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Abstract 

We have recently described a  method based on artificial  neural networks to cluster protein sequences into fami- 
lies. The network was trained with Kohonen’s unsupervised learning algorithm using, as  inputs,  the matrix pat- 
terns derived from the  dipeptide  composition of the proteins. We present here a large-scale application of that 
method to classify the 1,758 human protein sequences stored in the SwissProt database (release  19.0),  whose lengths 
are greater than 50 amino acids. In the final 2-dimensional topologically ordered map of 15 X 15 neurons,  pro- 
teins belonging to known families were associated with the same neuron or with neighboring ones.  Also, as an 
attempt to reduce  the time-consuming learning procedure, we compared  2 learning protocols: one of 500 epochs 
(100 SUN CPU-hours [CPU-h]), and  another  one of 30 epochs (6.7 CPU-h).  A further reduction of learning- 
computing  time, by a  factor of about 3.3,  with similar protein clustering results, was achieved using a  matrix of 
11 x 11 components to represent the sequences. Although network training is time  consuming, the classification 
of a new protein in the final  ordered  map is  very fast (14.6 CPU-seconds). We also show a  comparison between 
the artificial neural network approach  and conventional  methods of biosequence analysis. 

Keywords: clustering algorithms; neural networks; protein classification; self-organized maps; sequence repre- 
sentations 

During the last several years, the databases of macromolecular 
sequences have been continuously increasing. This  growth has 
been accompanied by a sustained development of computer 
hardware and software. In particular, advanced computational 
tools to search for sequence  similarities  in macromolecular data- 
bases have been developed. There are powerful  algorithms for 
comparing  2 (Needleman & Wunsch, 1970) or more sequences 
(Gribskov et al., 1987; Corpet, 1988). In general, these compar- 
isons involve sequence alignments, allowing for the existence of 
gaps in each sequence. Although these methods are sensitive, 
they are extremely time  consuming.  Faster  but less sensitive al- 
gorithms to identify related proteins have also been proposed 
(Lipman & Pearson, 1985; Altschul & Lipman, 1990; Altschul 
et al., 1990). In spite of these developments, the search for se- 
quence similarities in macromolecular  databases is still a  sub- 
ject of major concern, because sequencing data keep increasing 
at high speed as a consequence of many genome sequencing 
projects (Watson, 1990; Maddox, 1992; Sulston et al., 1992), and 
searching  time, in standard algorithms, is usually proportional 
to  the  database size. One possible strategy for dealing with this 
problem is to cluster macromolecular sequences into families 
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and then  compare new sequences only with consensus patterns 
representing each family. This approach should not be limited 
by database size, because the number of macromolecular fam- 
ilies  is expected to grow more slowly than  the number of se- 
quences. Recently, 2  different neural-network-based methods 
following this approach have been proposed (Ferran & Ferrara, 
1991; Wu et al., 1992). 

Artificial neural networks (ANNs) are simplified models in- 
spired by the nervous system, in which neurons are considered 
as simple processing units linked with weighted connections 
called synaptic efficacies. These weights are gradually adjusted 
according to a learning algorithm. 

ANNs have been applied as a  computational tool  to a large 
number of different fields. In most cases, a feed-forward archi- 
tecture of the network is used to predict new correspondences 
of a  relationship between inputs and  outputs of the network, 
after “learning” some known examples of that relationship. The 
corresponding  final set of synaptic connections is determined 
using a supervised learning algorithm: usually, the  delta rule 
algorithm  (Rosenblatt, 1962) for networks having only 1 layer 
of adaptable synaptic efficacies, and  the backpropagation algo- 
rithm (Le Cun, 1985; Rumelhart et al., 1986) for multilayered 
networks. In particular, feed-forward ANNs have been applied 
to  the analysis of biological sequences (Petersen et al., 1990; 
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von Heijne, 1991; Hirst & Sternberg, 1992), considering some 
representation of the sequence as input to the network. For  pro- 
tein sequences, this approach has been used to predict immu- 
noglobulin domains (Bengio & Pouliot, 1990), surface exposure 
of amino acids (Holbrook et al., 1990), disulfide-bonding states 
of cysteines (Muskal et al., 1990), signal peptides (Ladunga et al., 
1991), ATP-binding motifs  (Hirst & Sternberg, 1991), water- 
binding sites (Wade  et al., 1992), and 3-dimensional (Bohr et al., 
1990) and secondary structures of proteins (Bohr et al., 1988; 
Qian & Sejnowski, 1988; Holley & Karplus, 1989; McGregor 
et al., 1989; Andreassen et al., 1990; Kneller et al., 1990; Vieth 
& Kolinski, 1991; Muskal & Kim, 1992; Stolorz et al., 1992; 
Zhang et al., 1992; Rost & Sander, 1993a, 1993b). It has also 
been  used to recognize distantly related protein sequences (Frish- 
man & Argos, 1992). Concerning nucleic  acid  sequences,  this ap- 
proach has  been  used to predict DNA-binding sites or promoters 
(Stormo et al., 1982; Lukashin et al., 1989; Demeler & Zhou, 
1991; O’Neill, 1991, 1992; Horton & Kanehisa, 1992), mRNA 
splice sites (Brunak et al., 1990, 1991; Engelbrecht et al., 1992), 
and coding regions in DNA (Lapedes et al., 1990; Uberbacher 
& Mural, 1991; Farber et al., 1992; Snyder & Stormo, 1993). 

An  alternative  method to  the supervised learning algorithm 
is the unsupervised one proposed by Kohonen (1982), where the 
neural network self-organizes its activation states into topolog- 
ically ordered maps. These maps result from  an  information 
compression that only retains the most relevant common fea- 
tures of the set of input signals. This approach has been applied 
to detect signal peptide coding regions (Arrigo et al., 1991) and 
to cluster small organic molecules of  analogue  structure into 
families  of  similar  activity  (Rose  et al., 1991). We have proposed 
a  method based on Kohonen’s algorithm to cluster protein se- 
quences into families according to their degree of sequence sim- 
ilarity (Ferran & Ferrara, 1991,  1992a). The network was trained 
using, as inputs, matrix patterns of 20 X 20 components derived 
from  the dipeptide  composition of the protein sequences. This 
naive representation of the whole sequence information has also 
been  successfully applied to classify proteins with statistical tech- 
niques (Nakayama et al., 1988; Van Heel, 1991). Such represen- 
tation allowed us to feed the network with a  constant number 
of inputs, regardless of the protein length. Although network 
training is time consuming,  once the topological map is ob- 
tained, the classification of a new protein is  very fast. We have 
tested the method by considering both small (-10 sequences) 
and large (-450 sequences) learning sets of well-defined protein 
families (Ferran & Ferrara, 1991,  1992a). For small learning sets, 
we have also shown that  the trained network is able to classify 
correctly mutated or incomplete sequences of the learned pro- 
teins (Ferran & Ferrara, 1991). We have also found, using a 
learning set of 76 cytochrome c sequences belonging to differ- 
ent species, that  the time  evolution of the map  during learning 
roughly resembles the phylogenetic  classification  of the involved 
species (Ferran & Ferrara, 1992b). 

Wu et al. (1992) have  recently  proposed another neural-network- 
based method to classify protein sequences into families. The 
main difference between these 2 ANN  approaches resides in the 
learning procedure: Wu  et al. have used a supervised learning 
algorithm, whereas we have used an unsupervised one. They 
have trained several modules of a multilayered network using 
the  backpropagation algorithm. Each module was trained with 
known examples taken from those sequences of the  PIR  data- 
base that have been previously identified as belonging to a given 

protein superfamily, using as inputs 1 or more “n-gram” encod- 
ings  of the sequence. During learning, the synaptic efficacies be- 
tween the neurons were changed in  order  to reduce a cost 
function.  This  function is a measure of the difference between 
the actual outputs provided by the network to each entry and 
the corresponding desired outputs,  that is, the  outputs encod- 
ing the correct superfamily classification. Because the desired 
output values to each entry must be known, this  kind  of  learning 
algorithm is called supervised. On the  contrary, in our method, 
it  is not necessary to know a  priori the number and composi- 
tion of the protein families; thus, it could be used, for instance, 
to classify automatically the  nonannotated entries of the PIR 
database. 

The  computing training time for  the neural network with the 
unsupervised algorithm can be reduced by taking a smaller num- 
ber of components in the input  and synaptic vectors. In the 
present paper, we explore other matrix representations of the 
protein sequences in  which all amino acids having similar phys- 
icochemical properties are considered as a same type  of residue. 
We use both small and large learning sets to compare  the clas- 
sifications resulting from different sequence representations. In 
particular, we show a large-scale application of the  method in 
which a learning set, probably as complex as the whole protein 
database as regards the clustering of the  patterns, is considered: 
the set of all human protein sequences stored into the SwissProt 
database (release 19.0, 8/91). We also compare the results of the 
ANN approach with a standard statistical classification of the 
dipeptide matrices of this set  of human  protein sequences. In 
addition, we use a small set of protein sequences (the chemo- 
kine family) to compare the ANN approach with other conven- 
tional  methods of biosequence analysis. 

Results 

Classification of small sets of 
well-defined protein  families 

Analysis  of different matrix representations 
of the protein sequences 
We investigated the influence of 4 different  dipeptide  matrix 

representations of the sequences on  the protein classification: 
(1) 20 X 20 matrix. Each amino acid  was taken as a different res- 
idue (representation that we have used in our previous works). 
(2) 1 1  x 1 1  matrix. Eleven groups of residues were considered: 
(V,LJI,  lT,Sl, (N,Ql, lE,Dl,  (K,R,Hl, IY,F,Wl, (MI,  [PI,  
{ C ) ,  (A] ,  and (GI. The  matrix  representation of the sequence 
was built taking  into account an alphabet of 1 1  symbols instead 
of 20. (3) 6 x 6 matrix. Six groups of residues were considered 
to build the matrix: [V,L,I,M) (hydrophobic), (Y,F,W) (hydro- 
phobic, aromatic), [ P,A,G,S,T} (neutral, weakly hydrophobic), 
(N,Q,E,D) (hydrophilic,  acid), (K,R,H] (hydrophilic, basic), 
and (C)  (crosslink forming).  This  grouping is the  one consid- 
ered by the GCG  software package (Devereux et al., 1984) to 
determine  the percentage of sequence similarity between 2 pro- 
tein  sequences according to the Needleman-Wunsch method. (4) 
3 x 3. Three groups of residues were considered to build the ma- 
trix: (V,L,I,W,A} (hydrophobic), [Y,F,P,G,C,M), and  [N,Q,E, 
D,K,R,H,T,S) (hydrophilic). 

The above protein representations were tested on  a 7 X 7 net- 
work with 2 different learning sets of  well-defined protein fam- 
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ilies. The first set consisted of 50 sequences belonging to  the 
following 10 families (5 sequences per family): cytochromes c, 
hemoglobin a-chains, hemoglobin P-chains, insulins, growth 
hormones, prolactins, interferon-a precursors, env gene prod- 
ucts (human immunodeficiency virus [HIVI-I subfamily), pol 
gene products (HIV-I subfamily), and gag gene products (HIV-I 
subfamily).  The second learning set included 76 cytochrome c 
sequences that we used in a previous work (Ferran & Ferrara, 
1992a). 

The topological map  for each learning set and each  protein 
representation was generated and then the number of proteins 
that could be considered wrongly classified was estimated (Ta- 
ble l). For the cytochrome c learning set, we have considered 
that a pattern was wrongly classified if it did not  fit the phylo- 
genetic classification. This consideration gives an upper limit for 
the estimation of the number of wrong classifications because 
the degree of homology between protein sequences may be 
greater than  the  one expected by phylogenetics (Ferran & Fer- 
rara, 1992a). In  Table 1 we have also indicated the  CPU time 
required for  the learning procedure  (on  a VAX 63 10 computer, 
2.67 MIPS)  and  the number of neurons assigned as winners in 
the final classification of the learned patterns. The  CPU time 
decreases and  the number of winner neurons increases when 
proteins are represented by matrices with a smaller number of 
components. Interestingly, the 11 x 11 representation led to a 
classification that was similar to the one  obtained with the 20 x 
20 representation,  though the required computing time was  re- 
duced, as expected, by a  factor of about 3.3. 

Comparison of the ANN approach 
with conventional methods 
In  order to evaluate the ANN approach, we have compared 

the classification given  by a topological mapping with the results 
obtained with other conventional methods of biosequence anal- 
ysis. For this, we have used a set of inflammatory  chemotactic 
cytokines known as the chemokine family  (Table  2). This set  can 
be divided into 2 subfamilies on the basis of  2 conserved cys- 
teine residues that  are either adjacent  (CC or intercrine  fam- 
ily) or separated by 1 amino acid (CXC or intercrine a family). 
These cytokines are synthesized by a variety of cell types, usu- 
ally  in response to an inflammatory stimulus (Oppenheim et al., 

Table 1. Number of wrong classifications (Wr), winner 
neurons (Nr), and computing time  (Time, in CPU-minutes) 
required by the learning procedure on a  VAX 6310 when 
different protein representations are useda 

10 Families Cytochromes c 

Representation Wr Nr Time Wr Nr Time 

20 x 20 0 14 101.60 6 28 148.00 
1 1  x 11 0 16 29.97 7 28 45.18 
6 x 6  1 19 9.98 11 34 14.99 
3 x 3  5 26 3.33 14 38 4.68 

a In all cases, a network of 7  x 7 neurons was  trained  during 5 0 0  ep- 
ochs, with an exponential  decrease of a [a(O) = 0.90, a = 0.90, At, = 51 
and shrinking the winner neighborhood every At" = 50 epochs. Both a 
learning set of 10 different  families of proteins  and  another one composed 
of cytochromes c belonging to 76 different species were considered. 

1991), and their characteristic activity is leukocyte chemoattrac- 
tion and activation, with a cellular selectivity for neutrophils 
(CXC members) or for monocytes (CC members) (Minty et al., 
1993). The  2 subfamilies correspond to  the well-characterized 
PROSITE  groups SMALL-CYTOKINES-CC and SMALL- 
CYTOKINES-CXC. We have only  considered  complete se- 
quences, except for the case of MCP-2 whose fragment was quite 
long (77 amino acids, whereas the lengths of the other 35 se- 
quences were about 100 amino acids). All sequences but 1 
(MCP-3) have been taken from  the release 25.0 (4/93) of Swiss- 
Prot. The complete sequence of MCP-3 has been taken from 
Minty et al. (1993). 

Both a 20 x 20 and an 11 x 11 matrix  representation of the 
above-mentioned set of 36 protein sequences have been  used to 
train a  5 x 5  neural  network,  during 30 learning cycles (or ep- 
ochs). Figure 1 shows the corresponding final topological maps. 
In both cases, the neural network classified the 36 sequences in 
about 6 main groups of proteins having similar biological func- 
tions.  In the  map of Figure 1A there is only 1 case in which se- 
quences belonging to the CC  and  CXC subfamilies were  merged 
into the same neuron (sisd-h and  the INIG proteins). Other un- 
expected classifications of this map, according to the descrip- 
tion of the biological function given  in SwissProt, were (1) sisf-m 
was placed far  apart  from the remaining SIS (or MIP-I) pro- 
teins; (2)  emfi-ch  was clustered with the 1L-8  sequences;  (3)  mig- 
m was gathered together with the PLF-4 sequences; and (4) 
pf41-h was not classified within the PLF-4 group.  On the con- 
trary, in the  map of Figure 1B there was no merging of CC  and 
CXC subfamilies, the sequence sisd-h was correctly classified 
within the SIS group,  and the sequence pf41-h was gathered  to- 
gether with the PLF-4 group. On the  other hand, the sequence 
sisf-m  was clustered within the  MCP  group, emfi-ch was  placed 
in a  neuron neighboring that of the IL-8 sequences, and mig-m 
was still classified in the PFL-4 group. Interestingly, all the se- 
quences belonging to the CC subfamily were placed in the right 
side of the  map, whereas those belonging to the CXC subfam- 
ily occupied the left part. Note that this remarkable  separation 
of  the CC  and  CXC subfamilies, which  was initially defined 
on  the basis of only 1 pair of amino  acids, has been achieved 
using a  dipeptide composition matrix to represent the protein 
sequence. 

We have also classified the 36 protein sequences with several 
conventional  methods of biosequence analysis. Figure 2 shows 
a dendrogram  obtained from a multiple sequence alignment of 
those  proteins, using a simplification of the progressive align- 
ment method of Feng and DooLittle  (1987), similar to the method 
described by Higgins and Sharp (1989) (Pileup command of the 
GCG  software package). The dendrogram can be partitioned in 
nearly the same 6 main groups that were found with the ANN 
approach. Note also that most of the controversial points of the 
ANN approach correspond to cases of sequences having a big 
distance to  the closer group of proteins (sisf-m, mig-m, emfi- 
ch,  and pf4l-h).  Table  3 shows the first 5 better scores obtained 
using the  FastA  algorithm  proposed by Pearson and Lipman 
(1988), when each sequence was compared with the remaining 
35 sequences (FastA command of the  GCG package). Note that 
almost all of the results obtained with FastA and  the  ANN  ap- 
proach are consistent: the sequences are classified mainly in 6 
groups; emfi-ch is  in the IL-8 group; sisf-m  is  in the MCP group; 
and  the closest  sequence to mig-m  is  pf4l-h (though it is not clear 
to which of the 6  mains  groups  it belongs). In addition, though 
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Table 2. List of 36 protein sequences belonging to the chemokine subfamilies CC or CXC 
and used to compare the ANN approach with other conventional methods 

Code SwissProt name Subfamily SwissProt description 

mcpl-b 
mcpl-h 
rncp I-m 
mcp 1 -rb 
mcp I-r 
mcp2-h 
mcp3-h 
sisa-m 
sisb-h 
mi 10-h 
sisc-h 
sisc-m 
sisd-h 
sisf-m 
inig-h 
inig-m 
mig-m 
i18-h 
i18-p 
il8-rb 
emfi-ch 
gro-c 
gro-h 
gro-m 
gro-r 
mip2a-h 
mip2b-h 
mip2-m 
mip2-r 
plf4-b 
plf4-h 
plfv-h 
pf41-h 
plf4-p 
plf4-r 
plf4-s 

mcpi-bovin 
mcpi- human 
mcpi-mouse 
mcpi-rabit 
mcpi-rat 
mcp2-human 
mcp3-humana 
mila-mouse 
mila-human 
milo-human 
milb-human 
milb-mouse 
sisd-human 
sisf-mouse 
inig-human 
inig-mouse 
mig-mouse 
il8Lhuman 
ilS-pig 
il8Lrabit 
emfi-chick 
gro-crigr 
gro-human 
gro-mouse 
gro-rat 
mi2a-human 
mi2b-human 
mip2-mouse 
mip2-rat 
plf4Lbovin 
plf4-human 
plfv-human 
pf4lLhuman 
plf4Lpig 
plf4Lrat 
plf4Csheep 

cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 
cxc 

Bovine monocyte chemotactic protein 1 precursor 
Human monocyte chemotactic protein 1 precursor 
Mouse monocyte chemotactic protein 1 precursor 
Rabbit monocyte chemotactic protein 1 precursor 
Rat monocyte chemotactic protein 1 precursor 
Human monocyte chemotactic protein 2 precursor (fragment) 
Human monocyte chemotactic protein 3 precursor 
Mouse macrophage  inflammatory protein I-a precursor 
Human tonsillar lymphocyte LD78 a protein precursor 
Human tonsillar lymphocyte LD78 0 protein precursor 
Human T-cell activation protein 2 precursor 
Mouse macrophage  inflammatory protein 1-0 precursor 
Human T-cell-specific RANTES protein precursor 
Mouse T-cell activation protein  TCA3 precursor 
Human interferon-y-induced protein precursor 
Mouse interferon-y-induced protein CRG-2 precursor 
Mouse y-interferon-induced  monokine 
Human interleukin-8 precursor 
Pig interleukin-8 precursor 
Rabbit interleukin-8 precursor 
Chicken embryo  fibroblast protein 9E3 precursor 
Chinese hamster growth regulated protein precursor 
Human growth regulated protein precursor 
Mouse platelet-derived growth  factor-inducible protein KC precursor 
Rat cytokine-induced neutrophil  chemoattractant 
Human macrophage inflammatory  protein-2-a precursor 
Human  macrophage  inflammatory protein-2-0 precursor 
Mouse macrophage inflammatory protein 2 precursor 
Rat macrophage inflammatory  protein  2 precursor 
Bovine platelet factor  4 
Human platelet factor  4 precursor 
Human platelet factor  4  variant precursor 
Human platelet basic protein precursor 
Pig platelet factor  4 
Rat platelet factor 4 precursor 
Sheep platelet factor  4 

aThe mcp-3 protein sequence has been taken from Minty et al. (1993). 

the 5 better scores for pf41-h correspond to sequences of the 
GRO group, slightly lower scores were also found with the re- 
maining sequences of the  PFL-4  group (not shown). Finally, we 
have performed the alignments between each pair of the 36 se- 
quences, using the method proposed by Needleman and Wunsch 
(Gap command of the GCG package). Table  4 shows the 5 bet- 
ter scores for each sequence. Note that, again, sisf-m and emfi- 
ch are classified within the  MCP  and IL-8 groups, respectively, 
and  that mig-m and pf41-h are  not clearly classified in 1 group. 
In  conclusion, the ANN approach is at least as effective as the 
above-mentioned conventional methods of biosequence  analysis. 

Classification of all known human proteins 

Neural network  classification-20 X 20 
sequence representation 
Slow learningprotocol. The 1,758 human protein sequences 

stored into the SwissProt database (release 19.0, 8/91) were rep- 

resented by the 20 x 20 dipeptide matrices and classified  in a net- 
work of 225 neurons, N, = Ny = 15 (see Fig. 3). A slow 
learning protocol, 500 epochs, that  took  about 100 CPU-hours 
(CPU-h) on a SUN 4/360 computer (16 MIPS, 2.6 MFLOPS), 
led to  the topological map represented in Figure 4. Because the 
resulting classification is too long to be shown here, we only in- 
dicate the  total number of sequences associated with each neu- 
ron and the  location of some known families of proteins on the 
final map.  The whole learning set was associated with 214 out 
of the 225 available neurons.  There were 7.8 proteins per neu- 
ron (SD = 5.8). The average distance between protein  patterns 
and the synaptic vector of the corresponding winner neuron was 
0.6137. This value corresponds to 3.07% of the maximum pos- 
sible distance dm  (dm = n ,  where n 2  is the dimensionality of the 
synaptic space). In the case of the 20 x 20 protein  representa- 
tion, dm is equal to 20 (for the 1 1  X 1 1  case, dm = 1 1 ) .  

In most of the cases, sequences belonging to a given known 
family  were  placed into neighboring neurons. Table 5 shows that 
this is the case for actins, a-amylases, collagens, enolases, hap- 
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Fig. 1. Topological maps for the (A) 20 x 20 and (B) 11 x 11 represen- 
tations of 36  protein sequences belonging to the chemokine family (CC 
and CXC subfamilies). Thick line boxes separate sequences belonging 
to the 6 following main  groups: monocyte chemotactic  proteins (MCP); 
macrophage  inflammatory  protein 1 (or SIS proteins);  interleukin-8  pre- 
cursors (IL-8), interferon-y-induced proteins (INIG); macrophage in- 
flammatory protein 2 or growth regulated  proteins (MIP-2lGRO); and 
platelet factor 4 (PLF4). Learning  proceeded  during 30 epochs, linearly 
decreasing a at each epoch (A t ,  = l), from a value of  0.9 (a, = 0.08 in 
the first 10 epochs and a2 = 0.0047619 in  the  last 20) and  decreasing  the 
winner neighborhood every 6 epochs (At,  = 6).  

toglobins, human leukocyte antigen (HLA) histocompatibility 
antigens (class I, class I1 a-chain,  and class I1 @-chain subfam- 
ilies), all immunoglobulins but 1 ( K ,  X, and heavy chains, vari- 
able and constant regions), interferon-a precursors,  lamins, 
metallothioneins, myosins (light and heavy chains,  tropomyo- 
sins), proline-rich proteins,  tubulin &chains, and zinc-finger 
proteins (note  that there is  only 1 line in Table 5 for each of these 
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CXC:  il8-h 
CXC:emfi-ch 
CXC: qro-h 
CXC:mipZa-h 
CXC:mip2b-h 

- 
I - 

- 

I CXC:mip2-m 
CXC:mipP-r 
CXC: gro-m 
CXC : gro-r 
CXC: gro-c 
CXC:plf4-b 
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Fig. 2. Dendrogram of the 36  protein  sequences  belonging to the chemo- 
kine family (CC and CXC subfamilies). 

protein families or subfamilies). For example, zinc-finger pro- 
teins were grouped together into 5 neighboring neurons.  Inter- 
estingly,  inside of the "immunoglobulin-dominated" zone, 
placed in the lower left corner of the  map, immunoglobulins 
were  subclassified according to their type of chain or region  (Ta- 
ble 6) .  Furthermore, in many of the above cases, all sequences 
of a same family were  placed into  a single neuron, e.g., all HLA 
class I  histocompatibility  antigens were clustered into neuron 
(1,l). 

In  a few cases, a family was split into subfamilies that were 
associated with neurons positioned far  apart in the  map. Table 5 
shows that this is the case for  keratins, hemoglobins, and 
G-protein coupled receptors. For example, hemoglobins were 
split into 2 subfamilies: 3 sequences were placed in neuron (3,l) 
and 4 in neuron (1  1,15). 

In many cases, 2 or more  different families of proteins were 
clustered together into  the same neuron.  For example, all actins 
and tubulin  @-chains were associated with neuron (9,ll).  The 
percentage of sequence similarity between sequences of these 2 
families, determined by the Needleman-Wunsch method, is about 
39%. In  fact, in most of the cases, sequences belonging to many 
different families are placed in the same neuron. This may in- 
dicate that there is a high percentage of sequence similarity 
among them. For example, desmin,  desmoplakin, and vimen- 
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Table 3. Five best matchings obtained with the FastA algorithm (Pearson & Lipman, 1988), when  each protein 
belonging to the chemokine family is compared with the  remaining 35 sequencesa 

Protein 

mcp  1 -m (693) 
mcp  1  -r (688) 
mcp  1 -h (489) 
mcpl-rb (586) 
mcp  1  -b (490) 
mcp3-h (506 )  
mcp2-h (400) 
sisc-h (483) 
sisc-m (496) 
milo-h (461) 
sisb-h (456) 
sisa-m (479) 
sisd-h (459) 
sisf-m (487) 
inig-h (481) 
inig-m (480) 
mig-m (621) 
i18-p (514) 
il8-rb (514) 
i18-h (503) 
emfi-ch (496) 
gro-h (479) 
mip2a-h (489) 
mip2b-h (480) 
mip2-m (478) 
mip2-r (474) 
gro-m (463) 
gro-r (356) 
gro-c (481) 

plf4-s (406) 
plf4-b (434) 

plf4-p (354) 
plf4-h (504) 
plfv-h (503) 
plf4-r (506) 
pf41-h (599) 

First  match 

mcpl-r (579) 
mcpl-m (579) 
mcpl-b (406) 
mcpl-h (406) 
mcp 1 -h (406) 
mcpl-h (395) 
mcpl-h (280) 
sisc-m (413) 
sisc-h (413) 
sisb-h (421) 
milo-h (421) 
milo-h (368) 
sisb-h (267) 
mcp3-h (135) 
inig-m (341) 
inig-h (341) 
pf41-h (146) 
il8-rb (445) 
i18-p (445) 
il8-rb (429) 
i18-h (252) 
mip2a-h (448) 
gro-h (448) 
mip2a-h (428) 
mip2-r (430) 
mip2-m (430) 
gro-c (364) 
gro-m (338) 
gro-m (364) 
plf4-s (355) 
plf4-b (355) 
plf4-s (255) 

plf4-h (405) 

gro-c (230) 

plfv-h (405) 

plfv-h (264) 

Second  match 

mcpl-rb (315) 
mcpl-rb (313) 
mcpl-rb (406) 
mcpl-b (400) 
mcpl-rb (400) 
mcpl-b (371) 
mcp3-h (265) 
sisa-m (333) 
milo-h (326) 
sisa-m (368) 
sisa-m (303) 
sisc-h (333) 
sisc-m (264) 
mcpl-h (128) 
mig-m (126) 
mig-m (1 38) 
emfi-ch (146) 
i18-h (417) 
i18-h (429) 
i18-p (417) 
i18-p (25 1) 
mip2b-h (428) 
mip2b-h (428) 
gro-h (428) 
mip2b-h (344) 
mip2b-h (327) 
gro-r (338) 
gro-c  (3 11) 
mip2a-h (344) 
plf4-h (265) 
plf4-h (27 1) 

plf4-s (271) 
plf4-r (264) 
plf4-h (229) 
gro-h (227) 

plf4-b (245) 

Third  match 

mcp3-h (305) 
mcp3-h (296) 
mcp3-h (395) 
mcp3-h (362) 
mcp3-h (371) 
mcpl-rb (362) 
mcp  1  -b (255) 
milo-h (296) 
sisa-m (323) 
sisc-m (326) 
sisc-m (293) 
sisc-m (323) 
sisc-h (262) 
mcpl-b (124) 
emfi-ch (1 10) 
emfi-ch (97) 
i18-p (139) 
emfi-ch (25 1) 
emfi-ch (207) 
emfi-ch (252) 
il8-rb (207) 
mip2-m (321) 
gro-c (344) 
mip2-m (344) 
mip2a-h (341) 
mip2a-h (325) 
mip2a-h  (3 15) 
mip2a-h (283) 
gro-h  (3 15) 
plf4-p (245) 
plf4-p (255) 
plf4-h (229) 
plf4-b  (265) 
plf4-s (247) 
plf4-s (203) 
gro-r (220) 

Fourth  match 

mcpl-h (296) 
mcpl-b (292) 
mcp 1 -m (296) 
mcpl-m (315) 
mcpl-m (293) 
mcpl-m (305) 
mcpl-rb (250) 
sisb-h (286) 
sisb-h (293) 
sisc-h (296) 
sisc-h (286) 
sisb-h (303) 
milo-h (258) 
mcp2-h (1 18) 

il8-rb (81) 
inig-m (1 38) 
pf41-h (1 65) 
pf41-h (173) 
gro-m (163) 
gro-c (195) 
gro-c  (3 15) 
mip2-m (341) 
mip2-r (327) 
gro-h (321) 
gro-h (306) 
gro-h (296) 
gro-h (262) 
gro-r (3 11) 

plf4-b (95) 

plfv-h (232) 
plfv-h (247) 
plfv-h (221) 
plf4-r (229) 
plf4-b (232) 

gro-m (219) 
plf4-b (197) 

Fifth  match 

mcpl-b (293) 
mcpl-h (291) 
mcpl-r (291) 
mcpl-r (313) 
mcp 1 -r (292) 
mcpl-r (296) 
mcpl-m (246) 
sisd-h (262) 
sisd-h (264) 
sisd-h (258) 
sisd-h (267) 
sisd-h (252) 
sisa-m (252) 
mcpl-rb (118) 
i18-h (88) 
i18-p (81) 
i18-h (134) 
gro-m ( 1  56) 
gro-m (172) 
gro-h ( 1  57) 
gro-m (188) 
mip2-r (306) 
mip2-r (325) 
gro-c (306) 
gro-c (307) 
gro-c (305) 
mip2-m (293) 
mip2-r (262) 
mip2-m (307) 
plf4-r (197) 
plf4-r (203) 

~~ 

pf41-h (196) 
plf4-p (229) 
plf4-p (221) 
plf4-p (195) 
mip2-m (219) 

a The  corresponding initn scores  are  indicated in parentheses. The score  shown in the  first  column  corresponds to a  matching between a  sequence 
and itself. 

tin, which have about 55% of sequence similarity with keratins 
and lamins, were clustered together with those sequences in neu- 
ron (1,13) (Table 7). Proteins placed  in neighboring neurons may 
also have a high degree of sequence similarity. For example, 1 
dystrophin sequence ( ~ 4 6 %  of sequence similarity with lamins) 
was  placed  in neuron (2,13). In the same way, haptoglobins were 
clustered into neuron (1 1,14), close to a-amylases [neuron 
(1 1,13)] and  to a cluster involving 3 enolases and 4 hemoglobins 
(142% of sequence similarity between haptoglobins and  the 
other mentioned sequences). 

Fast learningprotocol. In a previous  work  (FerrBn & Ferrara, 
1991), we have shown that, when the number of neurons of the 
network is greater than  the number of families to be classified, 
fast learning protocols give more  compact classifications (the 
network does not use all the available neurons to  further sub- 
divide protein families into subfamilies). To extend that study 
to cases  in  which the number of  families  is greater than  the num- 

ber of neurons, we have trained a 15 X 15 network with the same 
learning set of 1,758 human  protein sequences as before,  but 
using a  fast learning protocol (30 epochs, instead of 500). The 
required computing time for this learning protocol was only 6.7 
CPU-h (SUN 4/360 computer). Figure 5 shows that, as before, 
there were 1 1  empty neurons in the final map. The standard de- 
viation of the number of proteins per neuron was similar to the 
value obtained  before (SD = 5.593). The average distance be- 
tween protein  patterns and  the synaptic vector of the corre- 
sponding winner neuron was 0.6775, which corresponds to 
3.37% of dm.  This value shows that  the final  synaptic vectors 
were only slightly less representative of the associated protein 
patterns than before. 

Figure 5 also shows the location on  the  map of the same 
known families of proteins previously analyzed. The overall as- 
pect of the fast-learning classification is very similar to  the one 
obtained with the slower protocol (as regards the way sequences 
are grouped on  the map). For example, we also found regions 
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Table 4. Five best matchings obtained with the Needleman- Wunsch algorithm (1970), when  each protein 
belonging to the chemokine family is compared with the remaining 35 sequencesa 

- - 

Protein  First  match 

mcpl-m (222) 
mcpl-r (222) 
mcpl-h (149) 
mcp 1 -rb (1 88) 
mcp  1  -b (1 49) 
mcp3-h (149) 
mcp2-h (1 16) 
sisc-h (138) 
sisc-m ( 1  38) 
milo-h (140) 
sisb-h ( 1  38) 
sisa-m (138) 
sisd-h ( 1  37) 
sisf-m (1 38) 
inig-h (147) 
inig-m  (147) 
mig-m (1 89) 
i18-p ( 1  55) 
il8-rb (152) 
i18-h (149) 
emfi-ch (155) 
gro-h (161) 
mip2a-h (161) 
mip2b-h (161) 
mip2-m (1 50) 
mip2-r (150) 
gro-m (144) 
gro-r ( 108) 
gro-c (152) 
plf4-b ( I  32) 
plf4-s (126) 
plf4-p (104) 
plf4-h (152) 
plfv-h (156) 
plf4-r ( I  58) 
pf41-h (192) 

mcpl-r (192) 
mcpl-m (192) 
mcpl-rb (119) 
mcpl-h (119) 
mcpl-h (1 19) 
mcpl-h (116) 
mcpl-h (83) 
sisc-m (1 13) 
sisc-h (1 13) 
sisb-h (132) 
milo-h (132) 
milo-h (1 12) 
sisb-h (83) 
mcp3-h (59) 
inig-m (1 11) 
inig-h  (1  1 1) 
inig-m  (70) 
ill-rb (133) 
i18-p (133) 
ill-rb (125) 
i18-h (91) 
mip2a-h (149) 
gro-h  (149) 
mip2a-h (147) 
mip2-r (135) 
mip2-m (1 35) 
gro-c (125) 
gro-m (105) 
gro-m (1 25) 

plf4-b (1 11) 

plfv-h (132) 

plf4-s (1 11) 

plf4-s (81) 

plf4-h (132) 
plf4-h (109) 
gro-h (86) 

Second  match 

mcpl-rb (1 11) 
mcpl-rb (108) 
mcpl-b (119) 
mcpl-b (115) 
mcpl-rb (115) 
mcpl-b (108) 
mcp3-h (77) 
sisa-m (99) 
milo-h (98) 
sisa-m (1 12) 
sisa-m (107) 
sisb-h (107) 
milo-h (81) 
mcpl-r (55) 
mig-m (70) 
mig-m (70) 
inig-h (70) 
i18-h (122) 
i18-h (125) 
i18-p (122) 
il8-rb (91) 
mip2b-h (146) 
mip2b-h (147) 
gro-h (146) 
gro-c ( 1  12) 
gro-c (113) 
gro-r (1 05) 
gro-c (97) 
mip2a-h (1 14) 

plf4-h (88) 
plf4-b (79) 
plf4-r (109) 
plf4-r (104) 
plfv-h (104) 
mip2a-h (83) 

plf4-h (88) 

Third  match 

mcp  1  -b (99) 
mcpl-b (95) 
mcp3-h (1 16) 
mcpl-m (111) 
mcp3-h (108) 
mcpl-rb (105) 
mcpl-rb (74) 
mi IO-h (99) 
sisb-h (93) 
sisc-h (99) 
sisc-h (95) 
sisc-h (99) 
sisc-h (81) 
mcpl-h (55) 
emfi-ch (57) 
gro-c (57) 
gro-c (65) 
emfi-ch (90) 
emfi-ch (90) 
emfi-ch (91) 
i18-p (90) 
mip2-m (107) 
gro-c ( 1 14) 
mip2-m (1 11) 
mip2b-h ( 1  1 1) 
mip2b-h (104) 
mip2-m (104) 
mip2a-h (87) 
mip2-r  (1 13) 
plfv-h (82) 
plfv-h (83) 
plf4-h (76) 
plf4-s  (88) 
plf4-s (83) 
gro-h (81) 
plf4-h (83) 

Fourth  match 

mcpl-h (95) 
mcp3-h (93) 
mcpl-m (95) 
mcpl-r (108) 
mcpl-m (99) 
mcp 1-m (94) 
mcpl-b (73) 
sisb-h (95) 
sisa-m (92) 
sisc-m (98) 
sisc-m (93) 
sisc-m (92) 
sisc-m (80) 
mcpl-m (53) 
gro-m (53) 
emfi-ch (57) 
il8-p (63) 
gro-c (73) 
gro-c (71) 
mip2-r (72) 
mip2-r (82) 
gro-c (107) 
mip2-m (1 10) 
gro-c ( 108) 
mip2a-h (1 10) 
mip2a-h (103) 
mip2a-h (103) 
mip2b-h (83) 
mip2-m (1 12) 
plf4-p (79) 
plf4-p (81) 
plfv-h (74) 
plf4-b  (88) 

mip2a-h (8 1) 
gro-c  (81) 

plf4-b (82) 

Fifth  match 

mcp3-h (94) 
mcpl-h (92) 
mcp  1 -r (92) 
mcp3-h (105) 
mcp 1 -r (95) 
mcp  1 -r (93) 
mcpl -m (70) 
sisd-h (81) 
sisd-h (80) 
sisd-h (81) 
sisd-h (83) 
sisd-h (79) 
sisa-m (79) 
mcpl-b (52) 
gro-c (53) 
gro-m (56) 
mip2a-h (63) 
gro-m (71) 
pf41-h (70) 
gro-m (72) 
mip2-m (77) 
mip2-r (101) 
gro-m (103) 
mip2-r (1 04) 
gro-h (1 07) 
gro-h (101) 
mip2-r (101) 
mip2-m (82) 
mip2b-h (108) 
plf4-r (77) 
plf4-r (79) 
pf4l-r (70) 
pf4l-h (83) 
pf41-h (79) 
mip2b-h (80) 
mip2b-h (80) 

a The  corresponding  scores  are  indicated  in  parentheses.  The  score  shown in the first column  corresponds to a  matching between a  sequence  and 
itself. 

of the  map dominated by immunoglobulins (upper left corner) 
and zinc-finger proteins (upper right corner); all HLA class I his- 
tocompatibility  antigens were again placed in only 1 neuron 
(lower left corner); and enolases were  clustered together with the 
same 4 hemoglobins as before,  but into 3 neighboring neurons 
[(6,10), (7,9), and (7,10)], instead of 1. 

The main differences in Figure 5 with respect to Figure 4 are 
(1) 5 keratins are close to lamins (instead of 7); (2) G-protein 
coupled  receptors are classified into 3 main clusters instead of 
2; (3) the hemoglobin &chain (SwissProt name  hbaz$human) is 
classified into neuron (7,7), far from its previous group of 3 se- 
quences and closer to the  group of 4 hemoglobins clustered with 
enolases; and (4) haptoglobins are placed apart [neuron (4,l l)] 
from enolases and hemoglobins, but still close to a-amylases. 

Neural network classification - 11 x 11 
sequence representation 
The classification of  all the human proteins represented by the 

1 1  x 1 1  matrix was performed, as before, in an N, = N,, = 15 

network, with either a slow ( 5 0 0  epochs, 27.4 CPU-h on  the 
SUN 4/360) or a fast (30 epochs, 1.8 CPU-h  on  the same com- 
puter) learning protocol.  In the final  maps (Figs. 6, 7), the av- 
erage distances between protein patterns  and synaptic vectors 
of the corresponding winner neurons were 0.3637 and 0.41 17, 
respectively, for  the slow and fast protocols. These values cor- 
respond, respectively, to 3.31% and 3.74% of d, = 1 1 .  In both 
maps  there were only 5 empty  neurons.  The SDs of the num- 
ber of proteins per neuron were, respectively, 4.423 and 5.077. 
Figures 6 and 7 show, respectively, the number of proteins as- 
sociated with each  neuron and  the position on  the maps of the 
same known families of proteins that we have analyzed for  the 
20 X 20 representation. 

Slow Iearningprotocol. The main differences in the  map of 
Figure 6 (1 1 x 1 1  matrix), with respect to  that of Figure 4 
(20 X 20 matrix) are (1) all keratins are grouped  together with 
lamins  [neurons (11,15), (12,15)] and placed far  apart  from a 
group of 4 heterogeneous ribonucleoproteins  [neurons (13,3), 
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Fig. 3. Scheme of the neural network approach to classify the  human 
protein sequences into families. A: The set  of 1,758 sequences is trans- 
formed in a set  of  1,758 dipeptide matrices. Note that, though sequences 
usually have different lengths Li (i = 1,2, . . . .  1,758), the dipeptide ma- 
trices always have 20 x 20 components. B: Each  neuron of a 15 x 15 
layer takes its inputs from the 400 components of a  dipeptide matrix 
[only some of  the connections to neuron (1,l) are  shown]. C: As a re- 
sult of Kohonen's algorithm,  the complete set of dipeptide matrices is 
partitioned into several protein families, each one associated with a neu- 
ron of the 15 X IS layer. The synaptic vector of a  neuron may be con- 
sidered as  the cluster's centroid of the dipeptide matrices associated with 
that  neuron. Related families of proteins are placed  in neighboring spa- 
tial positions of the layer. 

(9,2)];  (2) all hemoglobins are clustered together into 2 neigh- 
boring  neurons [6 sequences into neuron (6,15) and hbaz$hu- 
man into neuron (5,191, far  apart  from haptoglobins  [neuron 
(10,12)] and enolases [neuron (10,13)]; (3) there are 2 separated 
clusters of a-chains of HLA class I1 histocompatibility antigens 
[7 sequences in neuron (1,6) and 4 in neurons (3,l  l),  (4,ll) and 
(5,12)]; (4) actins  [neuron (5,13)] and tubulin @-chains [neuron 
(9,7)] are clustered far  apart  from each other; (5 )  haptoglobins 

1 

2 

3 

7 

8 

9 

10 

11 

12 

1 3  

14 

1 5  

Fig. 4. Topological map for the 20 X 20 representation of  1,758 human 
protein sequences. We only indicate the number of  sequences  having  each 
neuron as winner and the location of the following families of proteins: 
6 actins (at);  3 a-amylases (am); 14collagens/procollagens (co); 3 enolases 
(en); 29 G-protein coupled receptors (Gc); 29 HLA class I histocompat- 
ibility antigens (hl); 11 a-chains of HLA class I1 histocompatibility an- 
tigens (ha); 22 P-chains  of HLA class I1 histocompatibility antigens (hb); 
7 hemoglobins (hg); 3 haptoglobins (hp); 130 immunoglobulins (Ig); 14 
interferon-a precursors (In); 15 keratins (ke); 3 lamins (la); 6 metallo- 
thioneins (mt); 7 myosin light chains (ml); 2 myosin regulatory light 
chains (mr); 5 myosin heavy chains (mh); 8 tropomyosins (tm); 14 
proline-rich proteins (pr);  4 (out of 7) heterogeneous ribonucleoproteins 
(rn); 3 tubulin &chains (tu),  and 36 zinc-finger proteins (zf). Thick line 
boxes indicate main groups of sequences belonging to the same protein 
family. Learning proceeded during 500 epochs, linearly decreasing (Y at 
each epoch (Af- = l), from  a value of 0.9 ( a ,  = 0.008 in the first 100 
epochs and u2 = 0.0002499  in the last 400) and decreasing the winner 
neighborhood every 30 epochs (At ,  = 30). 

[neuron (10,12)] are placed far  apart  from a-amylases  [neuron 
(9,7)] and hemoglobins, but still close to enolases; (6) myosin 
light and heavy chains and tropomyosins are clustered in neigh- 
boring  neurons  [neurons (13,12), (13,13) ,  (13,14), (13,15) ,  
(14,15), and (15,14)]; and (7) the 5 small proline-rich proteins 
are clustered apart from the  other types  of proline-rich proteins, 
but placed in a neighboring neuron [neurons (10,l) and ( 1  1, l)]. 

Fast  learning protocol. The map  obtained with the 1 1  x 1 1  
matrix  representation and  the fast learning procedure (Fig. 7) 
does  not essentially differ from  that obtained with the slower 
one (Fig. 6). Differences between both of them are:  the keratin 
family, which, in the  map of Figure 7 was again split into 2 sep- 
arated clusters [neurons (43) and (12,l)J; the  a-chain sequences 
of HLA class I1 histocompatibility antigens that were placed in 
neighboring neurons [(7,13), (8,13), (9,13), and (10,14)]; and the 
G-protein coupled receptors that were clustered together (right 
border of the map). 

Statistical classification 

The set of 1,758 human  proteins (20 X 20 protein represen- 
tation) was classified using standard statistical  methods. First, 
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Table 5. Neural network clustering  of known protein  families (20 X 20 protein representation, 500 training epochs) 

Number of neighboring 

Protein family Proteins  Winner  neurons List of neighboring neurons 

Actins 
a-Amylases 
Collagens 
Enolases 
G-coupled  receptors 

Haptoglobins 
Hemoglobins 

HLA  histocompatibility  antigens 
Class I 
a-Chain, class I1 
@-Chain, class I1 

X-Chain, V-region 
K-Chain, V-region 
Heavy chain, V-region 

Immunoglobulins 

C-region 

Interferon-a  precursors 
Keratins 

Lamins 
Metallothioneins 
Myosins 

Light chains 
Heavy  chains 
Tropomyosins 

Proline-rich  proteins 
Tubulin,  @-chains 
Zinc-finger  proteins 

6 
3 

14 
3 

21 
6 
1 
1 
3 
4 
3 

29 
11 
22 

34 
48 
28 
8 

11 
1 

14 
7 
8 
3 
6 

9 
5 
8 

14 
3 

36 

1 
1 
1 
1 
6 
2 
1 
1 
1 
1 
1 

1 
1 
2 

3 
3 
4 
1 
3 
1 
1 
1 
1 
1 
1 

1 
2 
1 
2 
1 
5 

Table 6. Classifcation of immunoglobulins into 
subfamilies on the map  of Figure 4 (20 X 20 
protein representation, 500 training epochs) 

Neuron  Associated  immunoglobulin sequences 

(15,6) 37  K-Chains  (24 V-I, 13  V-111) 
(15.5) 6 K-ChainS (v-11) 
(14,6)  5 K-Chains (4 V-IV, 1 V-V) 
(14,4)  1 X-Chain (V) 
(15,4) 30 X-Chains (9 V-I, 11  V-11, 5 V-IV, 4 V-VI, 1 V-VII) 
(15,3) 3 X-Chains (V-111,  V-V, V-VI); 2 heavy chains (V-I) 
(15,2) 21 Heavy  chains (V-111) 
(14,2) 2  Heavy  chains (V-I, V-11) 
(14,3) 3  Heavy  chains (V-I) 
(13,7) 8 Heavy chains (V-11); 3  y-chains  (C);  2  a-chains (C); 

1  €-chain  (C) 
(13,8) 1  p-Chain (C);  1 p-heavy chain disease protein; 

1  y-chain  (C) 
(12,6) 1 K-Chain (C);  1 X-chain ( c )  
(10,3) 1 &Chain  (C) 

a principal component analysis (PCA) was performed, using the 
PRINCOMP procedure of the SAS package (SAS Institute, 
1985, chapter 28). We have found that  the first 60 principal com- 
ponents gave account of 70% of  the inertia of the whole cloud 
of 1,758 “points” (corresponding to  the representation of each 
protein as a  point in the 400-dimensional vector space). There- 
fore, a reduced number of independent variables seems to be 
enough to provide a  suitable sequence representation.  Then we 
classified the set of 1,758 reduced patterns  (built with the first 
60 principal components of the dipeptide matrices) into 225 clus- 
ters, using the FASTCLUS procedure of the SAS package (SAS 
Institute, 1985, chapter 18). This procedure uses the nearest cen- 
troid  sorting  method  (Anderberg, 1973), which is directly in- 
spired by the leader (Hartigan, 1975) and k-means (MacQueen, 
1967) algorithms. After 30 iterations, each 1 of the 1,758 human 
proteins was assigned to 1 of the 225 clusters. The  numbers of 
iterations and clusters of the statistical  method were chosen to 
coincide, respectively, with the numbers  of epochs and neurons 
of  the  ANN  approach in order to render both algorithms as sim- 
ilar as possible. In the resulting classification there was a  great 
number of “clusters” (1 16) composed of only 1 protein and some 



516 E.A.  Ferran et al. 

Table 1. Protein sequences having  neuron (1,13) of 
the map of Figure 4 as winner (20 X 20 protein 
representation, 500 training epochs)a 

SwissProt  Name d Protein 
~ ~ 

lama$human 0.4364 Lamin  a 
lamc$human 0.4612 Lamin  c 
k2c7$human 0.4757 Keratin, type 11 cytoskeletal 7 
desm$human 0.4830 Desmin 
desp$human 0.491 1 Desmoplakin I and I1 
lamb$human 0.5032 Lamin  b 
klcr$hurnan 
vime$human 
k2c8$human 
gfap$human 
klcs$human 
klcm$human 
k2c4$human 
kZca$human 
ape$human 
pdgb$human 

brn2$human 

pdga$human 

brnl$human 

0.5140 
0.5361 
0.5415 
0.5563 
0.5636 
0.6232 
0.6386 
0.6444 
0.7420 
0.7888 

0.8073 

0.8102 

0.8163 

Keratin,  type I cytoskeletal 18 
Vimentin 
Keratin,  type I1 cytoskeletal 8 
Glial fibrillary acidic protein 
Keratin,  type I cytoskeletal 19 
Keratin,  type I cytoskeletal 13 
Keratin,  type I1 cytoskeletal 4 
Keratin,  type I1 cytoskeletal 56 
Apolipoprotein E precursor 
Platelet-derived growth  factor, 

Brain-specific horneobox/pou 

Platelet-derived growth  factor, 

Brain-specific homeobox/pou 

B chain 

domain  protein  2 

A  chain 

domain  protein 1 

a Sequences are sorted according to increasing distances between di- 
peptidic patterns  and  the  synaptic vector of the  neuron. 

clusters with too many proteins  (for  instance, the biggest clus- 
ter was composed of 374 proteins). This distribution of clusters 
population (0 = 03 in Table 8, see  below for the meaning of 0) 
corresponds to a poorly defined protein classification (from  a 
biological point of view). Similar results (not  shown) were also 
obtained for reduced patterns including more principal compo- 
nents and  for a direct classification of the dipeptide matrices 
(i.e., without reducing the number of independent variables via 
the PCA step). 

The extremely heterogeneous distribution of clusters popu- 
lation found with the statistical clustering method reflects the 
nonuniform distribution of protein sequences as points in the 
400-dimensional vector space (or in a subspace of lower dimen- 
sionality, for  the reduced representation) but clearly differs from 
the somehow even number of protein sequences associated with 
each winner neuron  obtained with the ANN approach. It also 
reveals the existence of a  great  number of “singular”  points or 
outliers. To  obtain a cleaner classification with the statistical 
approach, these outliers should be discarded before performing 
the clustering stage. To this end,  after  the PCA step, we have 
considered as outliers all the protein  patterns having at least 
1 principal  component with module greater than a  threshold 
value 8. For 8 = 1.5, we have found 1,126 outliers. We have then 
classified the reduced patterns (60 components) of the remain- 
ing set of  632 nonsingular  patterns into 225 clusters, using the 
FASTCLUS procedure (30 iterations). At the end, we have as- 
signed the outliers to the nearest cluster centroid (center of grav- 
ity of  the  nonsingular  patterns associated with that cluster). As 
it  can be seen in Table 8, the new distribution of clusters popu- 

Fig. 5. Topological map for the 20 x 20 representation of 1,758 human 
proteins.  Learning proceeded during 30 epochs, linearly decreasing a 
at each epoch (A ta  = I ) ,  from an initial value of 0.9 (a ,  = 0.08 in the 
first 10 epochs  and u2 = 0.00047619 in the last 20) and decreasing the 
winner neighborhood every Atu = 2  epochs. 

lation is clearly more  uniform. There were only 13 clusters with 
1 protein, and the biggest cluster only included 39 proteins. The 
resulting classification is also better than  the previous one, from 
a biological point of view. For instance, the biggest cluster in- 
cluded 35 of 36 zinc-finger proteins (and  other related proteins) 
and  the cluster of 37 proteins included 30 immunoglobulin 

Fig. 6. Topological map for the 11 x 11 representation of 1,758 human 
proteins. Learning proceeded during 500 epochs (same learning param- 
eters  as  in  Fig.  4). 
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1 2 3 4 5 6 7 8 9 1 0 1 1  1 2 1 3  1 4 1 5  

Fig. 7. Topological map for the 1 1  x 1 1  representation of 1,758 human 
proteins. Learning proceeded during 30 epochs (same learning  param- 
eters as in Fig. 5). 

X-chains (of 34). However,  there were still cases, as in the sec- 
ond biggest cluster, in  which too many proteins belonging to dif- 
ferent families were clustered together (only 6 of the 38 proteins 
of that cluster belonged to the same family, a-chains of the HLA 
histocompatibility antigen). 

To study how the sequences belonging to a same known fam- 
ily were distributed  on  different  but neighboring clusters, we 
have built a tree of the 225 cluster centroids, using a standard 
hierarchical clustering algorithm (CLUSTER and  TREE proce- 
dures of the SAS package). Table 9 shows how the sequences 
of each protein family were distributed among neighboring or 
distant clusters in the hierarchical tree. In a few cases, all the 
sequences of a given family were assigned to  the same cluster 
(enolases, @-chains of HLA class I1 histocompatibility antigens, 
interferon-a precursors, myosin heavy chains, and tropomyo- 
sins). In  some cases, the  protein family was split in subfamilies 
but assigned to a  group of neighboring clusters in the tree (actins, 
a-amylases, haptoglobins, hemoglobins, HLA class I histocom- 
patibility antigens, immunoglobulin K-chains, metallothioneins, 
and myosin light chains). In other cases, this subdivision was 
done involving several distant  groups of neighboring clusters 
(collagens and proline-rich proteins). In  the most common case, 
the bulk of the protein family was classified into 1 or more 
neighboring clusters and  the remaining sequences were placed 
in several distant clusters (a-chains of HLA class I1 histocom- 
patibility antigens;  immunoglobulin X-, heavy and C-region 
chains;  keratins and zinc-finger proteins).  In  three of the  ana- 
lyzed cases (lamins, G-protein  coupled  receptors, and tubulin 
&chains), the proteins were scattered on several distant clusters. 

In  Table 9 we have also  indicated (last column) whether the 
sequences were considered or not as outliers. Note that in many 
cases, though all the sequences  belonging to a same protein fam- 
ily were considered as outliers, they were still grouped  together 
into neighboring clusters of the tree  (actins, HLA class I histo- 
compatibility  antigens,  metallothioneins,  etc.). 

Table 8. Statistical classifcation of 1,758 human protein 
sequences: distribution of cluster population 

Number of clusters 

Population e =  w a  e = l S b  

1 116  13 
2 34 16 
3 14  19 
4 7 26 
5 1 1  22 
6 5 23 
7 3 21 
8 1 23 
9 2 9 

10 4 4 
1 1  3 5 
12 6 
13 1 3 
14 2 5 
15 5 
16 7 
17 1 2 
18 4 
19 2 
20 1 
21 1 1 
22 2 
23 1 2 
24 1 
25 1 
26 2 
27 2 
28 1 
29 1 
32 1 
33 1 
37 1 
38 1 
39 1 
46 1 
47 1 
53 1 
62 2 
74 1 
78 1 
88 1 

314 1 

a 8 = w (no outlier elimination). 
b6 = 1.5 (1,126 outliers). 

Discussion 

We have described here a large-scale application of the ANN 
method to classify all the 1,758 known human protein sequences. 
We have also investigated the influence on  the protein cluster- 
ing of 4 different  dipeptide  matrix  representations of the se- 
quences as well as that of slow and fast learning protocols.  For 
the 20 x 20 or  the 11 X 11 matrices, similarity relationships be- 
tween protein sequences were found  to be mapped into neigh- 
borhood relationships of neural activity on  the 2-dimensional 
layer of neurons, regardless of the speed of the learning proce- 
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Table 9. Statistical  classification of known protein families" 

Protein family 

Actins 
a-Amylases 
Collagens 

Enolases 
G-coupled receptors 
Haptoglobins 
Hemoglobins 
HLA histocompatibility antigens 

Class I 
a-Chain, class I1 

0-Chain, class I1 

X-Chain, V-region 
Immunoglobulins 

K-Chain, V-region 
Heavy chain, V-region 

C-region 

Interferon-a precursors 
Keratins 

Lamins 
Metallothioneins 
Myosins 

Light chains 
Heavy chains/tropomyosins 

Proline-rich  proteins 

Tubulin, &chains 
Zinc-finger proteins 

Number 
of 

proteins 

6 
3 
6 
4 
4 
3 

29 
3 
7 

12 
10 
1 

22 

30 
4 

48 
29 

I 
I 
5 

14 
9 
2 
2 
2 
3 
6 

9 
13 
5 
3 
6 
3 

35 
1 

Number 
of 

clusters Outliers 

Yes 
Yes 
Yes 
Yes 
Yes 
No 
Yes 
Yes 
No 

Yes 
Yes 
Yes 
No 

No 
No 
No/yes 
No/yes 
No 
No/yes 
No/yes 
No 
Yes 
Yes 
Yes 
Yes 
Yes 
Yes 

No/yes 
No 
Yes 
No/yes 
No/yes 
Yes 
No 
No 

a Each line corresponds to a set  of neighboring clusters of related 
proteins, except for lines where the number of clusters is indicated be- 
tween parentheses. The last column indicates whether the dipeptide ma- 
trices of a given protein family have been considered as  outliers in 
the final classification (No/yes: mixture of outliers and nonsingular 
individuals). 

dure. The set of neighborhood relationships given by 1 partic- 
ular map should be considered as 1 of many possible suitable 
ways to classify the set of proteins into a multiple number of 
clusters. Because the network actually classifies dipeptide rep- 
resentations of the  protein sequences, some of these neighbor- 
hood relationships may indicate only a resemblance between the 
corresponding dipeptide matrices. This shortcoming, due to the 
simplified way in  which we have encoded sequence information, 
is compensated by the  fact that such encoding allows for com- 
parison of sequences without having to align them. 

We have found very similar neural  maps for  the 20 x 20 rep- 
resentation of the 1,758 human proteins when both slow and fast 
learning procedures were used. In addition,  the  map  for  the 
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1 1  x 11 representation, though somehow different from the map 
obtained with the 20 X 20 representation, also seems to lead to 
a  suitable classification for  that learning set.  The 11 X 1 1  ma- 
trix representation, based on considering amino acids of simi- 
lar physicochemical properties as a same kind  of residue, reduces 
the required computing time for the learning procedure by low- 
ering the number of inputs to  the network, that is, by reducing 
the number of floating  point operations necessary to compute 
distances between vectors. This approach is an example  of a typ- 
ical strategy to design neural networks that consists of includ- 
ing  all of the available knowledge of the task to be learned, either 
in the network architecture or in a pre-processing of input sig- 
nals. Using both  an 11 X 1 1  protein  representation and a fast 
learning  procedure, the computing time required for  the  train- 
ing stage is reduced from 100 to 1.8 CPU-h,  on a SUN 4/360. 
Because the algorithm scales up nearly linearly with the num- 
ber of protein sequences of the learning set, this reduction in 
computing time renders the classification of the whole database 
feasible. Work is in progress to increase further  the speed of the 
learning stage by using parallel-processing machines based on 
neural network algorithms (Gamrat et al., 1991). 

Our 20 X 20 protein  representation is a  particular case of n- 
gram, previously called bi-gram or  a2 by  Wu et al. (1992). The 
n-gram encoding of a given protein sequence is an n-dimensional 
matrix that gives the number of occurrences of all possible pat- 
terns of n consecutive residues (Wu  et al., 1992). Interestingly, 
Wu et al.  reported that  the highest predictive accuracy and fast- 
est convergence rate  are obtained when this  particular encod- 
ing is concatenated with the  amino acid compositions  (i.e., the 
a1 n-gram) and some of the  2  or  3 lowest exchange group n-grams 
(the el  and e2 or  the e l ,  e2, and e3 n-grams). This suggests that 
our results may be further improved by considering this kind of 
concatenated sequence representation. 

The  learning  procedure, which is the most time-consuming 
step of the ANN approach, needs to be performed only once. 
Furthermore, once  the network has self-organized itself, it can 
be used to classify unknown sequences rapidly.  As  an example 
of the retrieval stage, we fed the network trained with the 20 X 

20 representation of the human  proteins  (map of Fig. 4) with 
a sequence that was not included in the learning set,  the mouse 
vimentin. First,  the dipeptide matrix corresponding to this pro- 
tein sequence was obtained.  Then,  the input  pattern was com- 
pared with the whole set of synaptic vectors to determine  the 
winner neuron. As a result of the retrieval stage, we obtained 
the position of the winner neuron [( 1,13) in our example]; the 
Euclidean distance d between the input  pattern and the  synap- 
tic vector of the winner neuron (d,,,, = 0.5226  in our case); and 
the list of learned proteins having that neuron as winner, with 
their corresponding distances d (that is, the list shown in Table 7). 

The  comparison of the value d,,,, with those of Table  7 
shows that d,,,, is between the distances for human vimentin 
and keratin (type I cytoskeletal 18). This suggests that these are 
the closest human sequences to  the sequence that we have fed 
as input. The whole retrieval stage for  our example took 14.6 
CPU-seconds (CPU-s) on a VAX  63 10 computer. This comput- 
ing time is smaller than those  corresponding to  the BLAST (29 
CPU-s) and FASTA algorithms (57 CPU-s), for  an equivalent 
searching procedure. In addition,  a vimentin fragment (the par- 
tial sequence stored for pig vimentin) was also classified into 
neuron (1,13), but between a keratin (k2ca$human) and an apo- 
lipoprotein  (ape$human) (dpig = 0.7317). This  fragment has a 
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length of only 275 amino acids (the  human-vimentin sequence 
length is  465 amino acids). It should be noted that  the retrieval 
stage may also be performed quickly in less powerful  personal 
computers, with a simple software that makes use of the final 
computed  synaptic vector values of the topological map. 

Although  protein sequence databases may be updated daily, 
we presently perform the learning stage quarterly (i.e., for each 
new release of the SwissProt  database).  However,  it  should be 
noted that new sequences can always be immediately compared 
with the proteins already classified  in the topological map to find 
the family to which they belong. We are also exploring several 
strategies to cope with a  more  frequent  update of the database, 
based mainly on additional short learning stages with low val- 
ues of adaptation gain and small sizes of winner neighborhood. 

In the  computational experiences described above, the num- 
ber of neurons of the network has been chosen by experience. 
This is a typical constraint of neural network approaches. In our 
case, this is somehow analogous to the choice of the number of 
cluster seeds in standard nonhierarchical clustering statistical 
methods.  The  number of neurons in the network introduces an 
upper limit on  the number of clusters in  which patterns may be 
classified. In the ANN approach,  the network makes use of all 
the  patterns of the learning set to determine the synaptic vec- 
tors (which play the role of cluster seeds). However, in Koho- 
nen’s algorithm, this  determination is mainly guided by those 
input  patterns  that  appear most frequently (in our case, this cor- 
responds to those families having the highest number of homol- 
ogous sequences). After  training,  those input patterns that  do 
not belong to the biggest families are finally assigned to the clos- 
est synaptic vector. This is somewhat reminiscent of the  strat- 
egy that we have used to cope with the great number of outliers 
found in the statistical classification of the human  protein se- 
quences. In fact, Kohonen’s algorithm handles the outliers in 
a  natural way, without any need of further  action to detect and 
classify them.  The existence of clusters including “outliers”  can 
be inferred from  “jumps”  that  appear in the list of d values, 
when the set of proteins associated with each neuron is sorted 
according to those values. For example, in the list of Table 7, 
the jump in the values of d from 0.6444 to 0.7420  is  bigger than 
for any other pair of successive values of that list. This jump 
may be  used to classify further  the proteins of the list into 2 sub- 
families. In general, the existence  of such jumps may also be  re- 
garded as  an indication that  the number of  neurons is still not 
enough to achieve a complete classification of the whole set of 
sequences. However,  a bigger network might lead to  an exces- 
sive subclassification of the outliers,  taking each of them as a 
particular  cluster. 

The  evaluation  of  a  final topological map is a challenging 
task. In the present  work, that evaluation has been performed 
using biological knowledge (that is,  looking whether proteins 
with similar biological functions were  classified together), in the 
case of human proteins. Van Heel (1991) has used a statistical 
method to classify dipeptide matrices and Gonnet et al. (1992) 
have organized  an  entire  protein sequence database by index- 
ing on a Patricia tree.  Although the comparison  of classifica- 
tions  obtained with alternative methods may help to judge their 
quality,  this  comparison  of  different  algorithms becomes quite 
difficult when a  great  number of protein sequences and fami- 
lies is considered. For  that reason, we have used a small set of 
protein sequences (the chemokine family) to show that the clas- 
sification obtained with the  ANN  approach is  very similar to the 

one obtained with other  conventional  methods of biosequence 
analysis. Recently, we have also compared the ANN approach 
with a  statistical  nonhierarchical clustering method (similar to 
the one described above; see Pflugfelder & FerrAn  [1992] for fur- 
ther details) and we found  that  both classifications were quite 
similar (FerrBn & Pflugfelder, 1993). However, we have shown 
here that  the ANN  method seems to provide  a better classifica- 
tion than  standard nonhierarchical clustering methods, when 
more complex sets of protein sequences are considered. 

In addition, we have recently shown that  the results issued 
from the statistical methods can be  used not only to validate the 
classifications obtained with the ANN  approach, but also to 
choose, in a  more reasonable way, the number of neurons of the 
network (Ferran & Pflugfelder, 1993). This can be done by re- 
lating a statistical determination of the optimal number of clus- 
ters with the number of neurons of the network. Note, however, 
that the  great  number  of  outliers found in the statistical classi- 
fication of the set of human  proteins may hinder this determi- 
nation, thus  the  optimal number of clusters should be obtained 
by taking into account only the set of nonsingular patterns. 

In conclusion, we have shown that the proposed unsupervised 
method is a helpful computational  tool for clustering proteins 
into families without having previous knowledge of the num- 
ber and composition of the final clusters. The clustering of a bio- 
sequence database may reduce searching time in large protein 
databases. However, the simplification in the protein represen- 
tation also implies a  degradation in sensitivity. Therefore, this 
alternative approach should be  seen as complementary and co- 
operative to the developments in pattern-matching  algorithms, 
RISC technology, and massively parallel computing under way 
to cope with the volumes of data expected from the genome se- 
quencing projects. 

Methods 

In this section we summarize the  standard formalism of the 
method that we have previously proposed (see Ferran & Ferrara 
[1991, 1992al for a detailed description). 

In general, we consider a 2-dimensional network, that is, 1 
layer of N, x Ny neurons. Each neuron receives, as input sig- 
nals,  a  pattern of n X n components E k l ,  obtained from  the di- 
peptide  composition of the protein to be learned (where n is 
the number of different symbols in the residues’ alphabet). The 
n2  values of the corresponding  synaptic efficacies that weight 
the input signals are  the components  of  a  synaptic vector asso- 
ciated with each  neuron. We denote by mij the synaptic vector 
of the  neuron placed  in the ( i , j )  site of the output layer. We  will 
usually identify each neuron directly by its position. At the be- 
ginning, all synaptic vector components pjj+/ are real numbers 
randomly taken  from  the interval [0,1]. Both input patterns and 
synaptic vectors are normalized to unitary vectors. Each pro- 
tein pattern is presented as input to  the network and the neu- 
ron having the closest synaptic vector to the protein pattern (the 
winner neuron) is selected. Then,  the synaptic vectors of all neu- 
rons belonging to a winner neighborhood N,,, are changed in or- 
der  to bring them closer to  the vector of input signals: 
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where 0 < CY ( t  ) < 1. All protein  patterns  of  the  learning set are 
repeatedly  processed by the  network, in the  same  sequential or- 
der.  Each processing cycle of the  whole  learning set is called an 
epoch. As learning  proceeds, a i s  linearly or exponentially  de- 
creased every At,  epochs (0 < (I < l): 

~ ( t  + At , )  z a ( t )  - (I, 

a ( t  + A ( m )  = acu(t) ,  

and  the winner neighborhood is shrunk,  from  the whole  network 
to  the winner neuron, every At” epochs.  Usually, the  number  of 
training  epochs is initially fixed, but  taking  care  to  end  the learn- 
ing stage with CY = 0 and N,,, equal t o  the  winner  neuron. 

Once  learning  has  been  accomplished,  each  sequence of the 
learning set is finally  associated  with the  neuron having the clos- 
est synaptic  vector. Thus, each synaptic vector of the  trained net- 
work  may  be  considered  as a “consensus  pattern” for the set of 
dipeptide  matrices  of  protein sequences associated with the  cor- 
responding  neuron. 
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