 
l fc l  
4fd I 

~" 

No. of 
residues 

82 
134 
106 
288 
306 
74 

218 
107 
374 
194 
74 

122 
198 
330 
339 
323 
325 
305 

152 

129 
85 
43 

257 
123 
112 
256 
498 

86 
83 

1 1 1  
127 
107 
65 

143 
323 
237 
307 
405 
108 
46 
66 
65 

274 
68 

71 
103 
293 
162 
62 

136 
130 
436 
240 
141 
229 
216 
206 
106 

- ." 

Protein  name 

Cytochrome cssl 
Cytochrome csso 
Cytochrome bs62 
Aspartate  aminotransferase 
L-Arabinose  binding  protein 
or-Bungarotoxin 
Actinidin 
Actinoxanthin 
Alcohol  dehydrogenase 
Adenylate  kinase 
Tendamistat 
a-Lactalbumin 
a-Lytic  protease 
Endothiapepsin 
a,-Antitrypsin 
Penicillopepsin 
Rhizopuspepsin 
Aspartate  transcarbamylase  (regulatory 

Aspartate  transcarbamylase  (catalytic 

Azurin (Alcaligenes  denitrificans) 
Cytochrome b5 
Sea  anemone  antiviral  protein 
0-Lactamase 
Phospholipase A 2  
Cytochrome c2 
Carbonic  anhydrase 
Beef liver catalase 
Cucumber  basic  protein 
Cytochrome cs 
Rice cytochrome c 
Cytochrome c' 
Cytochrome c j  
Barley  chymotrypsin  inhibitor 
Calmodulin 
Chymosin  B 
Concanavalin  A 
Carboxypeptidase  A 
Cytochrome  P450  CAM 
Carp  parvalbumin 
Crambin 
X Cro 
434 Cro 
Subtilisin  carlsberg 
C-terminal  domain of ribosomal  protein 

L7/L12 
a-Cobratoxin 
Tuna  cytochrome c 
Cytochrome c peroxidase 
Dihydrofolate  reductase 
Erabutoxin  A 
Erythrocruorin 
Elongation  factor TU 
Enolase 
Porcine  elastase 
Elongation  factor  TU 
Fob KOL  (heavy  chain) 
Fob KOL  (light  chain) 
F, fragment of immunoglobulin 
Ferredoxin 

" .~ 

subunit) 

subunit) 

Code 

3fxn 
3gap-c 

3gap-o 

2 g b  
lgcr 
lgdl-o 
2gls-a 
lgpl-a 
3grs 
lhho-a 
1  hip 
1  hkg 
2hla-h 

2hla-m 

Zhmg- 1 
2hmg-2 
lhmq-a 
1  hoe 
3hvp 
2ilb 
3icb 
4ins-a 
1  kga 

21bp 
31dh 
21h4 
21iv 
llrd 
llyz 
llzl 
31zm 
1 mbd 
4mdh 
Zmev-vpl 
2 m e v ~ v p 2  
2mev-vp3 
4mlt 
lmon-a 
1  nxb 
20vo 
2pab 
9PaP 
2paz 
1 PCY 
4pep 
Ipfk-c 
Ipfk-o 
3pgk 
3pgm 
lphh 
lphy 
2pka 
2plvLvpl 
2plv_vp2 
2plv-vp3 
lpp2-r 

No. of 
residues  Protein  name 

~ ~ 

138 
208 

205 

309 
174 
334 
468 
184 
46  1 
141 
85 

457 
270 

99 

328 
175 
113 
74 
99 

153 
I 5  
21 

173 

346 
329 
153 
344 

87 
129 
130 
164 
153 
334 
268 
249 
23 I 
26 
44 
62 
56 

114 
212 
123 
99 

326 
320 
320 
416 
230 
394 
126 
232 
283 
268 
235 
122 

____ "~ 

Flavodoxin 
Catabolite  gene  activator  protein  (closed 

form) 
Catabolite  gene  activator  protein  (open 

form) 
Galactose-binding  protein 
y-Crystallin 
Glyceraldehyde-3-phosphate  dehydrogenase 
Glutamine  synthetase 
Glutathione  peroxidase 
Glutathione  reductase 
Human  hemoglobin 
High  potential  iron  protein 
Hexokinase 
Human class  1  histocompatibility  complex 

Human class  1  histocompatibility  complex 

lnfluenza  hemagglutinin  (HAl) 
lnfluenza  hemagglutinin  (HA2) 
Hemerythin 
a-Amylase  inhibitor 
HIV  protease 
Interleukin-10 
Intestinal  calcium-binding  protein 
2Zn  insulin 
2-Keto-3-deoxy-6-phosphogluconate 

aldolase 
Leucine-binding  protein 
Dogfish  lactate  dehydrogenase 
Lupin  leghemoglobin 
Leucine/isoleucine/valine-binding protein 
X Repressor 
Hen egg white  lysozyme 
Human lysozyme 
T4  lysozyme 
Sperm  whale  myoglobin 
Malate  dehydrogenase 
Mengo  virus V P I  
Mengo  virus  VP2 
Mengo  virus  VP3 
Mellitin 
Monellin  (A  chain) 
Neurotoxin  B 
Ovomucoid,  third  domain 
Prealbumin 
Papain 
Pseudoazurin 
Plastocyanin 
Pepsin 
Phosphofructokinase  (closed  form) 
Phosphofructokinase  (open  form) 
Phosphoglycerate  kinase 
Phosphoglycerate  mutase 
p-Hydroxybenzoate  hydroxylase 
Photoreactive yellow protein 
Kallikrein  A 
Polio virus VPI 
Polio  virus  VP2 
Polio  virus  VP3 
Snake  venom  phospholipase 

~~ ~ ~~ 

(heavy) 

((3-2-microglobulin) 

(continued) 
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Table 1. Continued 

- 

No. of 
Code residues 

1 PPt 36 
lprc-c 332 

Iprc-1 273 

Iprc-m  323 

lprc-h 258 

2prk  279 
lpte 348 
5pti 58 
4PtP  223 
1PYP 280 
1 r69  63 
Irbb-a  124 
lrei 107 
lrhd 293 
2rhe 114 
4rhv-vpl 273 
4rhv-vp2 255 
4rhv-vp3  236 
3rn3 124 
lrns 72 
2rnt 104 
3rp2 224 

Protein  name 

Avian  pancreatic  polypeptide 
Photosynthetic  reaction  center 

Rhodopseudomonas viridis C  subunit 
Photosynthetic  reaction  center R.  viridis L 

subunit 
Photosynthetic  reaction  center R.  viridis M 

subunit 
Photosynthetic  reaction  center R.  viridis H 

subunit 
Proteinase K 
Carboxypeptidase/transpeptidase 
Bovine  pancreatic  trypsin  inhibitor 
Trypsin 
Pyrophosphatase 
434  Repressor  (N-terminal  domain) 
Ribonuclease  B 
Immunoglobulin V, domain 
Rhodanese 
Immunoglobulin Vh domain 
Rhinovirus  VPI 
Rhinovirus  VP2 
Rhinovirus  VP3 
Ribonuclease  A 
Ribonuclease S 
Ribonuclease T,  
Rat  mast cell protease 

.- 

structure. All seven proteins  known to have  the  DNA 
binding helix-turn-helix substructure  are  in  this  group. 
In all seven cases, the predicted alignment of the  substruc- 
ture with the  protein is identical to  the alignment pro- 
duced by sequence  analysis  (Ohlendorf  et al., 1983). The 
protein with the most similar substructure  (other than 434 
Cro) is 434 repressor.  This is consistent  with the  obser- 

Fig. 3. Dissimilarity  score  versus  alignment of the 434 Cro DNA  bind- 
ing  substructure  with  the  complete  structure of 434 Cro. 

7rsa  124 
5rub-a 260 
5rxn 54 
4sbv-a 199 
2sga 181 
3sgb 185 
lsn3 65 
2sns 141 
2sod-0 151 
1 srx 108 
2ssi 107 
2stv 184 
2taa 47 8 
2tbv 286 
1 tec  279 
1  thi 207 
1 tim 247 
2tmv 154 
4tnc 160 
1  tnf 152 
lubq 76 
lutg 70 
9wga 171 
1 wrp 102 
4xia 393 
2yhx 457 

889 

No. of 
Code residues  Protein  name 

~ 

Ribonuclease  A 
Rubisco 
Rubredoxin 
Southern  bean  mosaic  virus 
Streptomyces griseus proteinase  A 
S .  griseus proteinase  B 
Scorpion  neurotoxin 
Staphylococcal  nuclease 
Superoxide  dismutase  (orange  subunit) 
Thioredoxin 
Streptomyces subtilisin  inhibitor 
Satellite  tobacco  necrosis  virus 
Taka-amylase 
Tomato  bushy  stunt  virus 
Thermitase 
Thaumatin I 
Chicken  triosephosphate  isomerase 
Tobacco  mosaic  virus 
Troponin C 
Tumor necrosis  factor 
Ubiquitin 
Uteroglobin 
Wheat  germ  agglutinin 
trp repressor 
Xylose  isomerase 
Hexokinase 

~~ -~ " -~ 

vation of Mondragon et al. (1989) that  the  amino termi- 
nal domain  of 434 repressor is remarkably  similar to 434 
Cro  and  that  the substructures  are virtually identical. The 
DNA binding  protein that is least similar to 434 Cro is 
Escherichia coli trp repressor. The latter  differs  from  the 
other  DNA binding  proteins  in  two respects: (1) the end 
of  the first helix is more  open,  and (2) the  orientation of 

I 
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Dissimilarity Score 

Fig. 4. Histogram  showing  the  distribution of dissimilarity scores when 
the 434 Cro  DNA binding  substructure is compared  with  a  dataset  of 
158 proteins. 
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Table 2. Proteins with helix-turn-helix motif 

Protein  name 
PDB 

filename  CONGENEAL  RMS 

434 Cro 
434  Repressor  (N-terminal 

domain) 
X Cro 
X Repressor 
Enolase 
Catabolite  gene  activator 

protein  (open  form) 
Catabolite  gene  activator 

protein  (closed form) 
Cytochrome  P450  CAM 
C-terminal  domain  of 

Xylose  isomerase 
Cytochrome c peroxidase 
Photosynthetic  reaction  center 

R .  viridis M subunit 
Photosynthetic  reaction  center 

R .  viridis L  subunit 
trp repressor 
Beef liver catalase 
Erythrocruorin 
Proteinase K 
Glutamine  synthetase 
Hemerythin 
Sperm  whale  myoglobin 

ribosomal  protein  L7/L12 

2cro 

1 r69 
Icro-o 
llrd 
2enl 

3gap-o 

3gap-c 
2CPP 

lctf 
4xia 
2CY P 

lprc-m 

lprc-l 
lwrp 
8cat-a 
1 ecd 
2prk 
2gls-a 
lhmq-a 
1 mbd 

0.000 

0.052 
0.068 
0.099 
0.110 

0.120 

0.126 
0.135 

0.170 
0.177 
0.178 

0.178 

0.189 
0.197 
0.203 
0.205 
0.205 
0.207 
0.209 
0.210 

0.000 

0.380 
0.585 
0.830 
1.634 

1.135 

1.068 
1.742 

1.938 
2.047 
2.053 

2.963 

2.835 
1 .I29 
2.652 
2.978 
2.543 
3.694 
4.206 
4.531 

the second helix in the helix-turn-helix substructure is 
constrained by the binding of L-tryptophan (Schevitz et al., 
1985). 

The seven DNA binding  proteins  rank  1,  2, 3, 4, 6, 7, 
and 14 in  similarity to  the  probe helix-turn-helix struc- 
tural  motif.  Some  non-DNA binding  proteins  also  score 
well for  the presence of the helix-turn-helix substructure 
(see Table  2).  In  many  cases,  the best match  of  the  sub- 
structure to a  protein  occurs  when  the helix-turn-helix 
substructure is aligned with the last half of  a  long helix, 
a turn,  and  the  first few residues of the following helix. 
Two  of  the  proteins identified  here  as  having  a  substruc- 
ture similar to  that of the  probe  substructure have  been 
previously  noted by Richardson  and  Richardson (1988). 
They found  that  cytochrome c peroxidase and ribosomal 
L7/L12  protein  contain  conformations similar to the  DNA 
binding helix pairs  in  gene  activator  and  repressor  pro- 
teins.  In  the present  analysis, the  non-DNA binding pro- 
tein  that  has a substructure  most similar to  the  probe  DNA 
binding substructure is yeast enolase. Enolase  has  two  do- 
mains  consisting  of  (1) a three-stranded 0 meander  and 
four  a-helices  and (2) an eightfold a / p  barrel  (Lebioda 
et al., 1989). The helix-turn-helix substructure of 434 Cro 
aligns with enolase  near  the  end  of  the  N-terminal  do- 
main.  Figure 5 shows the  top eight  alignments  found by 
CONGENEAL  for substructures  from  DNA binding pro- 

teins or  non-DNA binding  proteins with the  DNA  bind- 
ing  substructure of 434 Cro (see also  Kinemage 1). 

2. Calcium  binding:  The EF hand. Another well-charac- 
terized substructural motif is the EF hand calcium binding 
conformation, first described by Kretsinger and Nockolds 
(1973) from  carp muscle calcium  binding  parvalbumin 
(5cpv). The  EF hand is also found  in several other  proteins 
that bind  calcium,  including  calmodulin  (3cln),  tropo- 
nin C (4tnc), and intestinal calcium binding protein (3icb). 
Although  CONGENEAL  finds relatively few substruc- 
tures  identical to  EF  hands, many  proteins  contain  sub- 
structures  that  are fairly  similar. 

We define the  EF hand  substructure in carp  parvalbu- 
min  as  the 29 residues from  asparagine 79 to lysine 107. 
The E helix is 12 residues (79-90), the  loop is 8  residues 
(91-98), and  the F helix is 9  residues  long (99-107). Fig- 
ure 6 shows the result of aligning  this  substructure with 
the  complete  structure  of  carp  parvalbumin.  There  are 
five minima,  corresponding to  the joining regions between 
the six helices of  parvalbumin  (labeled A-F): AB, BC?, 
CD,  DE,  and EF. Strong matches are  found  at  two posi- 
tions,  corresponding to C-loop-D  and E-loop-F.  Both  of 
these  substructures  are  in  the EF  hand  conformation. 
Kretsinger and Nockolds (1973) suggested that  A-loop-B 
is related to the EF  hand,  but  our results do not show sig- 
nificant  structural similarity between A-loop-B and  the 
EF hand  substructure.  In  fact,  the A and B helices are  ori- 
ented  nearly  parallel to  one  another, whereas the helices 
in  an  EF  hand  are nearly  perpendicular. 

We then  use  the  EF  hand  substructure  as a probe  to 
search the  dataset of 158 proteins.  Figure  7 shows the dis- 
tribution of dissimilarities. The  four best scoring proteins 
are all  calcium  binding  proteins (see Table 3).  The  EF 
hand in troponin C was found  to be the most  similar to 
the  parvalbumin  structure;  the  dissimilarity  scores  as a 
function  of alignment are  shown in  Figure 8.  Minima 
identify the  four  EF  hand  substructures in troponin  C. 
The two  minima on the right in Figure  8  indicate  two  sub- 
structures  that  are  the  most similar to  the  parvalbumin 
substructure  and  correspond  to  the  EF  hands nearest the 
C-terminal  end of the  protein. The two minima on  the left 
identify  two  N-terminal EF hands  that  are less similar to  
the  parvalbumin EF  hand. Interestingly, the N-terminal 
EF hands do  not bind  calcium  (Satyshur et al., 1988). 

The  method correctly  identifies  bovine  intestinal cal- 
cium  binding  protein as being similar to the EF  hand.  On 
the  other  hand, given that  carp  parvalbumin  and bovine 
intestinal  calcium  binding  protein  are  related,  the  RMS 
deviation of C, positions between their EF hands seems 
to be  surprisingly  large. The large  RMS  deviation  arises 
because the residues at  both ends of the  substructure have 
different  conformations in the two  proteins.  The next 
most  similar  substructure to  the  EF hand is in T4 lyso- 
zyme (see Kinemage 2); this  similarity was first  noted by 
Tufty  and Kretsinger (1975). 
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3 .  Searching protein structures for functional subunits. 
The ability to perform fast searches for substructures 
within proteins allows for searching a database of protein 
structures for specific functional subunits. We show an 
example  of  using CONGENEAL to find possible  calcium 
binding proteins in  the  dataset.  In  the EF hand substruc- 
ture,  the  calcium is bound to residues within the  loop 
region. Therefore, we search the dataset for  the presence 
of the E helix, the  F helix, and  the  loop. E and  F  are cy- 

helices, so all proteins with cy-helices score well for  the 
presence of the E and F helix substructures  (data  not 
shown).  Figure 9 shows the distribution of  dissimilarities 
with the calcium binding loop. Although most proteins 
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Off set 

Fig. 6. Dissimilarity score versus alignment of the carp parvalbumin EF 
hand  substructure with the  complete  structure  of carp parvalbumin. 

Fig. 5. Structural alignment of 434 Cro DNA 
binding motif to  top 8 matches identified by CON- 
GENEAL  and trp repressor, which scored 14th. 
434 Cro DNA binding substructure is shown in 
green, DNA binding proteins are shown in red, and 
non-DNA binding proteins are shown in blue. trp 
repressor, the DNA binding protein least similar 
to the  target 434 Cro substructure, is shown in 
cyan. 

are predicted to have at least one short  loop  conforma- 
tion similar to the calcium binding loop, five proteins are 
clearly distinct as being more similar than  the other pro- 
teins. They include the  four calcium binding proteins 
identified above. Hence, the weighted distance map  for 
this loop region is a good identifier of the calcium bind- 
ing motif. In  addition, galactose binding protein scores 
well for  the presence  of a calcium binding loop. Consis- 
tent with this finding, galactose binding protein was  re- 
ported to have a calcium binding site (Vyas et al., 1987) 
that resembles the EF hand without the helices. T4 lyso- 
zyme, which scored 5th for  the presence of an  EF hand, 
scores 69th for  the presence of the calcium binding loop. 
Although T4 lysozyme has two  helices  similar in orienta- 
tion to the EF hand helices  in parvalbumin, the intervening 
loop is  clearly not in the calcium binding conformation. 

0.00 0.20 0.40 0.60 0.80 
Dissimilarity Score 

Fig. 7. Histogram showing the distribution of dissimilarity scores when 
the EF hand substructure is compared with a dataset of 158 proteins. 
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Table 3. Proteins with EF hand 
~ - 

~ 

~ .. 

Protein  name 

Carp  parvalbumin 
Troponin  C 
Calmodulin 
Intestinal  calcium-binding 

protein 
T4 lysozyme 
Sperm  whale  myoglobin 
Human  hemoglobin 
Subtilisin  carlsberg 
Cytochrome  P450  CAM 
Erythrocruorin 
Lupin  leghemoglobin 
Hemerythin 
Enolase 
Thermitase 
Cytochrome c peroxidase 
frp repressor 
Cytochrome bS6* 
Proteinase K 
Leucine-binding  protein 
Malate  dehydrogenase 

- . ~~ 

~~ 

"_ - 

PDB code  CONGENEAL  RMS 
- " 

5cpv  0.002 0.000 
4tnc 0.054 0.644 
3cln 0.064 0.987 

3icb 0.135 2.868 
31zm 0.227 2.994 
lmbd 0.251 5.199 
Ihho-a 0.253 5.143 
lcse 0.255 4.107 
2CPP 0.261 6.142 
lecd 0.264 4.991 
21h4 0.265 4.612 
1 hmq-a 0.266 5.050 
2enl 0.269 4.524 
1 tec 0.270 4.159 

1 wrp 0.277 4.272 
256b 0.277 4.474 
2prk 0.280 5.069 
21bp 0.282 3.518 
4mdh 0.282 5.295 

2CYP 0.275 4.565 

~~ -~ 

4. Globins. Figure 10 shows the dissimilarities of sperm 
whale myoglobin (lmbd)  to  the set of 158 protein  struc- 
tures.  The  four most  similar  structures are all globins: 
sperm  whale  myoglobin (lmbd), erythrocruorin  (lecd), 
human  hemoglobin (lhho-a),  and leghemoglobin (21h4). 
The next most  similar  proteins are all dominated by a- 
helices. They  include  uteroglobin (lutg), trp repressor 
(lwrp), calcium  binding  protein (3icb), and  cytochrome 
b562 (256b). The  proteins least  similar to myoglobin are 
all P-sheet proteins:  they  include  immunoglobulin  frag- 
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Fig. 8. Dissimilarity  score  versus  alignment of the  EF  hand  substruc- 
ture  with  troponin  C.  The  four  minima  correspond  to  the  four EF hand 
substructures  in  troponin  C. 
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Fig. 9. Histogram  showing  the  distribution of dissimilarity scores when 
the  calcium  binding  loop  from  carp  parvalbumin is compared  with  a 
dataset  of 158 proteins. 

ments  (2fb4-h, 2fb4-1, lfcl),  tumor necrosis factor 
(ltnf), monellin (lmon-a),  and  Cu,Zn  superoxide dis- 
mutase (2sod). The dissimilarity distribution  from  CON- 
GENEAL resembles an earlier comparison  made by  Bowie 
et al. (1991) of sperm  whale  myoglobin versus a  protein 
dataset  based on their  three-dimensional  (3D)  profiling 
method.  Their  method  shows  the  degree to which the se- 
quences of other globins are  compatible with the structure 
of sperm whale myoglobin. Our method shows the degree 
to which the structures of other  globins are similar to  the 
structure of  sperm  whale  myoglobin.  At  least for  sperm 
whale myoglobin, the  distributions  from 3D profiling and 
CONGENEAL bear  considerable  resemblance. 

Most closely related proteins 

As  another test, we compare  the 158 proteins pairwise 
( [ P  x ( P -  l)]  /2 = 12,403 tests) and  ask which  pairs are 
the most closely related. Of course,  because  this is not a 
"selected" set of unrelated  conformations.  some of these 
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Fig. 10. Histogram showing the  distribution of dissimilarity scores when 
sperm  whale  myoglobin is compared  with  a  dataset  of 158 proteins. 
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proteins  are  quite similar;  these highly similar  pairs are 
controls  that we study  here.  Table  4 lists the 20 most sim- 
ilar  protein  pairs.  Not  surprisingly,  several of these  pairs 
represent the  same  protein  in  two  different  conforma- 
tions.  For  example, six of  the closest structural similari- 
ties are  pairs  of ribonucleases. The  dataset  contains  four 
ribonuclease  structures:  two  independently  determined 

Table 4. Most closely related proteins in dataset 

Protein  name 

Ribonuclease  A 
Ribonuclease  A 

Phosphofructokinase  (open  form) 
Phosphofructokinase  (closed  form) 

Rice  cytochrome c 
Tuna  cytochrome c 

Ribonuclease  A 
Ribonuclease  B 

Ribonuclease  A 
Ribonuclease  B 

434 Cro 
434 Repressor  (N-terminal  domain) 

Erabutoxin  A 
Neurotoxin B 

Fob KOL (light  chain) 
Immunoglobulin Vx domain 

Ribonuclease  A 
Ribonuclease S 

Ribonuclease  A 
Ribonuclease S 

Hexokinase 
Hexokinase 

Ribonuclease  B 
Ribonuclease S 

CAP (closed  form) 
CAP  (open  form) 

Tendamistat 
a-Amylase  inhibitor 

Leucine-binding  protein 
Leu/ile/Val-binding  protein 

Human lysozyme 
Hen egg white  lysozyme 

Rhinovirus  VP3 
Polio  virus  VP3 

X Repressor 
434  Repressor  (N-terminal  domain) 

X Repressor 
434 Cro 

Elongation  factor  TU 
Elongation  factor  TU 

-~ 

PDB  code 

7rsa 
3rn3 

Ipfk-o 
Ipf l -c  

lccr 
Scyt 

3rn3 
Irbb-a 

7rsa 
Irbb-a 

2cro 
1 r69 

Sebx 
1 nxb 

2fo4-1 
2rhe 

3rn3 
lrns 

7rsa 
lrns 

2yhx 
1 hkg 

lrbb-a 
1 rns 

3gap-c 
3gap-o 

2ait 
1 hoe 

21bp 
21iv 

llzl 
1 lyz 

4rhv-vp3 
2plv-vp3 

llrd 
1 r69 

llrd 
2cro 

letu 
lefm 

~ 

~ 

Score 

0.014 

0.035 

0.052 

0.056 

0.057 

0.072 

0.076 

0.079 

0.103 

0.103 

0.114 

0.116 

0.125 

0.136 

0. I40 

0.222 

0.231 

0.237 

0.289 

0.277 

893 

structures  of  ribonuclease A (3rn3,7rsa), ribonuclease  B 
(lrbb-a),  and ribonuclease S (lrns).  Each  pair of struc- 
tures involves only  a  small  structural  variation.  For ex- 
ample, ribonucleases  A and B  have  identical amino acid 
sequences, but  differ by a polysaccharide  moiety that is 
attached  to  asparagine 34 of  ribonuclease B. 

Ribonuclease B is about  as similar to ribonuclease A  as 
the  two ribonuclease  A are  to each other.  This result is 
consistent  with the conclusion  of  Williams et al. (1987) 
that  the  conformation of ribonuclease  B is not signifi- 
cantly  different  from  that of ribonuclease A.  The small 
variability  occurs  mostly  in the &sheet regions. 

CONGENEAL also finds  the correct alignment of ribo- 
nuclease S with the  other ribonucleases  (i.e., at  an offset 
of 21 residues). All the ribonuclease  structures are  quite 
similar to each other,  but ribonuclease S is the least sim- 
ilar  among  them.  The deviations of ribonuclease S rela- 
tive to  the  other ribonuclease  structures are  attributable 
to  the  contacts  formed by residues 21-23 with the rest of 
the  protein. Because ribonuclease S is formed by cleav- 
age  of  ribonuclease  A  between  alanine 20 and serine 21, 
the  conformations of residues 21-23 presumably  readjust 
in  response to  the cleavage of  the peptide bond between 
residues 20 and 21. 

CONGENEAL finds other highly similar pairs. It finds 
rice cytochrome c to be  very similar to  tuna cytochrome c. 
The rice structure  has 8 additional  residues  at  the  N- 
terminus,  and  there  are 43 substitutions  in  the  other 103 
residues. Despite these sequence differences, the  structures 
are  found  to be nearly  identical  (Matthews, 1985). Other 
sets  of  proteins that  are  found  to be highly similar by 
CONGENEAL  include  DNA binding  proteins (434 Cro, 
434 repressor, h repressor),  neurotoxins  (erabutoxin A, 
neurotoxin B), immunoglobulins (Fab KOL,  immuno- 
globulin V, domain),  and viral VP3  domains  (rhinovirus 
VP3,  polio  virus  VP3). 

CONGENEAL  has  limitations.  First, it does not  treat 
insertions,  deletions, or gaps.  An example  of  this  limita- 
tion is in the  comparison of a / p  barrels  such as triose 
phosphate isomerase  (TIM).  It  has been suggested that 
all the known a//3 barrels may have diverged from  a  com- 
mon  ancestor  (Farber & Petsko, 1990). If so, and if the 
process of evolutionary divergence involves changing loop 
lengths while retaining  secondary structural  domains, 
then evolutionary “distance” requires a similarity measure 
that carries  only weak penalties for changing  lengths of 
loops between domains.  Although  some  similarity  meth- 
ods do this (Taylor & Orengo, 1989), CONGENEAL does 
not,  and  therefore would not be useful  as  a  measure of 
evolutionary divergence by this mechanism. Hence,  again 
we caution  that different similarity measures will find  dif- 
ferent degrees of relatedness among proteins and will find 
different  family  clusters,  but  there is no unique  right way 
to  do this. And we note  that  the  approach  taken in  CON- 
GENEAL, while it is disadvantageous for measuring evo- 
lutionary divergence by this  mechanism, is advantageous 
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for  other  purposes, because  it is based on making no as- 
sumptions  about mechanisms  of  how one  conformation 
is caused to differ from  another. Such  a need arises in the 
comparison  of  conformations  of a given sequence,  in 
which case  there  are  no  gaps,  insertions,  or deletions, or 
in the  comparison of very different  conformations  that 
may not be  related by a known  evolutionary  mechanism, 
in which case we believe it may often be  preferable to  
measure  similarity with an algorithm  having  a  minimum 
number  of  degrees of freedom. 

Second,  when  comparing  sets of proteins with differ- 
ent  alignments  and  chain lengths, the dissimilarity  mea- 
sure is not a true  distance  metric.  That is, as  with  many 
other similarity  measures, the  triangle inequality  law, 

d ( a , b )  + d ( b , c )  2 d(a , c ) ,  

can be violated. For example, in the pairwise comparison 
of a sheet (S), a helix (H),  and a  protein consisting of both 
a sheet and a helix (P): 

d ( S , P )  = 0 and d ( P , H )  = 0, 

but 

d ( S , H )  > 0. 

Third,  as with other  contact-map based  approaches, 
CONGENEAL does not distinguish  structures by their 
chiralities.  A  molecule is indistinguishable from  its mir- 
ror  image.  For  comparing molecules  with  consistent  chi- 
ralities, such as  two real proteins,  this is not a limitation. 
For  comparing a lattice  model  and a  real  protein,  how- 
ever,  chiral errors will not be  detected. In a most  general 
way, CONGENEAL  only  attempts  to  characterize dis- 
tances  pertinent to nonlocal  interactions.  In  this  sense, 
right-handed  and  left-handed helices are similar.  When 
it is important  to distinguish them,  CONGENEAL is not 
appropriate. 

Protein clustering into  families 

CONGENEAL is a  measure that  computes  the  structural 
similarity  between any  two  compact polymer conforma- 
tions. We have  shown a few tests  indicating  where  it is 
sensibly consistent with other knowledge. We now use this 
measure to study how it divides proteins  into families. We 
define a family as a set of structures  that collectively share 
a high  degree  of  similarity to  one  another.  The  concept 
of family  carries  the  implication  that  there  are relatively 
sharp  boundaries between  families.  Given a measure  of 
similarity,  there are several  different  methods  for  identi- 
fying clustering. As with similarity measures,  there are  no 
right or wrong  clustering  methods. In order to determine 
whether the families  obtained are sensitive to  the choice 
of  clustering method, we study  the clustering  of  protein 

structures by two  different  methods: a minimal  spanning 
tree  and a hierarchical  method.  Different  similarity  mea- 
sures  and clustering  methods can lead to  different,  but 
equally  valid,  divisions of proteins  into families. 

Clustering by minimal spanning trees 
First, we construct  a  minimal  spanning  tree, which is 

a graph  that provides one way to describe  relatedness 
among  proteins.  Consider a graph in which each  one of 
the P protein  structures is represented by a  node. Every 
possible pair  of nodes is connected by an edge. Each edge 
is weighted by the dissimilarity score relating the  two  pro- 
teins.  Hence,  there are [ P x ( P  - l ) ]  /2 edges. A  span- 
ning tree is a  subgraph in which there  are only P - 1 edges 
connecting  the Pvertices  (proteins). A minimal  spanning 
tree is a  spanning  tree  in which the  sum of the weights of 
the edges is as  small as possible. Thus  the  only connec- 
tivity is among  the  most similar  proteins. We construct a 
minimal  spanning  tree using Kruskal’s  algorithm (Horo- 
witz & Sahni, 1978), as  follows.  First, the pairwise scores 
are  sorted  from most  similar to least similar. The tree is 
then  constructed  edge by edge. The first  edge is defined 
as  the  protein pair with the lowest score  (highest  similar- 
ity). The second edge is chosen to be the next lowest score 
that does not lead to a cycle in the  graph. If a cycle were 
formed, then  there would be  more  than  one  path between 
two vertices, and  at least P edges for P vertices, thus vi- 
olating  the  criterion  of a  spanning  tree.  The process con- 
tinues  until  there are P - 1  edges. 

Figure 11 shows the minimal  spanning  tree  for  the set 
of 158 protein  structures based on the  CONGENEAL dis- 
similarity  measure.  A  tree is unique  provided that no two 
edges have the  same weight. Note that  no meaning should 
be attributed to the edge  lengths  shown  in the  figure, be- 
cause they are  not  drawn  in  proportion to their respective 
dissimilarity weights. An edge  connecting  two  proteins 
implies structural similarity  between the  two  proteins. 

By this  clustering method,  proteins  are  found to  col- 
lect around  hubs, which may  be  thought of as consensus 
family  structures or structural  paradigms.  For example, 
monellin (lmon-a), uteroglobin (lutg),  crambin  (lcrn), 
and X repressor (llrd)  are all  hubs.  Many  other  proteins 
are connected to each hub.  Each  hub represents  some 
characteristic  topological  feature  (i.e.,  some specific pro- 
tein  fold).  For  example,  the A  chain of monellin forms 
three  strands of an antiparallel P-sheet. Any protein in the 
dataset  that has  three  strands in a similar conformation 
will score well when compared  to monellin, and  may be 
connected to  the monellin hub. Similarly,  uteroglobin,  a 
progesterone  binding  protein consisting of four a-helices, 
is a hub  for  structures with similar helical and  turn  fea- 
tures.  Crambin  has  both P-sheet and  a-helix  and serves 
as a hub  for  proteins with  similar  secondary  structural 
features. 

Proteins  are  found  to cluster into families, often  around 
hubs.  For  example,  the globins  cluster  together.  Lyso- 
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Minimal Spanning 

158 Protein 
Structures 

Fig. 11. Minimal spanning tree of 158-protein dataset.  Proteins are referenced by the codes listed in Table 1. An edge connect- 
ing two  proteins implies structural similarity between them. Edge lengths are not proportional to the dissimilarity between 
proteins. As a guide, the general locations of some major family relationships are indicated in bold. 

zymes from  hen egg white and  humans  cluster with Q- 

lactalbumin.  Other  protein clusters  include (1)  viral VP3 
domains, (2) cytochrome c structures, (3) immunoglob- 
ulin domains, (4) aspartic proteases, (5) trypsin-like serine 
proteases,  and (6) subtilisin-like  serine  proteases.  Inter- 
estingly, T4 bacteriophage lysozyme is separated by four 
nodes from  the  other lysozymes. In this  case,  despite  the 
structural  similarity of the active  sites,  the  remainder  of 
the  structure of T4 phage lysozyme is different  from that 
of the  other lysozymes. 

Hierarchical clustering 
In  order to learn  whether the family  partitions  found 

by CONGENEAL  depend  on  the clustering method, we 
now consider  a  different clustering algorithm  for collect- 
ing proteins  into families. Here we use hierarchical cluster- 
ing, which successively groups  proteins  into increasingly 
larger sets. At first,  there  are Pproteins in P groups.  Step 
1 is to combine  the  two most  similar  proteins to form  the 
first  group;  there  are now (P - 2) single-protein  groups 
and  one two-protein  group. This is recorded as  the first de- 
cision. Step 2 is to combine  the  two  groups that now have 

the greatest similarity. To determine group similarities, all 
pairwise dissimilarities between groups  are calculated; this 
generates [ M x ( M  - 1 )] /2 average dissimilarities for M 
groups.  The  group dissimilarity is the  average of the dis- 
similarities between the  members  of one  group with re- 
spect to the  members  of  another group.  The merging 
process is repeated  until  all  groups  are  combined into a 
single group.  The merging process is a  sequence  of deci- 
sions that can be represented as  a  tree (see  Fig. 12). Nodes 
at a given level in this  tree represent a given degree of dis- 
similarity. 

As with the  spanning  tree,  the hierarchical  method 
finds  that immunoglobulins, serine proteases, ribonucle- 
ases,  globins,  aspartic  proteases, and viral VP domains 
form families. Hence,  the general division into these fam- 
ilies appears  to be relatively independent of the cluster- 
ing method,  although  the details  differ. 

One interesting consequence of the hierarchical cluster- 
ing is evident from Figure 12. It leads to a  partitioning of 
families in which sheet structures  are  concentrated at  the 
top of Figure 12 and helix structures  are  concentrated  at 
the  bottom. According to this  partitioning, sheet struc- 
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Fig. 12. Hierarchical clustering of 158 proteins  into  a relatedness tree. The mean dissimilarities between the  group members 
are indicated by diamonds at the  branch  points of the tree. Proteins  are referenced by the codes listed in Table 1 .  As a guide, 
some  major family relationships are  indicated. 
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tures are less  related to one  another  than  are helical struc- 
tures. Helical structures  are  more related to one  another 
because of the regular pattern of  close contacts  formed 
by residues in the helical conformation. 

Are proteins tightly clustered? 

Are protein families tight or loose forms of organization? 
“Tight” organization means that  any two proteins within 
a family are much more similar than any two proteins 
from  different families. There would be a  sharp  bound- 
ary between protein families. “Loose” organization means 
that two proteins within a family may be only slightly 
more similar than two proteins taken  from different fam- 
ilies. The boundaries between protein families would not 
be  sharp  and might even overlap. 

We assess tightness of protein families by studying the 
shape of the histogram of pairwise  dissimilarities  (Fig. 13). 
Qualitatively, if proteins are tightly clustered, the histo- 
gram  in Figure 13 would have two peaks: one represent- 
ing the high similarities within families and  the  other 
representing the low similarities between families. The 
distribution of dissimilarities for the 158 protein  dataset 
structures, however, shows mainly a single broad  peak, 
which indicates a wide range of relatedness among  pro- 
teins. There is only a very small peak indicating high  sim- 
ilarities and tight families. The mean dissimilarity is 0.737, 
indicating that two arbitrary proteins are relatively un- 
related. By this qualitative  criterion, protein structural 
families are only loose entities. 

A second way to assess the tightness of clustering draws 
on the analogy between (1) P proteins as points separated 
by their pairwise dissimilarities and (2)  a set of P points 
distributed in a d-dimensional space separated by their 
Euclidean distances. To pursue this analogy, we generate 
points in Euclidean spaces with varying degrees of  clus- 
tering in several different dimensionalities, d. The distri- 
bution of distances between the points is compared to the 
distributions of pairwise protein dissimilarities shown in 

0.00 0.20 0.40 0.60 0.80 
Dissimilarity Score 

Fig. 13. Histogram showing distribution  of 12,403 pairwise compari- 
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Figure 13. We create varying degrees of clustering as fol- 
lows. First, we assume there are f families of points in a 
d-dimensional space. We randomly generate f points that 
represent the family centers. Within each family, we then 
generate P/f points which are Gaussian-distributed 
around each family center. That is, the probability dis- 
tribution  for  a point x within a family is given  by: 

1 -d2 (X, C) 
P ( X )  = ~ 

a u k  2u2k2 1’ 
where c is a family center, d(x, c) is the distance between 
x and c, k is the average distance between any two fam- 
ily centers, and u is the parameter that controls the degree 
of clustering. When u equals 1, the  standard deviation of 
points around a family center is equal to the average dis- 
tance between the family  centers. As u decreases, the tight- 
ness  of the clustering increases.  As an example, Figure 14 
shows scatter plots of points distributed in two dimensions 
around 15 “families” with three  different values of u. 

After randomly generating points as described above, 
we calculate all the pairwise distances between the points 
within each set. Figure 15 shows histograms for N = 200, 
d = 7, f = 25, and varying u. When u is small (tight clus- 
tering) the histograms have two peaks, as expected. The 

A no clustering 

€3 t3 = 0.10 

C CT = 0.05 

Fig. 14. Degrees of clustering using a Euclidean distance analogy: in- 
creasing the tightness of clustering from A to B to C. Scatter plots of 
points  randomly  distributed around family centers. Family centers are 
represented by large diamonds. Points associated with a family center 
are represented as small squares. In A-C, the number of familv centers - 

sons of the 158-protein dataset. is 15 and the total number of points is 200. 
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Fig. 15. Distribution of pairwise distances between points randomly distributed between 25 families within a seven-dimensional 
sphere. 

leftmost peak is due  to intrafamily distances and  the right- 
most  peak is due  to  interfamily  distances. 

One  method  to  compare  the shapes of two  distribution 
functions is the  quantile-quantile (Q-Q) plot  (Chambers 
et  al., 1983). A Q-Q curve  plots the  sorted values  of one 
distribution  against  the  sorted  values of a  second  distri- 
bution. If two  distributions have the  same  shape,  and  dif- 
fer  only by a multiplicative factor  that scales the  width, 
or if they  differ by a constant  factor  that  shifts  the mean 
values,  then a Q-Q plot gives a  straight line. Figure 16A 
shows  a Q-Q plot  of the  histogram of Figure 13 versus a 
nonclustered  distribution of points  in  Euclidean  space. 
The deviations at  both extremes of the plot  indicate that 
protein  structures  are  more  broadly  distributed than would 
be  predicted by the completely  nonclustered  distribution. 
Hence, a nonclustered uniform  distribution of points is not 
a good  model  for  the  distribution  protein  dissimilarities. 

On the  other  hand, Figure 16C shows that proteins are 
also  not well represented as being very tightly  clustered 
(a I 0.05). When  the  distributions  are  tightly  clustered, 
the Euclidean  distribution  underestimates  the  number of 
similar protein  pairs  in  the range of dissimilarities between 
0.40  and 0.60, and overestimates  them for distances less 
than 0.40. The closest correspondence  between  the  Eu- 
clidean  distances and protein  similarities is obtained  for 
values around u = 0.10. This is the case for which the 
Q-Q plot is most  linear (see Fig. 16B). While  this  value 
of u implies that family  members  are  considerably closer 

together than  are interfamily  centers,  protein families are 
not  sufficiently  tightly  knit to avoid  considerable  overlap 
between  families, and individuals cannot be  unambigu- 
ously assigned to families. This degree of clustering is in- 
dicated schematically in Figure 14B for a two-dimensional 
Euclidean  space. By systematically varying the clustering 
parameter, u, and  the  dimensionality, d, we find the  op- 
timal  dimensionality to be about d = 7 .  It is not clear to 
us if this  dimensionality  in  the  Euclidean  space  analogy 
has  any physical meaning since our dissimilarity measure 
is not a true metric.  This  comparison  should  be viewed 
simply  as an analogy. 

Our results are consistent with those of Rackovsky 
(1990). His  similarity  measure, which is based on local 
conformational preferences,  also  orders  proteins from 
helices to sheets and  finds families to be  only loosely knit 
entities. 

Conclusions 

We have described a simple quantity  for characterizing the 
structural similarity  between any  two  compact polymer 
or protein  conformations. Based on differences between 
weighted distance  maps,  it  requires no alignments or  gap 
penalties and  makes few assumptions  or  arbitrary deci- 
sions about polymer structure.  It is computationally  fast. 
The  only  parameter is the  exponent p in the  distance de- 

n 
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Fig. 16. Q-Q plots comparing  protein  dataset pairwise dissimilarity distribution with distributions of random  point pairwise 
distances. For the  random point distributions, f = 25 and d = 7.  
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pendence  of the weights. The results are  not very sensi- 
tive to this  parameter. 

The  method  can  compare  any  two  conformations,  no 
matter  how similar or different,  and does not require 
identical  chain  lengths.  It is intended for  the  purpose  of 
comparing diverse  polymer conformations. Several  tests 
show that  the relatedness among  proteins  reported by this 
measure is sensibly consistent  with  existing  knowledge. 
This  method  can  be  used to  rapidly  search  through a da- 
tabase of protein  structures to find specified substructures 
and  to seek given functional  components  in  other  pro- 
teins. For example, it searches the  protein  dataset in min- 
utes to find possible calcium binding  motifs similar to  the 
EF  hand. 

Such a similarity measure can  be used to test algorithms 
of protein  folding  for  which  generated  conformations 
may  be  distant  from  the  native  structure.  Hence,  the 
CONGENEAL  measure  can serve as a sort  of  “reaction 
coordinate’’ for nativeness. For  such  problems,  gaps  are 
unimportant. 

We combine  this  measure with two  different clustering 
methods  to identify  protein  families. We then  ask how 
tightly  clustered are families by drawing an analogy  with 
points  distributed in  Euclidean  space.  The  analogy  indi- 
cates  that  protein families are  only loosely knit  entities, 
and  that  individual  proteins  may  often  not be  unambig- 
uously  assignable to  a unique  family. 

Supplementary material 

This  work  would  not  have been  possible  without the 
enormous  amount  of  effort  required  to experimentally 
determine  the  protein  structures used in this analysis. Ref- 
erences for all the  structures  obtained  from  the PDB are 
available on  the Diskette  Appendix  and by request from 
the  authors. 
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