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Abstract 

We have developed a new representation for  structural  and functional  motifs in protein sequences based on  cor- 
relations between pairs of amino acids and applied it to a-helical and P-sheet sequences. Existing probabilistic 
methods for representing and analyzing protein sequences have traditionally assumed conditional independence 
of evidence. In other words, amino acids are assumed to have no effect on each other. However, analyses of pro- 
tein structures have repeatedly demonstrated the importance of interactions between amino acids in conferring 
both  structure and function. Using  Bayesian networks, we are able to model the relationships between amino acids 
at distinct positions in a  protein sequence in addition to  the  amino acid distributions at each position. We have 
also developed an  automated program for discovering sequence correlations using standard statistical tests and 
validation techniques. In this paper, we test this program on sequences from secondary structure  motifs, namely 
a-helices and @sheets. In each case, the correlations our program discovers correspond well with known physi- 
cal and chemical interactions between amino acids in structures. Furthermore, we show that, using different chem- 
ical alphabets for  the  amino acids, we discover structural relationships based on  the same chemical principle used 
in constructing the  alphabet. This new representation of 3-dimensional features in protein  motifs, such as those 
arising from  structural or functional  constraints on the sequence, can be used to improve sequence analysis tools 
including pattern analysis and database search. 

Keywords: a-helix  structure;  amino acid correlations; motif modeling; sequence analysis; side-chain interactions; 
structure analysis 

Understanding the 3-dimensional structure of a protein is a nec- 
essary and critical step toward understanding the protein's func- 
tion.  For example, only after  the  structure of hemoglobin was 
solved was  it possible to dissect the mechanisms responsible for 
the cooperative binding of oxygen, for  the effects of pH  and 
2-3-diphosphoglycerate (DPG)  on  affinity,  and  for the defects 
causing various  anemias  (Stryer, 1988). Despite the increasing 
wealth of sequence data, the laborious and time-consuming pro- 
cess  of empirical structure determination hampers the availabil- 
ity of detailed structural information. Instead, sequence  analysis 
tools offer the best hope for quickly  eliciting structural and func- 
tional information  from new sequences. 

Traditional methods for analyzing sequences  rely on the prior 
analyses of known sequences and  on procedures for matching 
sequences. These techniques encompass database search (Wil- 
bur & Lipman, 1983), sequence classification (Klein  et al., 1984; 
Klein & DeLisi,  1986), and analysis for motifs (Bairoch & Boeck- 
mann, 1991; Henikoff & Henikoff, 1991), among  others. Most 
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techniques for  both analysis and matching emphasize the con- 
servation of amino acids during evolution. Specifically, one usu- 
ally  assumes that if 2 sequences are homologous, then the amino 
acids that  one observes at corresponding  locations in the 2 se- 
quences are similar, where similarity refers to like physical or 
chemical properties. 

A further  assumption  that is almost always made, in order to 
maintain computational feasibility, is one of conditional inde- 
pendence  of amino acids in a sequence. In other words, the pres- 
ence  of an  amino acid at one position in a protein is not affected 
by the presence of an amino acid at a  different  position. Intu- 
itively, this assumption is troublesome because the forces that 
confer structure and function in a protein are mediated through 
specific amino acid interactions. Hydrogen bonds, electrostatic 
interactions, and Van der Waals forces are all interactions that 
require reciprocating chemical entities, and even the weakest of 
these side-chain-side-chain interactions play a  part in determin- 
ing a protein's structure (Burley & Petsko, 1988). From this, one 
should expect many 3-dimensional constraints between amino 
acids to be reflected in higher-order sequence patterns (corre- 
lations between amino acids at multiple positions). In our view, 
sequence differences at individual positions reflect simple evo- 
lutionary  change, whereas correlated differences at multiple 
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positions reflect structural  constraints. This idea is  further  sup- 
ported by comparing sequence alignments and  true structural 
alignments (Bashford et al., 1987). 

As mentioned previously, however, all of the  popular se- 
quence analysis methods,  including weight matrices (Staden, 
1984), consensus sequences (Bairoch & Boeckmann, 1991), pro- 
files (Gribskov et al., 1987), blocks (Henikoff & Henikoff, 
1991), and sequence alignment (Needleman & Wunsch, 1970), 
only model the distribution of amino acids at individual posi- 
tions and not the effects imposed by amino acids at other posi- 
tions. Although some secondary structure prediction algorithms 
(Lim, 1974; Chou & Fasman, 1978; Gamier et al., 1978; Levin 
et al., 1986) examine properties  of neighboring residues (often 
within a window), none represent conditional dependencies be- 
tween residues explicitly. Neural network approaches to struc- 
ture prediction (Qian & Sejnowski, 1988; Stolorz et al., 1992) 
may model amino acid dependencies, but this has not yet  been 
demonstrated. In this paper, we describe a  method for detect- 
ing and representing higher-order sequence relationships that can 
be  used to improve sequence classification and  database search. 
Our starting  point is a set of sequences representative of a  mo- 
tif (a specific structural or functional unit of a  protein).  From 
these sequences, we construct  a probabilistic representation of 
the motif that can be  used later to identify new examples of the 
motif. In addition, the  patterns of dependencies in our repre- 
sentations can be used to make  structural inferences. 

The  current  state  of affairs in sequence analysis is analogous 
to that faced by the designers  of  Bayesian  medical diagnostic sys- 
tems (Gorry & Barnett, 1968; de Dombal et al., 1972). The strict 
assumption  of  conditional independence was also  made with 
these early systems: the  probability of seeing any 1 symptom, 
given a specific disease, was assumed to be independent of the 
presence or absence of  any other finding. Only with new prob- 
abilistic representations, such as Bayesian networks, have re- 
searchers been able to relax  this often invalid assumption. There 
have been a few reports of covariation analysis in the sequence 
literature, including the analysis of surface  loops in HIV  coat 
proteins  (Korber et al., 1993) and  the analysis of  tRNA se- 
quences (Gutell et al., 1992). Both these works utilize a measure 
of mutual information to indicate structural interactions. How- 
ever, neither addresses significance  of covariation issues nor pro- 
duces inference  tools. 

We use  Bayesian networks (Pearl, 1988; Neapolitan, 1990) to 
represent conditional dependencies between positions in biolog- 
ical sequences in addition to the  amino acid distributions at each 
position. Bayesain networks provide a graphical representation 
for sequence dependencies. They also provide a  framework  for 
storing the quantitative descriptions of both sequence distribu- 
tions and correlations,  simultaneously. Finally, these network 
models can be used for sequence classification, database search, 
and  structure prediction using Bayesian network  inference 
(Lauritzen & Spiegelhalter, 1988; Pearl, 1988; Neapolitan, 1990). 
We have written a  program called MCSEQ that discovers cor- 
relations in a set of aligned sequences and produces Bayesian 
networks that can be  used for classification and database search. 

Results 

a-Helix patterns 
We extracted  a  training set of 3,157 overlapping amino acid se- 
quences 8-residues long from 802 a-helices in the  structure set 
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Fig. 1. A Bayesian network for amphipathic a-helices. A: Correlations 
between amino acid types that lie on the same side of a helix. B: Corre- 
lations between amino acid types that lie on opposite sides of a  helix. 

described in the Materials and methods.  A length of 8 residues 
was chosen in order  to account for 2 complete turns in an CY- 
helical conformation. Although overlapping sequences are used 
for training,  each amino acid at a given position in one of the 
a-helices of the structure set is counted at most once for any 
amino acid node in the resulting network. Only amino acids near 
the helix termini are not represented in every node of the net- 
work. We found 19 of the 28 possible pairs of positions to have 
statistically significant correlations ( P  < 0.01) by both x’ and 
Monte  Carlo tests.  The network constructed from this  training 
set using the general amino acid classification (HYDROPHO- 
BIC, NEUTRAL,  HYDROPHILIC) is shown in Figure 1 .  The 
amino acid nodes are arranged in the helical  wheel pattern in or- 
der to better visualize the structural  relationships.  In addition, 
only the type nodes of this network are shown. Our program de- 
tected 2 types of correlations: (1) amino acids of like hydropa- 
thy tend to occur on  the same side of  a helix (Fig. lA), and (2) 
amino acids  of  opposite  hydropathy tend to occur on opposite 
sides of  a helix (Fig. 1B). A  summary of  the conditional prob- 
abilities represented in each type of correlation arc is shown in 
Table I .  These data were calculated from 6,405 ( i ,  i + 2), 5,686 
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Table 1. Hydropathicity  correlations in a-helices 

Both Both 
Position phobica Oddsb Phobic-philica Odds Philic-phobica Oddsb philica Oddsb 

(i. i + 2) 342  (568) 0.60 866  (650) 1.33 903 (677) 1.33 595 (773)  0.77 
(i, i + 3) 580 (520) 1.11  473  (553) 0.86  542  (627) 0.86  772  (666)  1.16 
(i, i + 4) 569  (431) 1.32 388 (495) 0.78 397 (528) 0.75  776  (607)  1.28 
(i, i + 5) 270  (370) 0.73 512  (418) 1.22  556  (461) 1.21  439  (519)  0.85 

a Phobic = IVLFC, philic = HNQEDKR. Observed  numbers  are displayed followed by  expected  numbers  in  parentheses (based on individual 
position frequencies for each residue). 

Odds  values  are calculated by  dividing  the  observed by the  expected  occurrences. 

( i ,  i + 3), 4,967 ( i ,  i + 4), and 4,321 (i, i + 5 )  relative position 
pairs in a-helices of the  structure set. In general, these arcs are 
a probabilistic representation of the hydrophobic periodicity of 
amino acids seen in amphipathic a-helices: pairs of positions 
that  are  on  the same side of an a-helix,  (i,  i + 3) and ( i ,  i + 4), 
prefer like types of residues, whereas pairs of positions that are 
on opposite sides of an a-helix, ( i ,  i + 2) and ( i ,  i + 5 ) ,  tend to 
have residues of opposite  hydropathy. 

@-Sheet patterns 

From  the  structure set described in Materials and  methods,  a 
training set of 2,349 overlapping amino acid sequences 4 resi- 
dues long from 316 0-sheets was also constructed.  A length of 
4 residues was chosen in order to account for 2 complete pleats 
in the extended conformation.  The network constructed from 
this training set, also using the general amino acid classification, 
is shown in Figure 2. The amino acid nodes are arranged like 
the C, atoms of an extended chain. As before, only the type 
nodes of this network are shown. The correlation arcs found  for 
this  network,  as expected, were also of 2 types: (1) amino acids 
of the same class tend to fall on the same side of a sheet, and 
(2) amino acids of opposite polarity tend to occur on opposite 
sides of a sheet. A summary of the conditional probabilities rep- 
resented in each type of correlation  arc is shown in Table 2. 
Again, this pattern of correlations represents the possible am- 
phipathicity of 0-sheets: position pairs ( i ,  i + 2) are on the same 
side of a @-sheet and prefer like types of residues, whereas po- 
sition pairs ( i ,  i + l) and ( i ,  i + 3), which are  on opposite sides 
of an 0-sheet, tend to have residues of opposite  hydropathy. 
Monte Carlo simulation data for this data set also fit closely to 
the expected x 2  distribution,  thus  confirming the significance 
of the correlation  arcs (at P < 0.01). 

Phe-His bridge in C-termini of a-helices 

In a more specific study of secondary structure, we applied our 
method to the carboxyl-terminal sequences of 802 a-helices de- 
scribed in Materials and methods. A length of 5 amino acids  was 
used to account for  just over 1 complete helical turn. From an 
initial correlational analysis using the general amino acid clas- 
sification, which  reflected many of the helical correlations noted 
above, we were able to successively refine our amino acid clas- 
sifications until we had isolated the main determinants of a 
unique dependency, Our final amino acid classification was the 
specific one (PHE, HIS, OTHER)  and yielded a single  significant 

correlation corresponding to a recently investigated stabilizing 
helical interaction (Shoemaker et al., 1990). This interaction, a 
phenylalanine-histidine bridge, has been shown to stabilize the 
carboxyl-terminus of an a-helix peptide under controlled lab- 
oratory conditions. In our studies, we have found  that this in- 
teraction occurs exclusively at the C-terminus of a-helices in our 
data set. The  interaction is found in 1 orientation  only, and is 
reflected in sequence data as well: there is a significantly higher 
number of Phe-Xaa-Xaa-Xaa-His sequences (7,879) than His- 
Xaa-Xaa-Xaa-Phe sequences (7,657) in the Swiss-Prot Release 
27 sequence database (standard deviation = 89). These latter ob- 
servations are important for assessing the significance of the 
interaction as an a-helix termination signal and were not imme- 
diately obvious in the experimental studies. Figure 3 shows su- 
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Fig. 2. A Bayesian  network  for  amphipathic @-sheets. A: Correlations 
between amino acids that lie on the same side of a sheet. B: Correla- 
tions between amino acids  that lie on opposite sides of a sheet. 
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Table 2. Hydropathicity correlations for 0-strands 

Both 
~- 

Both 
Position phobica Oddsb Phobic-philica Oddsb Philic-phobic” Oddsb philica Odds 

(i, i + 1) 628 (728) 0.86 464 (382) 1.21 462 (384) 1.20 168 (201) 0.84 
~ ” 

(i, i + 2 )  567 (520) 1.09 274 (287) 0.95 279 (280) 1 .oo 168 (155) 1.08 
(i, i + 3) 313 (352) 0.89 236 (205) 1.15 258 (217) 1.19 110 (127)  0.87 

.~ ~ - ~. 

a Phobic = IVLFC, philic = HNQEDKR. Observed numbers are displayed followed by expected numbers in parentheses (based on individual 
position frequencies for each residue). 

Odds values are calculated by dividing the observed by the expected occurrences. 

perimposed  interacting  Phe-His  pairs  and  the  network  for  this 
interaction.  Note  that  the AA,  nodes in  this network  are  shown, 
and  that this network  differs  from  the previous  examples in the 
use of  the  interaction-specific  amino  acid  classification. 

Amino acid correlations in a-helices 

Finally, we analyzed specific positions in a-helical sequences for 
ungrouped  amino  acid  correlations.  First,  training  sets  com- 
posed  of 7,124 ( i ,  i + 1) pairs, 6,405 ( i ,  i + 2) pairs, 5,686 

A 

B 

His 

Phe 

U 

C-cap 

n 

Fig. 3. Interacting Phe-His structures (A) and corresponding probabi- 
listic network (B). A Bayesian network for the Phe-His bridge for the 
correlation between amino acids at the C-termini of  a-helices.  Amino 
acid 5 ( A A 5 )  is the C-terminal residue of the helix. 

( i ,  i + 3) pairs, 4,967 ( i ,  i + 4) pairs,  and 4,321 ( i ,  i + 5 )  pairs 
were generated  from  the  structure set described in  Materials  and 
methods. Because of  the  large  number of helical segments  in 
these training  sets, we can  examine  all 400 (20 amino  acids x 20 
amino  acids)  unique  residue  pairs  for  significant  correlations. 
Thus,  for each  of the 4 position pairs,  correlations between each 
amino  acid in each  position were evaluated.  For  example,  the 
contingency  table  for  the  most  significant  correlation  found 
among  the 5 training  sets is: 

i v s .  i + 4  

Lysine 
Not Lys 

.~ ~~ 

Aspartate 

33 (11.8) 
~- ~ 

172 (193) 

Not  Asp 

250 (271) 
4,456 (4,435) 

~~ ~- . 

x’ = 42.2, P < lo-’, odds = 2.79 

For this  interaction, the pair  lysine-aspartate was found 33 times 
in the  structure set separated by 3 intervening amino acids. Based 
on  the frequencies of these 2 amino  acids in their  respective po- 
sitions,  the expected number  for  each  pair was calculated  and 
shown in parentheses  for  each  entry. For the  pair  lysine- 
aspartate, fewer than 12 occurrences were expected, giving a x’ 
value  of 42.2 ( P  < lo-’). For  each  of  the 5 .training  sets,  all 
possible pairs  of  amino  acids were evaluated  for  over-  and  un- 
derrepresentation. A x* test was run  only if there was enough 
data to d o  so accurately (Le., there  was  an expected number  of 
at least 5 in all bins). For all sets  of  pairs, between 250 and 300 
of  the  possible 400 pairs were evaluated with the x’ test under 
this criterion. Because multiple tests  were run  on  data derived 
from  the  same  population, we used the  Bonferroni  inequality 
(Snedecor & Cochran, 1989) to  calculate  an  individual test sig- 
nificance  threshold  of P < 0.0002, giving an  overall a posteri- 
ori  significance  of  better  than 0.05 (if  we used  a significance of 
0.05 for  each  test,  then by chance  alone, 15 of 300 residue pairs 
would be judged  significant).  Table 3 lists the  most  significant 
pairs  for  the ( i ,  i + 4) and ( i ,  i + 3) sequence  interactions with 
a dotted  line  drawn  at P < 0.0002 significance. 

Several possible  explanations  for  amino  acid  correlations in 
a-helices  are  possible.  First,  they  may reflect the  amphipathic 
patterns in helices. We have  already  detected  amphipathic  cor- 
relations by grouping  amino  acids, so we might expect individ- 
ual amino acids to  show similar  position  preferences. However, 
the statistical significance of  the individual amino acid  pairs  (Ta- 
ble 3) exceeds the significance of the  amphipathic bias  (Table l). 
Hence, we examined the  structural  conformations of  these  pairs 
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Table 3. (i, i + 4) and (i, i + 3) sequence interactions 
~- 

A. ( i ,  i + 4) sequence correlations 

Pair  Observed"  Expectedb 

K D  33  11.8 
KE 42 20 
LL 97 62.1 
EK 55 30.4 
FM 17  6.15 
1L 60 37.9 
QE 32  17.3 

~. ~ ~. .~_____ 

x Z C  Oddsd More/lessc 

42.1 
27.6 
25 .O 
23.4 
20.6 
15.8 
14.1 

2.79 
2.10 
1.56 
1.81 
2.76 
1.58 
1.85 

KL 16  36.1  13.6 0.44 
SA 47  29.3  13.0 1.61 + 
GA 43  27.8  10.1  1.55 + 
P F  13 5.68 10.1 2.29 + 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
- 

B. (i, i + 3) sequence correlations 

Pair  Observeda  Expectedb x Z c  Oddsd  More/lessc 

DR 36 

~ ~~~~~ -~ "" 

18.6 18.4  1.94 + 

L1 56 37.2 11.3 1.50 + 
VA 73 51.9 10.6 1.41 + 

a The  number of observed  pairs  in  the  data. 
The  number  of  expected  pairs  based  on  the  individual  frequencies 

of  the  residues  in  each  position (i.e., K in position i and D in  position 
i + 4 in  the  first row), respectively. 

The x' value for the  corresponding 2 x 2 contingency  table (all 
have  significances P <  0.05; the  top 5 in A have  significances P <  

The  odds  obtained by dividing the  observed  number  of  occurrences 
by the  expected  number. 

e A "+" if the  sequence  pair is overrepresented  (odds > 1) and  a "-" 
i f  the  sequence  pair is underrepresented. 

to  test for specific side-chain-side-chain  interactions. We hy- 
pothesized that overrepresented  pairs reflect specific side-chain- 
side-chain  interactions.  Pairs  of  side  chains  can  interact in an 
a-helix when they  are in the ( i ,  i + 4), ( i ,  i + 3), and ( i ,  i + 1) 
arrangements.  However,  to  form  an  interaction,  the  amino acid 
side chains  are  constrained  to a  subset of their  possible rotamer 
conformations  (McGregor  et  al., 1987; Ponder & Richards, 
1987; Creamer & Rose, 1992; Pickett & Sternberg, 1993), par- 
ticularly  at  the x1 angle  (the  dihedral  angle  for  the  bond be- 
tween C, and  Co).  In  a-helices,  side-chain  contacts between 
positions i and i + 4 are  most likely when  the x1 angle  at  posi- 
tion i is trans and  the x I  at  position i + 4 is gauche+, whereas 
side-chain contacts between positions i and i + 3 are  most likely 
when the x1 angle  at  position i is gauche+ and  the x1 at  position 
i + 3 is gauche+. Therefore, we compared  the  rotamer  frequen- 
cies at x I  for  the  amino  acids involved  in highly overrepresented 
pairs  and  the  rotamer  frequencies  for  those  amino  acids  any- 
where in a helix. 

The  rotamer frequencies are  obtained by partitioning all side- 
chain  rotamers  into  distinct classes based  on x I .  The side-chain 
dihedral  angle xl, ranges  from -180" to  180", with classes de- 
fined  as  follows: trans (X > 120" and X I -l2Oo), gauche+ 
(-120" < x 5 O O ) ,  andgauche- (0" < x  5 120'). The  preferred 
x I  angles  for ( i ,  i + 3), and ( i ,  i +  4) pairs  are  shown  in  Figure 4. 
Continuing  the  example  from  above, 23 of  the 33 lysines at  po- 

sition i in ( i ,  i + 4) lysine-aspartate  pairs have trans x I  angles 
compared  to 16 expected (based on all helical lysine xl angles). 
Likewise, 31 of the 33 aspartates  at  position i + 4 in ( i ,  i + 4) 
lysine-aspartate  pairs  have gauche+ x I  angles compared  to 25 
expected. Both these discrepancies are significant at  the P < 0.05 
level. 

For  each  of  the  most  significant  sequence  correlations  of  the 
previous  analysis  where  each  member  has C, atoms,  an  analy- 
sis of xI  angles was done  to  determine if structural  interactions 
were responsible for  the sequence correlations.  The  distribution 
of x1 for  all  side  chains in our  structure set is 32.1% trans, 
50.4% gauche+, and 15.2% gauche-. ha-helices, thegauche- 
conformation  at x I  is rare because of steric constraints: 38.5% 
trans, 54.7% gauche+, and 6.8% gauche-. Further,  there  are 
characteristic,  preferred x I  conformations  for  each of the  amino 
acids, again  because of  the specific steric  properties of each side 
chain. For example,  valine,  isoleucine,  and  threonine  side 
chains, with their  branched Go's, are  constrained  to trans and 
gauche+ more frequently than  for  the  other  amino acids. In  the 
analysis  below, expected side-chain x I  angles  are  calculated 
from  these  amino acid-specific distributions.  Table 4 lists the 
pertinent x I  angles for  the most  strongly  correlated  residue  pairs. 

Discussion 

Using the  technique of Bayesian networks, we have  represented, 
in  a general  way, pairwise dependencies in protein sequences. 
Traditional  methods  for  sequence  analysis  model  evolutionary 
variation at  individual  positions in a protein.  Our system adds 
second-order structural  information, represented as correlations 
between pairs  of  amino  acids,  and  thereby increases the  infor- 
mational power  of  motif representations. As a first approxima- 
tion, we believe that  many of the  higher-order  interactions seen 
in  biological  sequences can be decomposed  into pairwise corre- 
lations. If this  assumption is true,  then we can claim  a high  de- 
gree  of  representational power and  generality. In other  words, 
our system can discover and represent  most important  structural 
interactions if such  interactions  can  adequately  be  described 
with,  at  most,  second-order  relationships,  and we have  large 
enough  data sets.  Restricting our system to  first-  and  second- 
order  information also simplifies the  computation required both 
for discovering motif patterns  and  for evaluating  query sequences. 

Our  work  takes  advantage of the  benefits  afforded by the 
Bayesian network  framework- we represent the sequence  rela- 
tionships in motifs, as  mediated through  structural  interactions, 
both  graphically  and  quantitatively.  The  graphical  representa- 
tion  of  motifs (in  Figs. 1, 2, 3) gives a qualitative,  spatial,  and 
intuitive  understanding of the relationships in protein sequences. 
The benefit of presenting motifs in this  form is especially evident 
with  the  secondary  structure  motifs,  where  the  arrangement  of 
the  networks  mimic  the  actual  structures,  and  the  meaning  of 
the  arcs is easily summarized.  The  quantitative  representation 
of  motifs is contained  in  the set of conditional  probability  ta- 
bles associated with each  node in a network. These numbers  are 
readily interpreted  as  probabilities or likelihoods,  and  can be 
evaluated for significance and strength with standard techniques. 

In  this  paper, we have  presented 3 sets  of  protein  sequences, 
each  of  different complexity, for which we have  built  networks. 
The  number  of sequences  in the  data sets for these applications 
is quite  large, occasionally approaching 10,OOO examples. Thus, 
we have the greatest  confidence  in our  probability estimates and 
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" A  B 

Fig. 4. x I  Angle  diagrams  for (i, i + 3) and (i, i + 4) interac- 
tions.  The  preferred x1 angles  for (i, i + 4) contacts  are trans/ 
gauche+. The  preferred x I  angles  for ( i ,  i + 3) contacts  are 
gauche+/gauche+ (xl angles  in the trans/gauche- orienta- 
tions, respectively, could  form  a  contact except that gauche- xI  
angles  are  very  rare in a-helices  because of steric  hindrances). 

i and i+4 x1  angles. i a n d  i+3 x 1  angles. 

Pair 

KD 
KE 
LL 
EK 
FM 
IL 
QE 
KL 
LI 

Number 
i trans 
obs." 

i trans 
exp." Sig.' 

i + 4 gauche+ 
obs.d 

i + 4 gauche+ 
exp.' 

33 
42 
97 
55 
17 
60 
32 
16 
46 

23 
28 
61 
27 
14 
9 

21 
8 

34 

B. (i, i + 3) structural interactions 

i gauche+ 
Pair  Number obs." 

DR 36 27 
LI 56 36 
TN 17  16 
DL 22 14 
LD  9  6 

16. I 
20.5 
39.3 
19.0 
10.3 
5.8 

12.6 
7.8 

27.1 

i gauche+ 
exp.b 

27.3 
33.0 
12.2 
16.7 
3.6 

<0.01 
<0.02 
<0.005 
<0.05 
<0.05 

<0.005 

<0.05 
- 

31 
35 
71 
24 
15 
45 
25 
13 
43 

25.0 
19.2 
57.2 
25.1 
11.4 
35.4 
18.8 
9.4 

39. I 

~ 0 . 0 5  

~ 0 . 0 2 5  
<0.005 

<0.05 
<0.05 
<0.01 

i + 3 gauche+ 
exp ? Sig.' 

15.6 
47.5 
13.0 
13.0 

6.8 

~~ ~ ~~~~ 

<0.025 
- 
- 
- 
- 

~~~~ ". ~ . 
~~ ~~ "" - ~ ~~~ 

-~ ~~~~~ . ~ .. 
~~ " . .. ~.. . . ." ~ ~ ~~ ~ ~ ~~~~~~ ~ 

'The  observed  number  of  first  residue xI angles  in  the  predominant  orientation  for  an  interaction  between  the  residue  pair. 
The expected  number of first  residue xI angles  in  the  same  orientation  (i.e.,  from  the xI  frequencies for the  first  residue  anywhere in a helix). 
The significance  of  the  first  residue xI angles  calculated  by  the x' statistic. 
The  observed  number  of  second  residue xI  angles  in  the  predominant  orientation  for  an  interaction  between  the  residue  pair. 
The expected  number  of  second  residue x I  angles in the  same  orientation  (i.e.,  from  the xI frequencies  for  the  second  residue  anywhere  in  a 

helix). 
'The significance of  the  second  residue xI angles  calculated  by  the x* statistic. 
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statistical  tests  in  this  domain.  Data set sizes can be a problem 
when  applying  this  techniques to  more specific motifs, where the 
number  of  known  examples  often  falls below 100. 

The  first  application is the discovery of  the  hydropathy  rela- 
tionships in a-helix  and &sheet data.  Figure 5 shows  the heli- 
cal wheel representation  of  an  a-helix, which diagrams  the 
arrangement of amino acids in a helix when viewed on  end.  The 
nodes in our  network  for  the  a-helix  are  arranged  in  this  man- 
ner in order  to  understand  the discovered correlations.  The  cor- 
relations  shown in Figure 1A represent  interactions between 
an  amino  acid  at a position i and  the  amino  acids  at  positions 
i + 3 and i + 4.  These  amino  acids  are  adjacent  to  each  other 
in  a  helix, as seen in the helical wheel diagram.  The  dependence 
between these  positions  shows a preference  for  similar  types of 
amino acids.  Analogously,  Figure 1B shows  interactions between 
an  amino  acid  at a position i and  the  amino  acids  at  positions 
i + 2 and i + 5 .  These  amino  acid  pairs  are  on  opposite sides  of 
the helix and show a preference for dissimilar amino acid  types. 
Specifically, if a hydrophobic  residue is present  at  position i, 
then  there is a greater  chance of seeing hydrophobic residues at 
i + 3 and i + 4 than  one  would expect based on the  frequencies 
of amino  acids in  helices. There is also a greater  chance of see- 
ing hydrophilic residues at i + 2 and i + 5 .  These  correlations 
correspond  to  the  hydrophobic  periodicity  that  characterizes 
many  amphipathic  a-helices  and  are  summarized in Table 1. In 
fact, even the relative over- or underrepresentation,  as  measured 
by the  odds  for  hydrophobic-hydrophobic  and  hydrophilic- 
hydrophilic  pairs,  mirrors  the  hydropathic  moment vector for 
the 2 positions (see Fig. 6). In other  words,  the  more  coincident 
2 residues are  on  one side of  an  a-helix,  the  more likely they are 
to  be  of  the same hydropathy.  Conversely,  the closer to a 180" 
separation 2 residues  are,  the  more likely they are  to  be of op- 
posite hydropathies. We believe the  a-helix  network  validates 
our  approach because it automatically rediscovers an  important 
principle  of  protein  structure. 

Similarly,  the (3-sheet correlations  shown in Figure 2 are  of 
2 types depending  on  the relative positions of amino  acid  pairs. 
Amino  acids  positioned  on  the  same side of a  sheet ( i  and i + 2)  

Fig. 5. The helical wheel. Arrangement of amino acids in an or-helix 
as viewed from the N-terminus. Network for or-helical segments in Fig- 
ure 5 has amino acid nodes arranged in this manner. 

are  more likely to  be of the  same  type, whereas amino  acids  po- 
sitioned on  opposite sides of a sheet ( i  and i + l ,  or i and i + 3) 
are  more likely to  be  of  different  hydropathy.  The  difference 
in the spacing  of  correlations found in  a-helices and (3-sheets can 
have a large  effect on  the prediction of secondary structure using 
Bayesian networks.  In  this  case,  the  pattern of correlations  can 
be more distinctive than  amino acid distributions  alone (because 
the  frequencies  of  amino  acids  found in a-helices  and @-sheets 
is quite  similar).  In  addition,  the  strengths  of  the (3-sheet corre- 
lations  again appear  to parallel the  magnitude of the  hydropathic 
moment  calculated  for  each  pair  of  positions  (Eisenberg et al., 
1984) in a (3-strand. 

The  second,  and  related,  application is the  C-terminus se- 
quences  from  a-helices.  The  data set size for  this  application is 
smaller than  the previous example,  but in the  range  of  other se- 
quence  data  sets we've worked  with successfully. This  applica- 
tion  demonstrates  the versatility  of our system in  moving  from 
abstract  amino acid classifications to detailed  interaction-specific 
classifications. With  the initial amino acid classes, we largely saw 
general helix dependencies, whereas later  refinement brought  out 
a unique  interaction.  This unique interaction, the Phe-His  bridge, 
has been shown  to stabilize model  a-helical  peptides in solution 
(Shoemaker et al., 1990). Further  analysis of the  entire  Brook- 
haven database confirmed that  the  pattern  Phe-Xaa-Xaa-Xaa-His 
is seen at  the  C-terminus  of a helix in 10 of the 11 occurrences 

1.5 1 
0 s i  
F a, ,I 
0 q 
U 

I Phobic/Phobc I 
"e - Phobic/Philic 
- - PhiliclPhobic 

- x  ~ PhiliclPhilic I 

0 
0 0.5 1.5 2 

Moment  Vector  for Pair 

Fig. 6.  Graph of residue pair odds from Table 1 against the hydropathic 
moment vector calculated for each pair of positions. As a measure for 
how coincident 2 residues are  on 1 side of an  a-helix, we calculated the 
hydropathic moment vector for the position pairs ( i ,  i + 2), (i, i + 3), 
(i, i + 4), and ( i ,  i + 5 ) .  The hydropathic moment is the  magnitude of 
the sum of the unit vectors pointing out  from  the helical  axis to the C ,  
atoms in the positions pair.  This measure is based on the  hydrophobic 
moment calculation (Eisenberg et al., 1984). The hydropathic moments 
for  the 4 pairs listed above  are 0.347,  1.732,  1.879, and 0.684, respec- 
tively, indicating that ( i ,  i + 4) are the closest in an a-helical  turn and 
(i, i + 2) are the most distant. This agrees with what one would expect 
from the helical wheel diagram (Fig. 5 ) .  
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of  the  pattern in helices (Fig. 3A). Conversely,  the  pattern  His- 
Xaa-Xaa-Xaa-Phe in helices is positioned only 1 of  9  times  near 
the  C-terminus.  Although  this  interaction is again  validated by 
empirical  evidence, this  application  shows  that  the  detection  of 
amino acid correlations can indicate novel structural interactions. 

The  third  application is the specific  side-chain-side-chain in- 
teractions.  Many  of  the  sequence  correlations in Table 3 repre- 
sent specific  side-chain-side-chain interactions  that  have been 
shown  to  stabilize  a-helices  (Marqusee  et  al., 1989; Shoemaker 
et  al., 1990; Armstrong & Baldwin, 1993; Huyghues-Despointes 
& Baldwin, personal communication;  Padmanabhan & Baldwin, 
personal  communication).  Others  are novel and  may reflect 
unexamined  side-chain  interactions  important in local  protein 
stability. In  order  to  separate side-chain interactions  from  non- 
specific hydropathy-based  correlations, we examined  the side- 
chain  conformations  for  the  significant  sequence  correlations. 

Almost  all  of  the highly significant (i, i + 4) sequence  corre- 
lations  (Table 3) correspond to  specific  side-chain conformation 
(Table 4). For example, not only is the  lysine-aspartate  pair  over- 
represented  at (i, i + 4) in a-helices,  but  their x I  angles are sig- 
nificantly skewed toward  the  orientation preferred for side-chain 
interaction  (the x1 for lysines at  position i are  more  often trans 
than  expected,  and  the x1 for  aspartates  at  position i + 4 are 
more  often gauche+ than  expected). 

The  interaction  of  sequence  pairs KD, KE,  and EK are elec- 
trostatic,  as  one  would  expect.  The  interaction  of  sequence  pair 
QE is likely a hydrogen bond.  The  interaction of sequence  pairs 
LL, IL, and L1 is hydrophobic in nature.  One  should  note  that 
all  of  these interactions  are  stronger  (more significant) than  the 
more  general helical amphipathic  patterns discussed above. In 
contrast, because the  sequence  pair KL shows no side-chain x I  
preferences  and is not  as  significant, its underrepresentation in 
helices may result from a hydrophobic effect alone (i.e., a strong 
hydrophobic  residue  and a strong  hydrophilic  residue  are  un- 
derrepresented  in  positions  that  would place them next to  each 
other on a helix). 

Only 2 of the 5 significant ( i ,  i + 3) sequence  correlations 
show  contact preference  (as determined by x, analysis): the salt 
bridge, DR, and  the  potential hydrogen bond,  TN.  The remain- 
ing 3 sequence  correlations  correspond  to  nonspecific  interac- 
tions such as  hydrophobic  interactions or amphipathicity. Lastly, 
except in  a few cases,  it is difficult to analyze the  conformations 
of underrepresented  sequence  pairs  because  the  number  of ex- 
amples is small. If the  underrepresentation is the result  of an  un- 
favorable  interaction,  one  might expect that  the side chains 
would  point  away  from  each  other.  Alternatively,  as  with KL 
in (i, i + 4) above,  nonspecific  amphipathic  patterns  might  be 
responsible, giving no side-chain  conformation  preferences. 

Most  of  these  interactions  have been shown  to  contribute  to 
a proteins’  stability  (Stryer, 1988). Even more specifically, some 
have been shown  to  stabilize  a-helices  (Marqusee et al., 1989; 
Shoemaker et al., 1990; Armstrong & Baldwin, 1993; Huyghues- 
Despointes & Baldwin,  personal communication;  Padmanabhan 
& Baldwin,  personal  communication).  However,  one  of  our 
highly  significant  correlations,  namely  the  phenylalanine- 
methionine  pair  in (i, i + 4), shows  contact  preference in xI  an- 
gles and  has little mention  in  the  literature (Reid et  al., 1985; 
Burley & Petsko, 1988) and  no experimental confirmation.  When 
the 17 (i, i + 4) phenylalanine-methionine  pairs are superimposed 
(Fig. 7), one sees a  regularity in side-chain interaction. We pro- 
pose  that  this side-chain interaction,  the  sulfur-aromatic,  may 

Met  

Phe 

Fig. 7. Superimposed  phenylalanine-methionine  interactions. Seventeen 
examples of phenylalanine-methionine  pairs in ( i ,  i + 4) sequence  po- 
sitions  superimposed  with  backbone  atom  coordinates  only. 

play  a role in  stabilizing proteins,  particularly  a-helices. Using 
Iditis, we have found 65 examples  of contacting  (one  atom  from 
each side chain within 5 A of  each  other  and regardless of se- 
quence positions)  phenylalanine-methionines in the  unique struc- 
ture set described in the  Materials  and  methods  section. 

In this  paper, we have  described  correlations using discrete 
values only. In an immediate  extension  to  this  work, we are ex- 
amining  correlations in protein  sequences based on  numerical 
parameters. For example, one can run regression analyses on hy- 
drophobicity values,  side-chain  volumes, etc.,  to generate quan- 
titative  relationships. We are  currently  exploring  the  secondary 
structure prediction  problem by constructing  networks for many 
different  secondary  structure  units, scoring test sequences, and 
developing  methods  for  comparing  their  scores. 

Materials and  methods 

The  method described  in  this paper was developed as a  general- 
ization  of the  traditional weight matrix  method  for representing 
sequence  motifs and  for searching biological sequence databases 
for  related  functional or structural  motifs  (Staden, 1984). A 
weight matrix is a table of likelihoods  calculated by dividing the 
positional  amino  acid  frequencies  in a set of related  aligned se- 
quences  (the  “motif”) by the  amino  acid  frequencies in a repre- 
sentative  protein  database.  The  logarithms of these weights, or 
log likelihoods,  are  then used to  evaluate a query  protein se- 
quence by summing  the  corresponding values for  each  amino 
acid  in  the  query.  An  arbitrary  threshold  on these sums is used 
to  classify the  query  sequence (as an example  of  the  motif  or 
not).  Summing  the  logarithms  of  the weights is equivalent  to 
multiplying  likelihoods, so the  final weight matrix  score  for a 
query  sequence  can  be  transformed  to  the  likelihood  that 
the  sequence  belongs  to  the  training set  class. The  conditional- 
independence  assumption is evident because the  amino  acid 
weights for each  position  in a motif are calculated  separately and 
without  regard  for  the  distributions  at  any  other  position. 
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Bayesian networks 

In  this  work, we employ Bayesian networks, or belief networks 
(Pearl, 1988; Neapolitan, 1990) to  discover and  represent  spa- 
tial  constraints (i.e., dependencies) imposed by a  protein’s struc- 
ture.  Bayesian  networks  are  directed, acyclic graphs in  which 
nodes  represent  variables  and  arcs  represent  the  dependencies 
between  variables. The  dependencies  are  quantified in terms  of 
conditional  probabilities: if an  arc exists from  node A to  node 
B, then  there is a conditional  probability  function P(BIA)  over 
all possible values of A and B. Bayesian networks  are explicit 
descriptions  of  the  known  relationships  (dependencies  as well 
as  independences)  among  variables. 

A  Bayesian network  with  the  simple  topology  shown in  Fig- 
ure 8 models  amino  acid  distributions  at  independent  positions. 
The  center  node C in this  type of network  represents  the classi- 
fication  of a protein  sequence  and is usually  binary  (i.e.,  has 
values example-of-motif or not-example-of-motif ). An AAi 
node  represents  the  amino  acid  at  position i of  the  sequence. 
An  arc  from  the  center  node C to  an AA, node  represents  the 
positional distribution of amino acids at position i in the training 
set (and  amino acid  frequencies  in  a randomly chosen  sequence), 
and these are  calculated  from  the  frequencies of occurrence. 
These  arcs  encode  the set of  conditional  probabilities P ( A A ,  I C) 
for  each  position. 

Whereas traditional  approaches  are limited by the  assumption 
of  conditional  independence of sequence  position,  the  network 
discussed above  can  be easily augmented  to  represent  higher- 
order  interactions. All pairwise constraints, or interactions, be- 
tween residues  at  remote sites can be represented in a Bayesian 
network by simply adding  arcs  (and  the  appropriate  conditional 
probability  tables) of the  form  shown in Figure 9. An  arc  from 
one  amino acid node  to  another represents a correlation between 
the  pairs  of  amino  acids  occurring  at  the 2 respective positions 
in a set of  sequences.  For  example,  an  electrostatic  interaction 
in a specific motif  would  be  represented  as an  arc  with  prob- 
abilities  of  the  form P ( A A ,  = Asp or GluIAA, = Lys or Arg, 
C = motif). 

In building up a network, we begin with no arcs and  add  them 
when dependencies between 2 nodes  are  detected  statistically. 
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Fig. 8. A simple Bayesian network. The central  node C is a classifier 
node, representing a variable with 2 settings: (1) a sequence is an exam- 
ple of mot$, and (2) a sequence is not an example of mot$. A leaf node 
A A , ,  is an evidence node, and represents an amino acid variable for a 
single position in the  motif.  An arc from C to  an A A ,  node represents 
the  distribution of amino acids occurring at  that position in the motif. 
I t  encodes a conditional  probability table containing  probabilities 
P ( A A ,  I C) for all combinations of both variables (i.e., 2 x 20 = 40 
probabilities). 

Fig. 9. A complex  Bayesian network. An arc from one amino acid node, 
AA; ,  to another, AA,, represents the dependence of the  amino acid at 
position j on the  amino acid at position i and encodes 20 X 20 = 400 
probabilities P ( A A ,  I AA, C )  for each classifier value. 

First,  an  arc  from  the center node C to  an  amino acid node AA,  
is added if the  amino  acid  distribution  at  position i of  the  input 
sequence  deviates  from  the  background  distribution of amino 
acids in the  sequence  database (using the x’ test for  comparing 
2 distributions).  This  condition exists for every position in the 
networks described  in this  paper. If this condition  fails,  the  po- 
sition is not useful for discrimination by itself (but still may pro- 
vide correlation  information).  When searching for dependencies 
between the  amino  acids  at 2 positions in a motif,  as  described 
below, we are  often limited by the  number of canonical se- 
quences we analyze  (the  training set size). Although  the sequence 
databases  are  growing  rapidly,  training sets for specific motifs 
rarely contain  more  than several hundred examples, which is too 
small  to  detect  significant  correlations between amino  acid dis- 
tributions  at  pairs of positions.  Analyzing  the  full  amino  acid 
dependencies  at 2 positions  in a motif  requires  the  evaluation 
of a contingency  table with 400 (20 X 20) bins. Adequately  pop- 
ulating  such a table  requires a minimum of  several thousand 
sequences- many  more  than  are  normally available. Addition- 
ally, if the  amino  acid  distributions  for a motif  are skewed 
(which is common, especially for  conserved  positions),  empty 
bins  appear in the  resulting  contingency  table. 

However, by classifying the  amino  acids  into  chemical or 
functional classes, we can  more easily detect  significant  corre- 
lations between types of amino  acids  because we look  for  de- 
pendencies between variables with a fewer number settings. For 
example, if an  amino  acid  classification  groups  the 20 amino 
acids  into 4 classes, we need only  tabulate  the occurrences  of the 
16 possible  pairs  of amino  acid types at  2 positions. In this  way, 
more  accurate  conditional  probabilities  can be generated  from 
smaller training sets. We do, however, sacrifice some detail when 
we represent  dependencies between more  abstract  variables. A 
Bayesian network representing  dependencies  between classes of 
amino  acids is shown in Figure 10. 

Amino acid alphabets 

Because amino  acid  correlations  are  assumed  to result from 
physical and  chemical  interactions, we can  construct  different 
amino  acid  classifications  based  on  the  properties  of  their side 
chains. A natural  classification  based  on  general physical and 
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Table 5 .  Unique, high-resolution Brookhaven database 

Fig. 10. A  complex  Bayesian  network  with  amino  acid  classes. A 6 
node  represents  an  amino  acid  class for a  single  position in the  motif. 
An arc from C to a T, node  represents  the  distribution  of  amino  acid 
types  occurring  at  that  position in the  motif.  It  encodes  a  conditional 
probability  table  containing  the  probabilities P(7; I C) for all combina- 
tions  of  both variables. An arc from  a 7; node tQ its corresponding AA, 
node  completes  the  definitional cycle: if AA, is known,  then T, is de- 
termined with probability  l  from  an  application of Bayes' Rule with the 
conditional  probabilities P(AA, 1 C ) ,  P (  T, I C),  and P ( A ,  I T,) .  An  arc 
from  one  amino  acid  type  node, T,, to another, q,  represents  a  corre- 
lation of the  amino  acid  type  at  position j on the  amino  acid  type at po- 
sition i, and  encodes  the  probabilities P ( q  [ K C )  for  each  type  value. 

chemical  properties is: HYDROPHOBIC  (Ile, Val, Leu,  Phe, 
Cys); NEUTRAL (Met, Ala,  Gly,  Thr,  Ser,  Trp, Tyr, Pro);  and 
HYDROPHILIC  (His,  Asn,  Gln,  Asp, Glu, Lys, Arg).  These 
groups  are  defined  using a standard  hydropathy  scale (Kyte & 
Doolittle, 1982) as  follows:  HYDROPHOBIC  (hydropathy  in- 
dex > 2.0); HYDROPHILIC  (hydropathy index < -2.0); and 
NEUTRAL (2.0 2 hydropathy index 2 -2.0). A  special-purpose 
classification that we use to detect  a  specific interaction between 
imino  groups  and  aromatic rings is: PHEITYR  (Phe,  Tyr);  HIS 
(His);  and  OTHER  (Ala,  Cys,  Asp,  Glu,  Gly, Ile, Lys,  Leu, 
Met,  Asn,  Pro,  Gln,  Arg,  Ser,  Thr, Val, Trp).  These 2 exam- 
ples of amino  acid  classifications  represent 2 extremes: a gen- 
eral  classification  that is used to  detect  common  interactions 
mediated through  hydrophobic centers and electrostatic bridges, 
and a specific  classification  that  detects a specific and  unusual 
interaction. 

Discovering sequence correlations 

The discovery of  positional dependencies for  our Bayesian net- 
works is accomplished  with x' statistical  tests. Given the ge- 
neric  topology  described  above,  arcs  (and  nodes)  are  included 
after  rejecting null hypotheses  about  pairs  of  nodes. For arcs 
between the center node C and  amino  acid  nodes AA,  (and F ) ,  
the null hypothesis is that  amino  acids  (and types) are  distrib- 
uted  as in the  sequence  database.  With all  well-defined motifs 
we have  examined,  this  hypothesis  is rejected at  high significance 
( P  < 0.001) for every position in the  motif. For T, to inter- 
positional  arcs,  the null hypothesis is that  the  positions  are  un- 
correlated, or conditionally  independent.  When  the null 
hypothesis is rejected at some  arbitrary  significance level (USU- 
ally P < 0.01), the  corresponding  arc is included in  the  network. 

chains used in discovering sequence correlations 
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Ypap 

~~~~ " ." 

When T, and  are  correlated,  arcs  from  the  center  node  to 
each  of these are  included,  as well as  the  arcs  from T, to  AA,  
and  to AA,. As stated previously,  these latter  arcs  are  deter- 
ministic, functioning to define amino acid classes. Currently, our 
discovery program uses a straightforward  exhaustive  search  of 
all pairs of positions.  When  significant  amino  acid  type  corre- 
lations  are  found,  corresponding  arcs  are  added  to  the develop- 
ing network. 

The  significance  of our x* tests, especially  with small or 
skewed  data  sets, is validated using Monte  Carlo  simulations. 
We iteratively construct  simulated  data  sets by independently 
shuffling  the  amino  acids  found  at  each  position  in  our origi- 
nal  sequence  alignments.  This process preserves positional amino 
acid distributions while randomizing  any pairwise correlations. 
Running  the x 2  tests on these simulated  data  sets gives an em- 
pirical estimate  of  how  often  significant pairwise correlations 
are  detected  due  to  chance  alone.  Arcs  remain in  a motif net- 
work  only if significance is maintained in the  Monte  Carlo 
analysis. 

Constructing sequence data sets 

The  sequences we analyze in this  paper were extracted  from a 
nonhomologous set of  chains  from  the  Brookhaven  Protein 
Data Bank (Bernstein et  al., 1977). To construct  this  set, we first 
eliminated all nonprotein  structures,  mutant  structures,  model 
structures,  and  low-resolution  structures ( > 2 . 5  A).  Next, all 
pairwise  sequence comparisons were made with the chains from 
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the  remaining  structures using the FASTDB program  in  the  In- 
telligenetics Suite of sequence  analysis  programs.  Chains were 
grouped  such  that,  for every sequence in  a  specific group,  there 
is at least one  other sequence  of greater  than 30% identity in the 
same  group (or, for every sequence  in a given group,  no se- 
quence  from a different  group was better  than  30%  identical). 
Lastly,  the  chain with the best resolution  was  chosen  from  each 
group as the  representative  sequence  for  that  group. 

This procedure gave a high-resolution, nonhomologous, non- 
mutant,  nonmodel  structure set of 167 chains  (Table 5). We used 
the Iditis program  from  Oxford  Molecular  (Thornton & Gard- 
ner, 1989), a program  for  querying  the  PDB in relational  form, 
to extract sequences  of  specific secondary  structure assigned by 
the  extended DSSP method (Kabsch & Sander, 1983) imple- 
mented in Iditis. 
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