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Abstract 

A  pair of neural network-based algorithms is presented for predicting the  tertiary  structural class and  the second- 
ary structure of proteins. Each algorithm realizes improvements in accuracy based on  information provided by 
the  other.  Structural class prediction of proteins  nonhomologous to any in the training set is improved signifi- 
cantly, from 62.3% to  73.9%,  and secondary structure prediction accuracy improves slightly, from 62.26% to 
62.64%.  A  number of aspects of neural network optimization and testing are examined. They include network 
overtraining and an output filter based on a rolling average. Secondary structure prediction results vary greatly 
depending  on  the  particular  proteins chosen for  the training and test sets; consequently,  an appropriate measure 
of accuracy reflects the  more unbiased approach of “jackknife” cross-validation (testing each protein in the data- 
base individually). 
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Predicting the structure of a  protein  from the primary  amino 
acid sequence is one of the  fundamental problems in computa- 
tional biology. Much effort has been directed at the prediction 
of secondary structure. Recent applications of a variety of tech- 
niques, such as neural  networks, Bayesian statistics, and  other 
pattern recognition methods have obtained 3-state prediction ac- 
curacies (helix, sheet, other) of 62.7-64.4’70 (Qian & Sejnowski, 
1988; Holley & Karplus, 1989,  1991; Stolorz et al., 1991). This 
appears  to be near the limit for unbiased secondary structure 
prediction of a single protein sequence. By creating profiles of 
aligned,  homologous sequences, and training and testing neu- 
ral  networks on these rather than  on individual proteins, Rost 
and Sander have obtained substantial improvements, with an av- 
erage 3-state prediction accuracy of 72.5% on sequences non- 
homologous to any in the  training set (Rost & Sander, 1994). 
Few modifications to  the underlying neural network, relative to 
that used in the single sequence studies, were made.  Although 
prediction accuracy may improve with the addition of more well- 
resolved protein  structures  (Rooman & Wodak, 1988), much of 
the inaccuracy in current secondary structure prediction meth- 
ods is believed to be due  to  the lack of consideration of long- 
range  interactions  that arise from  the  (unknown)  tertiary 
structure. This is a consequence of the fact that many sequences 

Reprint requests to: Martin Karplus, Department of Chemistry, 12 
Oxford Street, Cambridge, Massachusetts 02138; e-mail: marciatammy. 
harvard.edu. 

have alternative secondary structural possibilities (Kabsch & 
Sander, 1984; Argos, 1987; Holley & Karplus, 1991). 

It has been found  that basic information on protein  tertiary 
structure such as  the folding class (i.e., all-a, all-@, . . . , as de- 
fined by Levitt & Chothia [1976]) can be helpful in improving 
the accuracy of secondary structure prediction (Taylor & Thorn- 
ton, 1984; Kneller et al., 1990; Presnell et al., 1992).  Kneller 
et al. found that prediction accuracy on proteins in the all-a class 
was improved by 16% (from 63% to 79%) by using a neural net- 
work trained on similar proteins. Accuracy on proteins in the 
all-@ class improved by 6%,  from 63% to  69%. Accuracy on 
a/@ proteins did not  improve and other classes were not exam- 
ined. The observed increase in accuracy was due partially to the 
fact that proteins used in the training set were more similar in 
tertiary structure  to  the predicted proteins than in a set including 
all protein classes, as determined by their secondary structure 
content and range of  possible folds. Also, some of the increased 
accuracy was due to the reduction of the secondary structure pre- 
diction problem from  the  standard 3-state prediction (helix, 
sheet, and coil) to  one of 2  states (coil and either helix or sheet 
for  the  all-a  and all-@ proteins, respectively). In the  rare cases 
in which @-sheets appeared in proteins of the all-a class, they 
were never predicted by the network. Because information  on 
the  structural class may be obtained experimentally (e.g., by 
spectroscopic  methods such as CD) with significantly greater 
ease than  the determination  of  a high-resolution 3D structure, 
class-based secondary structure prediction  could be useful in 
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practice.  However, a purely  computational  approach  combin- 
ing class and  secondary  structure  prediction  would  be  much 
more  desirable  because  it  could  be  applied  immediately  to  any 
available  sequence. 

Efforts  at  de  novo folding class prediction  have met with lim- 
ited success. Although overall helix and sheet content  can  be pre- 
dicted  with less than 10% error  (Muskal & Kim, 1992; Rost & 
Sander, 1993b), this  margin of error is too  large  to  identify  pro- 
teins in the  all-a  and all-@  classes. One  difficulty in identifying 
protein classes is that  there  are  no clear-cut boundaries in sec- 
ondary  structure  content between proteins  from  the 4  classes 
(Rost & Sander, 1994). Rost and  Sander (1993b) found  that only 
58% of all-a  proteins  could be identified, with  several non-a 
proteins misclassified as  all-a.  They  found a 3% increase  in sec- 
ondary  structure  prediction  accuracy when these  proteins were 
tested using a network  trained  on  other  all-a  proteins.  Unfor- 
tunately,  the  decrease in accuracy on  the  proteins misclassified 
as  all-a  outweighed  this  gain.  Only 50% of  proteins  in  the all- 
/3 class could  be  correctly  identified, with  several proteins mis- 
classified as all-P. Statistical  algorithms  have been developed 
which  claim 70%  accuracy  at  assigning a protein  to  one  of 5 
classes, or 83% accuracy  with 4  classes (Klein & DeLisi 1986; 
Chou, 1989; Zhang & Chou, 1992). However,  some  of  the  sets 
of  proteins on which these  algorithms were tested contained high 
levels of sequence  homology  (more  than  90%  identity  in  some 
cases)  with each  other  and with the  proteins used  in determin- 
ing the  numeric  parameters of the  algorithm.  An  unbiased test 
in  which these  algorithms  are  applied  to  proteins  without sig- 
nificant  sequence  homology  has  not been done. 

Neural  networks  have yielded promising results in  identify- 
ing  specific tertiary  folds with no  experimental  information be- 
sides the  amino  acid  content  and length (Dubchak et al., 1993). 
An  accuracy  of 87% was  achieved at  distinguishing  proteins 
of 4  specific folds: 4-helix bundles,  parallel (a/& barrels,  nu- 
cleotide  binding  fold,  and  immunoglobulins.  Although these 
results  are  of  interest,  the  folds  that were tested  are very dif- 
ferent  from  each  other  in helix and  sheet  content,  amino  acid 
composition,  and size; proteins  with  the  same  fold  show little 
variation  in  these  parameters.  Thus,  this  algorithm  may  be in- 
sufficient for distinguishing proteins of  more similar folds, with- 
out  introducing  additional  parameters  such  as  those  considered 
here. 

In  this  paper, we show  that  information  obtained  from a sec- 
ondary  structure  prediction  algorithm  can  be used to  improve 
the  accuracy  of a neural  network  for  the  de  novo  prediction of 
the  folding class. Furthermore,  the  results  of  the  folding class 
prediction  contain  some  tertiary  structural  information  that is 
useful  for  improving  the results  of secondary  structure  predic- 
tion.  This iterative approach yields better  results than either  pre- 
diction  applied  independently. The  approach  can  be summarized 
as follows: (1) A secondary  structure  prediction  for a protein 
is obtained  using  standard  neural  network  techniques with the 
amino  acid sequence as  input. (2) Information  from this  predic- 
tion  and  other  data  obtained  from  the  sequence (such as  the 
length and  the  amino acid content)  are provided to  another neu- 
ral  network, which predicts  the  structural class of  the  protein. 
(3) The  structure class prediction is used in  conjunction with the 
sequence  information by a third  network, which produces a 
slightly more  accurate  secondary  structure prediction. This  pro- 
cedure  can  be  repeated.  In  this  paper, we apply  the  integrated 
approach  to a commonly used set of  proteins (Kabsch & Sander, 

198313) and  compare it with independent structural class and sec- 
ondary  structure  prediction  methods.  Some  cautions  concern- 
ing  this  approach,  and  use  of  neural  networks in general,  are 
presented  and  discussed. 

Methods 

Neural networks 

All  neural  networks  used  in  this  model  are  standard  feed- 
forward networks consisting of  2 or 3 layers of  units  (Rumelhart 
et  al., 1986; Holley & Karplus, 1991). They  are fully connected 
from  one layer to  the next. The  first  and last  layers are referred 
to as the  input  and  output layers, respectively. The middle  layer, 
i f  present, is referred  to  as  the  hidden layer because its inputs 
and  outputs  connect  only  to  other  network  units,  rather  than 
representing physical data  (i.e.,  an  amino  acid  sequence or sec- 
ondary  structure). 

Each  unit in the  neural  network  accepts a number of inputs 
from units  in the previous layer, or from external data  in  the case 
of  the  input  layer.  Each  input is multiplied by a  weight qj, 
which  represents the  strength of the  connection between  2 units 
i and j ,  and  the  total is offset by the  bias b, of the  unit: 

inputi = q, + b, .  (1) 
J 

The unit  processes this  input using  a continuous,  nonlinear  “ac- 
tivation  function”  that switches from  near 0 to  near 1 over a 
fairly  narrow  threshold.  The  following  function is used  here: 

1 
output, = 1 + e-inpur, . 

The  network is made  up  of  units  that  act  as a set of  nonlinear 
functions between the initial input  and  the  final  output.  The in- 
dependent variables  in  these functions  are  the biases of each in- 
dividual  unit, bi, and  the weights  between  every pair  of  units 
in  adjacent  layers, e,. These  variables  are  initialized  with 
small,  random  numbers;  they  converge  to  useful values based 
on  input  data  through  an  iterative  process  that is referred  to  as 
training the  network. 

In  practice, several modifications  to  this  model were intro- 
duced  to  improve  the  speed  of  the  algorithm  presented by Hol- 
ley and  Karplus (1989). First,  units  in the  input layer simply  pass 
their  input  through  as  their  output,  rather  than using the  for- 
mula given in  Equation 2. This is possible  because our  activa- 
tion  function is one  to  one:  each possible output  corresponds 
to a unique  input.  Therefore,  the numerical  values  of the  inputs 
are  somewhat  arbitrary  as  long  as  the  encoding  scheme is pre- 
served between training  and prediction (Rumelhart et  al., 1986). 
This  modification  improves  the speed of  the  algorithm because 
multiple  calculations  of the nonlinear  activation function  (Equa- 
tion 2) can  be  avoided  when  training  (and using) the  network. 
Also,  the  bias bi is implemented  as a weight Woi from  an  addi- 
tional  unit in the  previous layer that is always  turned  on  (out- 
put = 1 .O). For  units  not in the  input  layer,  this  sum  of weights 
from  the  previous layer  is mathematically  equivalent to  Equa- 
tion l ,   and  produces a slight  simplification  in the  code. Because 
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the  input  layer is the  first layer of  the  network,  units  in  the in- 
put layer have  their  bias set to  zero. Because the  input layer can 
consist  of many units  (as  in the networks  presented  here), a large 
number  of variables are eliminated from  the  training  procedure, 
resulting in faster  convergence  of  the  remaining weights and 
biases. 

Networks  are  trained  on a set of  data  for which the  desired 
output is known;  this is referred to  as  the training set. The 
method used is back-propagation, a well-characterized algorithm 
for  adjusting  the weights and biases (Rumelhart  et  al., 1986). 
For  sparse  data  sets (when compared  to  the  total  number  of  in- 
dependent  variables in the  network)  the  network  may  “memo- 
rize” features of the  training set rather  than  learning  general 
features  applicable to  data  outside  the  training set (Rumelhart 
et  al., 1986). We have  measured  the  degree to  which this  takes 
place  for our data  and  have  taken  steps  to  eliminate  the  effects 
of  overtraining. 

After  training,  the  network  can  be  exposed  to new data  for 
which the  desired  output is not  known  to  the  network;  this is 
known  as  the test set. To ensure  unbiased  testing, data in the test 
set should be dissimilar to  data  already presented to  the network 
in the  training  phase.  Qian  and  Sejnowski (1988) have  shown 
that  the  secondary  structure  of  proteins  homologous  to  those 
in the  training set is generally predicted with higher  accuracy 
than  that  of  unrelated  proteins. For our networks, in  which 
protein  features were  used as  input,  no  proteins in the  train- 
ing set showed significant  sequence homology  to  proteins  in  the 
test set. 

Data set 

The  proteins  used in this  study were  a  set of  62  globular  pro- 
teins  (69  chains) used  in  several previous  studies  of  secondary 
structure  prediction  methods (Kabsch & Sander, 1983a;  Holley 
& Karplus, 1991). All proteins in the  database were refined  to 
3.0 A or better.  This  data set includes  examples  of all globular 
folds  for which a well-resolved structure was published  prior to  
1983. No  pair  of  protein  chains  in  the  data set contains  more 
than  47%  sequence  identity. 

The  program DSSP (Kabsch & Sander, 1983b) was used to  
classify the  secondary  structure  of  ail residues in  the  database. 
All secondary  structure  types besides a-helix ( H )  and extended 
@-sheet ( E )  were collapsed  into  the  “coil”  category.  The  com- 
plete  database  contains a total  of 10,767  residues with a com- 
position  of  26% helix,  20% sheet,  and  54%  coil; 310-helices 
were treated  as  coil. 

Three  different  methods  for  partitioning  this  data set into 
training  and  test  sets were examined.  For  comparison  with  ear- 
lier results, most tests  were done with the 48-protein  training set 
and 14-protein test sets first used by Kabsch and  Sander (1983a). 
We also  divided  the  database  randomly  into 10 sets  of 48 train- 
ing  proteins  and 14 test  proteins.  These 10 sets were tested  on 
several network  topologies to  determine  the  average results and 
the  degree  of  variation  that  can  occur. Because we found  that 
results vary  with  the  particular  proteins  chosen  for  training  and 
test sets, final testing was done using jackknife cross-validation. 
Networks were trained  on  training  sets  produced by removing 
a single protein  from  the  database.  Each network was then tested 
on  the excluded protein  and  the results  were combined  for eval- 
uation  of  overall  prediction  accuracy. 

Secondary structure prediction  networks 

The network uses a “sliding window” approach  to iteratively pre- 
dict  the  secondary  structure  of  each  residue in the  protein.  At 
a given time,  the  network is presented  with 15-27 (the window 
width) sequential residues of the  protein.  When  training or test- 
ing  the  network,  this  input  window is centered on each  of  the 
residues in  the  protein  in  turn,  and  produces a secondary  struc- 
ture  prediction  for  that  residue.  An overview of  this  network is 
shown in Figure 1 and  each layer is discussed  below. 

For  each  residue  in  the  input  window,  the  residue  type is en- 
coded  and  presented  to  the  network in 21 separate  units  of  the 
input  layer.  Twenty of the  units  represent a  single amino  acid 
residue  and  are  turned  on  (input = 1) or off  (input = 0) depend- 
ing on whether  that  residue  appears  at  the  particular  position 
in the  window.  The 21st unit is turned  on when no  amino  acid 
appears  at  that  position;  this  occurs when the  window  overlaps 
the  ends  of  the sequence. Thus, 21 units  total  are used  in the in- 
put layer for  each  amino  acid in the  input  window. 

The  output layer of  the  networks  consisted of 2 units, h and 
e,  whose  outputs  correspond  to helix and  sheet  prediction, re- 
spectively. During  training, residues  in an  a-helix were trained 
using desired  outputs  of h = 0.95, e = 0.05. These values rep- 
resent  extremes  of  the  output  function given  in Equation  2, 
which is sigmoidal  and  approaches 0 and 1 in the limits of  infi- 
nitely  low and high input.  Training  with  desired  outputs set to 
0 or 1 can result  in infinite weights, so values  close to  the  upper 
and lower  limits of  the  output  function were chosen.  These val- 
ues yield good results and require  a reasonable  time  for network 
training. Residues in a @-sheet were trained with the desired out- 
puts h = 0.05, e = 0.95. All other residues (“coil” residues)  were 
trained  with  the  desired  outputs h = e = 0.05. In  making a pre- 
diction  for a residue  of  unknown  secondary  structure,  the  out- 
puts h and e are  compared  to a cutoff; if neither  value was 
greater  than  the  cutoff, coil is predicted as  the  secondary  struc- 
ture. If either  value is greater  than  the  cutoff,  the  correspond- 
ing  secondary  structure is predicted; if both  are  greater,  the 
secondary  structure  corresponding  to  the higher of the 2  values 
is predicted. The  cutoff was experimentally  determined for each 
training  set;  the  cutoff value that  produced  the highest  accuracy 
(as  measured by the  sum of Matthews  correlation  coefficients, 
described below) on  proteins  in  the  training set was used. Pre- 
vious  studies  have  shown a correlation between the  magnitude 
of  the  network  outputs  and  the  accuracy of the  prediction.  For 
a similar  network,  the  accuracy  of  the 3  1 Yo “strongest” predic- 
tions (highest network  outputs) were found  to  be  79%  accurate, 
as  opposed  to  63%  for  all  outputs  (Holley & Karplus, 1991). 

Hidden layers of several sizes were tested to  determine which 
produced  the  most  accurate results.  A  single hidden layer con- 
taining 1-20 units was  used  in each  trial. Because  several  net- 
work  topologies were tested, we developed a shorthand  notation 
for  describing  it.  The  first  number  in  the  notation is the  width 
of  the  input  window, in  residues (the  number  of  units in the  in- 
put layer is 21 times  as large). If a hidden layer was  used,  the 
second number is the  number of  units  in the hidden  layer; if not 
present,  the  notation  contains  only 2 numbers  corresponding 
to  the size of  the  input  and  output  layers  (i.e.,  19 x 2) .  The fi- 
nal  number is the  number  of  units  in  the  output  layer.  Thus, a 
19 X 2 X 2  network corresponds  to a window of 19 residues, with 
a hidden layer of 2 units,  and  produces 2 outputs  Hand E.  This 
network contains a total  of 399 input  units, 2 units in the  hidden 
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Fig. 1. Secondary  structure  prediction  network.  Units  in  the  network  are  represented  by  ellipses,  connections  between  units by 
solid  lines. In  the  input layer,  shown at  the  bottom  of  the  figure, clusters of 21 units  are  used  to  input  the  type of each  residue 
in  a  continuous  stretch  of  sequence  surrounding  a  given  residue, i ,  for which  the  secondary  structure is being  predicted. De- 
pending  on  the  identity  of  the  residue, l of  the 21 units in each  cluster is turned  on  (input of l); the rest are off (input of 0). 
These  units  are  labeled Gres, and  are  turned  on when  the  residue of type ‘‘res” occurs  at  the  position.  The 21st unit  in  each  clus- 
ter is turned  on if no  residue is present at  the  position,  as  occurs  when  the  input  window  overlaps  the  ends  of  the  protein.  This 
unit is labeled 6 - .  All  input  units  are  connected  to  every  unit  in  the  hidden  layer,  each of which is connected  to  both  output 
units, H a n d  E.  Units  in  the  hidden  and  output  layers  are  labeled  with  a  sigmoidal  curve  to  indicate  the  sigmoidal  relationship 
betwen  the  input  and  the  output  (Equation 2). Most  units  and  connections  are  not  shown  for  clarity. 

layer, 2 units in the output layer, and 803 connections between 
units because the network is fully connected between adjacent 
layers. There are a total of 807 independent variables to  opti- 
mize, i.e., the weight  of each connection and  the bias for each 
unit except those in the input layer. 

After all predictions are made, short stretches of helix (<4 res- 
idues) and sheet (<2 residues) are filtered to coil; these are  the 
cutoffs used  by DSSP for short segments of secondary structure. 
In addition to this removal of short segments  of secondary struc- 
ture,  an  additional filter was run  on  the network outputs prior 
to their interpretation as secondary structure. In each step of this 
process, known as smoothing, h and e values from each posi- 
tion were averaged with the h and e values from residues at  ad- 
jacent positions: 

Values at  the ends of the sequence were averaged only with the 
single adjacent residue. This process (a step) can be repeated 
once the entire sequence is processed. Over several steps of 
smoothing, structural features begin to blur over a larger region 
of  the sequence; this is expected because the equations are sim- 
ilar to those governing 1-dimensional diffusion.  This  procedure 

is  used to eliminate sharp transitions in the network outputs over 
short stretches of sequence. 

Measurements of accuracy 

The most commonly reported measure of secondary structure 
prediction accuracy is the success rate,  or Q3. This is the  over- 
all percentage of correctly predicted residues of all 3 types, i.e., 

Here, R,, is the number of correctly predicted residues of type 
str, and N is the  total number of residues. Although  the Q3 
score provides a quick measure of the accuracy of the algorithm, 
it does not account for differing success rates on different types 
of secondary structure. We therefore also calculated the  cor- 
relation coefficients (Matthews, 1975) for prediction of  helix 
(C,), sheet (CE), and coil ( G ) .  

In this calculation, p H  is the number of correctly predicted he- 
lical residues, n,  is the number of residues that  are correctly 
identified as something  other  than helix, 0, is the number of 
nonhelical residues that  are predicted as helix, and uH is the 
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number of helical residues that  are missed by the algorithm.  A 
corresponding  calculation is done  for C, and C,. 

Structural  class prediction 

Quantitative definitions for a 4-class  system have been proposed 
by  Kneller  et al. (1990) based on examination of typical proteins 
from  the Levitt and  Chothia (1976) classes. “All-a” proteins 
must have at least 75 residues (the size of the Ca-binding  pro- 
tein 3ICB), contain at least 30% a-helix, and contain at least 
85% a-helix in  regions of well-defined secondary structure. “All- 
6” proteins must be at least 99 residues long (the size of plasto- 
cyanin, 3PCY), with less than 10% helical residues. “a/P” 
Proteins  must be at least 138 residues long (the size of flavo- 
doxin, 4FXN), contain at least 15% a-helix and 5% 6-sheet, and 
have approximate alternation of a and 6 structure (we quanti- 
fied this as meaning at least 2 alternations between helix and 
sheet). Proteins  not  fitting one of these descriptions are classi- 
fied “other.” The  data set contained 14 chains in the all-cr class, 
15 all-6  chains, 16 a/6 chains, and 24 other  chains.  All-a  pro- 
teins contained an average of 55% helix, 2% sheet, and 43% 
coil. All-0 proteins averaged 4% helix, 36% sheet, and 60% coil. 
Proteins in the a/@ class averaged 30% helix, 17% sheet, and 
53% coil. Other  proteins averaged 21% helix, 18% sheet, and 
61% coil and were too small or contained  insufficient helix 
and sheet to fit  any of the  other classes. 

For predictions of the structural class, the sliding window 
method employed by secondary structure networks is inadequate 
because the network must view the entire  protein at  one time. 
One way of presenting global information is to provide the net- 
work with the  amino acid composition of the protein and  the 
sequence length.  Dubchak and colleagues (1993) have shown 
that this information alone is sufficient to train a network to dis- 
tinguish among several specific tertiary  folds that vary signifi- 
cantly in secondary structure  content,  amino acid composition, 
and size, as described above. 

An overview of the class prediction network is shown in  Fig- 
ure 2. In addition to providing the network with information on 
sequence length and  amino acid composition, data produced by 
the secondary structure prediction network are also given. Be- 
cause the class definitions depend on secondary structure, this 
information is expected to provide a  good  first-order  approxi- 
mation of the  structural class. Along with the original 21 inputs 
for length and amino acid composition, 2 inputs were provided 
for  the percentage of helix and sheet predicted by the second- 
ary  structure  network.  Two  more  inputs listed the percentage 
of “strong” predictions of helix and sheet from  the same net- 
work (defined as a raw network h or e output greater than 0.6); 
the accuracy of these predictions is expected to be higher, al- 
though “strong” predictions are infrequent.  A final input indi- 
cated the expected number of alternations between helix and 
sheet as one traverses the  primary sequence of the  protein, also 

All-a All+ d P  Other 

1 ‘ 1 ‘  1‘  1‘ 

%A %R %N . ( .  %v Length Predicted Predicted Predicted Predicted Predicted 

Amino  Acid  Composition 
%Helix %Sheet %Helix %Sheet Alternations 

(Strong)  (Strong) 

Fig. 2. Class prediction network. Units in the network are represented by ellipses; connections between units by solid  lines. Units 
in the  input layer are labeled with linear curves, indicating that their output is equal to their input. Units in the hidden and  out- 
put layers are labeled with sigmoidal curves, to indicate  the sigmoidal relationship between the  input and the output (Equation 
2). The input layer contains 20 units for describing the amino acid composition of a  protein (labeled Toms), 1 unit for the se- 
quence  length, and 5 units containing characteristics of the  protein predicted by the secondary structure network. These units 
indicate  the predicted percent helix and sheet, the percentage of strong helix and sheet predictions (which are more accurate), 
and the predicted number of alternations between helix and sheet. All input units are connected to every unit in the hidden layer, 
each of which is connected to all output units. In the 4-output network, 1 output is used for each of the defined structural classes: 
All-a, all-p, a/p, and other. In the single-output version of this  network, which predicts whether a  protein belongs to a single 
class, the output layer contains 1 output unit representing the likelihood that a  protein belongs to the given class. 
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as predicted by the secondary structure network. Several  of  these 
alternations are usually found in proteins from  the cr/P class. 
Results obtained using the full-class prediction network de- 
scribed above are compared to those obtained using a network 
without any predicted information on secondary structure, i.e., 
using only the first 21 inputs shown in Figure 2. 

Two types of output strategies were tested.  A  4-output net- 
work  with 1 output  for each class  (as defined by Kneller) directly 
predicts the class of a  protein.  The output is interpreted by pre- 
dicting the class corresponding to  the highest of the 4 outputs. 
In addition, 4  separate single-output networks were trained to 
specialize  in identifying proteins from 1 of the 4 structural classes. 
These networks were identical in topology to  the 4-output net- 
work shown in Figure 2, except that each contained only 1 unit 
in the output layer, indicating the tendency of the tested pro- 
tein toward each particular class.  As in secondary structure pre- 
diction, the  output unit was compared to a  cutoff in deciding 
whether a given class was predicted.  This  cutoff was optimized 
separately in each trial to achieve the highest accuracy on pro- 
teins in the training  set. The latter  method of making indepen- 
dent predictions has the disadvantage that several or none of the 
4 classes  may  be predicted. However, it  might  allow the network 
to specialize and produce  more  accurate predictions of the cor- 
responding class. 

Results 

Some aspects of the implementation 
of secondary structure networks 

To test the effects of overtraining on prediction accuracy in the 
test set, we trained secondary structure prediction networks for 
several thousand cycles. After each  set of 5 training cycles, train- 
ing was paused to test the network on a prediction set.  For  this 
particular trainingkest division overtraining  does  occur,  al- 
though  the effect is small. A 19 X 2 X 2 network reached a max- 
imum prediction accuracy of 63.4%, then decreased to 62.0% 
with increased training. By contrast, jackknife testing revealed 
no significant overtraining effect. The non-jackknife results for 
the 19 x 2 x 2 network are shown in Figure 3A; jackknife re- 
sults for  the same network are shown in Figure 3B. 

It is clear from a  comparison of Figure 3A and B that  the re- 
sults using the jackknife  method are more consistent over very 
long training times. The non-jackknife results  peak  briefly at 480 
cycles  of training,  then fall off by 1.8% over the next 1,300 cy- 
cles. In contrast,  the jackknife method produces an optimal pre- 
diction after  around 600 cycles, and accuracy remains almost 
constant (never falling more than 1070 at any given point) over 
the remaining 1,400 cycles. It is difficult to determine  the  stop- 
ping point for non-jackknife training that will produce the high- 
est accuracy on a given prediction set without knowing the 
results in advance.  Instead,  training  must be stopped when the 
decrease in error between several subsequent  training steps be- 
comes sufficiently small (we  used AE = 0.06, which occurs af- 
ter about 500 steps). 

Smoothing 
We found that 1 cycle of smoothing decreases training set ac- 

curacy while improving prediction results slightly for all net- 
works tested. However, prediction accuracy decreases if more 
than I cycle of smoothing is used. Results for the 19 x 2 x 2 net- 
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Fig. 3. A: Overtraining effect. A 19 x 2 x 2 network was trained on 
the set of 48 training proteins and tested on the set of 14. No smooth- 
ing was used on the network outputs. Training was paused after every 
20 steps to measure accuracy on  both the training and prediction sets. 
After several thousand steps of training, the training set accuracy in- 
creases to around 75%; accuracy on the prediction set peaks at around 
62-63%, then begins to decrease. B: Training with jackknife cross- 
validation. A 19 x 2 x 2 network was tested on all proteins in the data 
set, using jackknife  cross-validation. Training was paused after every 
5 steps to measure  accuracy on both the  training and prediction sets. Re- 
sults were weighted by sequence length and averaged. Accuracy on the 
prediction set remains fairly constant after  about  600 steps of training. 

work are shown in Table 1. As can be seen, both the Q3 and  the 
correlation coefficients improve with 1 round of smoothing. 
Further  smoothing leads to a fairly steady decrease in both 
measures. 

Effects  of  topology 
Window widths from 15 to 21 were tested with and without 

a hidden layer; 19 was found to be optimal. At a window width 
of 19, seven hidden layer sizes  were tested; the network topol- 
ogy with the best prediction success is  19 X 2 X 2 with 1 round 
of smoothing. As before, these results were compiled on  the 
Hoiley and Karplus (1989) training and test sets for ease in com- 
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Table 1. Secondary structure prediction accuracy as a 
function of the number of smoothing cycles useda 
- 

Prediction 
Smoothing accuracy 
cycles ( Q 3 )  CH C E  C C  

61.9 36 32 35 
62.8 38 34 38 
62.2 37  34  37 
62.4 37 34 37 
61.7 36 32 36 
61.9 37 33 36 

a A neural network was trained on the 48-protein training set and ac- 
curacy was measured using the 14-protein test set. Correlation  coeffi- 
cients are multiplied by 100 .  

parison. Results for all networks tested are shown in Table 2, 
along with results reported by Holley and Karplus (1989). 

Dependence on training and test sets 
There was little variation in the results  when calculations using 

the same training and test sets were repeated.  This implies that 
convergence to a set  of  nearly optimum parameters was obtained 

Table 2. Secondary structure prediction accuracy 
for  several different  network  topologiesa 
” 

Prediction 
accuracy 

Network topology ( Q 3 )  CH CE CC 

1 5 X 2 X 2  
1 7 x 2 ~ 2  
1 9 x 2 ~ 2  
2 1 X 2 X 2  
2 3 x 2 ~ 2  
2 5 X 2 X 2  
2 7 x 2 ~ 2  

15 x 2 x 2 ( s ) ~  
17 x 2 x 2 (s) 
19 x 2 x 2 (s) 
21 x 2 x 2 (s) 
23 x 2 x 2 (s) 
25 x 2 x 2 (s) 
27 x 2 x 2 (s) 

19 x 1 x 2 (s) 
19 x 3 x 2 (s) 
19 x 4 x 2 (s) 
19 X 5 x 2 (s) 
19 x 6 x 2 (s) 
19 x 10 x 2 (s) 
19 x 20 x 2 (s) 

H & KC 

61.8 
61.8 
62.4 
62.3 
63.0 
61.7 
61.7 

62.9 
62.5 
63.6 
62.6 
62.6 
61.8 
61.5 

59.5 
62.8 
62.6 
62.8 
62.3 
62.6 
62.2 

63.2 

35 
36 
37 
38 
37 
36 
36 

36 
37 
39 
37 
38 
36 
38 

37 
38 
38 
38 
38 
38 
37 

41 

30 
32 
32 
30 
32 
30 
28 

33 
34 
33 
32 
31 
29 
28 

0 
32 
31 
30 
31 
29 
26 

32 

34 
35 
35 
36 
38 
35 
34 

41 
37 
39 
36 
37 
35 
35 

28 
37 
36 
36 
36 
36 
35 

36 

a Neural networks were trained on the 48-protein training set and ac- 
curacy was measured using the 14-protein test set. Correlation coeffi- 
cients are multiplied by 100. 

(s), One  round of smoothing. 
H & K, Holley and Karplus (1989). 

in each case. However, results vary widely depending on  the 
choice of training and test  sets. Several network topologies were 
tested on  the 10 randomly  partitioned  training and test sets de- 
scribed in the Methods section. The results are shown in Table 3. 

As before, the best results were obtained using the 19 X 2 X 
2 network with 1 round of smoothing.  However, it is evident 
that there is a large variation in the results, both  for  the predic- 
tion accuracy and the correlation coefficients. This suggests that 
considerable  care has to be used in evaluating the results of a 
single partition test. In this study, further evaluations of second- 
ary  structure prediction accuracy on the 62-protein database 
were done using the jackknife  method of cross-validation. 

Structural class prediction 

The  4-output and single-output networks were tested on  the 
database using jackknife  cross-validation.  Networks were first 
trained and tested without using any predicted information on 
secondary structure,  i.e., using the 21-input topology described 
in the Methods section, under “Structural class prediction.” 
Training was stopped when the decrease  in error was sufficiently 
small ( A E  = O.Ol/step, or about 350 training steps). The results 
obtained from  the 2 types of networks are reported in Tables 4 
and 5 .  

The single-output networks are able to correctly identify 43% 
of the  all-a proteins, 53% of the all-0 proteins,  69%  of a/@ 
proteins, and 66% of other proteins. Four-output networks per- 
formed better on all but 1 class, identifying 57% of the all-a pro- 
teins, 60% of the all-0 proteins,  63% of the a/0 proteins, and 
71% of other proteins. Compared with results obtained by clas- 
sifying proteins directly using secondary structure predictions 
(Rost & Sander, 1993b), the 4-output network was comparable 
in classifying all-a proteins (57% versus 58%) and slightly bet- 
ter at classifying proteins in the all-0 class (60% versus 50%). 

Table 3. Secondary structure prediction on I O  randomly 
chosen sets of training and test proteinsa 

Prediction 
accuracy 

Network topology ( Q 3 )  cH cE CC 

1 7 x 2 ~ 2  Worst: 58.9 30 33  30 
Best: 65.0 46 39 40 

Average: 61.9  36 32 34 

17 x 2 x 2 ( s ) ~  Worst: 59.8  35 32  32 
Best: 65.8  48 38 41 

Average: 62.3  37 31 35 

1 9 x 2 ~ 2  Worst: 58.4 23 29 28 
Best: 65.1 48 34 41 

Average: 61.5 36 31 34 

19 X 2 X 2 (s) Worst: 58.5 24 29 28 
Best: 66.7 51 39 44 

Average: 62.4  38 32  35 

a Neural  networks were trained on randomly chosen sets of 48 pro- 
teins from the  database and tested on the remaining 14 proteins. The 
best, worst, and average results for  the 10 trials are shown. Correlation 
coefficients are multiplied by 100. 

(s), One  round of smoothing. 
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Table 4. Structural class prediction using single-output 
networks without information on secondary structurea 

Actual class 

Network Prediction  All-a All-0 a/p  Other 

All-(Y All-a (17) 6 2 3 6 
Not all-a (52) 8 13  13 18 

All-0 All-0 (19) 0 8 5 6 
Not all-0 (50) 14 7 11 18 

a 10 (18) 2 4 11 1 
Not a//3 (51) 12 11 5 23 

Other  Other (23) 4 3 0 16 
Not other (46) 10 12 16 8 

” ” -~ 

a Testing was done using jackknife cross-validation. 

Although  this  network is similar to  that used by Dubchak et al. 
(1993) to  identify 4  specific protein  folds, it  is  clearly more  dif- 
ficult  for  the  network  to  learn  to  identify  general  structural 
classes; only 62% were correctly  identified,  compared  to 87% 
of  the  proteins in the  previous  work. 

To apply  the  full class prediction  network  shown in  Figure 2, 
the  secondary  structure  of  each  protein was predicted using the 
19 X 2 X 2 network, with  1 round of smoothing.  Class  predic- 
tion  was  then  done  for  each  protein,  using  the  jackknife  proce- 
dure  of cross-validation. The  jackknife  procedure was also used 
to  obtain predicted secondary  structures  for  each of the  proteins 
tested by the class prediction network,  to prevent any  known in- 
formation  on  secondary  structure  content  from being  used  in 
the test  class prediction.  However,  accurate  (rather  than  pre- 
dicted) information  on  secondary  structure  content was used for 
proteins in the  training sets. This  produces  more  accurate results 
on  both  the  training  and test sets  (results  not  shown).  The re- 
sults  obtained using single-output  and  4-output  networks  are 
shown  in  Tables 6 and 7, respectively. The  overall  training  and 
prediction set accuracy versus training  time is shown  in  Figure 4. 

It is clear from  the  tables  that  overall  accuracy is quite  good, 
and much better  than without the predicted secondary  structure 
input.  The  4-output  network  correctly  identifies 64% of  all-a 
proteins, 73% of  all-0  proteins,  81%  of cr/p proteins, 75% of 
other  proteins.  As  before,  the  single-output  networks were 

Table 5. Structural class prediction using a  4-output 
network without information on secondary structurea 

Actual class 
” 

Prediction  Proteins  All-a All-/3 a/P Other 

Table 6. Structural class prediction using single-output 
networks and predicted information on secondary structurea 

~ - _ _ _ _ ~ ~  ~ _ _ ~  

Actual class 

Prediction  All-a AIL0 a/P Other 
_____~  ~~~~~ ~~ 

All-CY (13) 8 0 1 4 
Not all-a (56) 6 15  15 20 

All-0 ( 1  3) 0 9 2 2 
Not all-0 (56) 14 6 14 22 

(14) 1 1 12 0 
Not a / p  (55) 13  14 4 24 

Other (23) 3 2 0 18 
Not other (46) 11  13 16 6 

-~ - ~~~ ~- 

a Testing was done using jackknife cross-validation. 

slightly less successful; they correctly  identified 57% of all-a! pro- 
teins, 60% of all-/3 proteins, and 75% of a!/@ and  other proteins. 
The  addition of  a hidden layer to  either  type  of  network  did  not 
improve  the  accuracy.  Although  all-a  proteins  are  the most dif- 
ficult class for  the network to identify,  accuracy is slightly higher 
than a previous result of 58% obtained by directly  determining 
the  protein class  using  highly accurate (70%) secondary  struc- 
ture  predictions  (Rost & Sander, 1993b). 

An  important result is that  no  protein in the all-cr class  was 
misclassified as  all-0  and  no  protein  in  the all$ class  was  classi- 
fied as  all-a (Tables 6 ,7 ) .  Also,  there were no misclassifications 
between the a/b and  “other” classes. The result demonstrates 
that  the class prediction  networks  can  always  eliminate  one  or 
more classes with accuracy approaching  100%. This can be done 
by predicting  the class of a protein using the  4-output  network 
and all four of the  single-output  networks,  and  then  eliminat- 
ing one or more classes based on  the  predictions. I f  the  protein 
is predicted  as all-a by  either  the  4-output  network or single- 
output  all-a  network, all-0 is eliminated as a potential class, and 
vice versa. If a protein is predicted to  be cr/0 by any  network, 
“other” is eliminated,  and vice versa.  Using both  the single- 
output  and  4-output  networks  for  elimination is slightly better 
than using either  alone because the  predictions  are  independent 
and  can  sometimes lead to  the  elimination of more  than 1 po- 
tential class. 

Table 7. Structural class prediction using a  4-output 
network and predicted information on secondary structurea 

Actual class 

Prediction  Proteins All-a All-/3 a/@ Other 

All-a 15 7 1 3 4 
All-6 15 1 9 2 3 
a 10 16 3 3 10 0 
Other 23 3 2 1 17 

Total: 43/69  (62.32%) predicted correctly 

a Testing was done using jackknife cross-validation. 

All-a 12 9 0 1 2 
AIL6 17 0 11  2 4 
a 4  17 2 2 13 0 
Other 23 3 2 0 18 

Total: 51/69  (73.91%) predicted correctly 
” 

a Testing was done using jackknife cross-validation. 
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Fig. 4. Class  prediction results. The network shown in Figure  2 was 
tested on all proteins in the  data  set, using jackknife  cross-validation. 
Training was paused after every 5 steps to measure accuracy on  both 
the  training  and  prediction sets. After 500 steps of training, accuracy 
on  the  training set reaches 90%; accuracy on  the  prediction set levels 
out at 75%. 

Secondary structure prediction with class elimination 

Given the results for  the class prediction, it appears that the qual- 
ity of the training set for secondary structure prediction can be 
improved by the removal of proteins in the class (or classes)  elim- 
inated by the class prediction networks. We would expect this 
to improve accuracy on  all-a  and all-fi proteins, as reported by 
Kneller  et al. (1990) but not for a/fi and “other” proteins, where 
no gain was seen. The following multistage algorithm was  used 
for prediction of the secondary  structure and class of a  protein 
of 

1. 

2. 

3. 

4. 

unknown structure: 

Secondary structure is predicted using the 19 X 2 X 2 network 
shown in Figure 1, with 1 smoothing  step.  The  training set 
for the network includes all proteins in a  database of known 
structures. 
The secondary structure predictions are used to predict the 
class of the protein using the 4-output network shown in  Fig- 
ure  2 and all 4  single-output  networks. 
I f  the class is predicted as all-a!  by any network in step  2, all 
the all-fi proteins are removed from  the set; if the class  is pre- 
dicted as all-fi in step 2, the all-a! proteins are removed from 
the training  set. 
If proteins have  been removed, the secondary structure is pre- 
dicted again using a 19 x 2 x 2 network trained on the smaller 
(“reduced”)  training  set. 

This  algorithm was tested on  the 62-protein database, using 
the jackknife validation method, Le., each protein chain was  re- 
moved in turn  and the remaining 61 were used as  the full train- 
ing database for the algorithm.  The predictions obtained using 
the full  training set were compared with predictions  obtained 
using reduced training sets produced with the above method. Re- 
sults  obtained using the full  training set are shown in Table 8, 
and resuIts obtained using the reduced training sets are shown 
in Table 9. A  graph of training and prediction set accuracy ver- 

Table 8. Secondary structure predictions 
using the full training seta 

Prediction 
accuracy 

Test set ( Q 3 )  CH C E  CC 

All-or proteins 60.87 31  16 32 
All-0 proteins 61.99 11  33 32 
or/p proteins 62.48 38  31  37 
“Other”  proteins 63.91 37  25 30 
All proteins 62.26 37  33  34 
~ ..”______. ~- 

a Predictions  are  summarized by the  actual class of the  proteins 
tested (the test set). Testing was done using jackknife  cross-validation. 

sus training time (for the full and reduced training sets) is shown 
in Figure 5 .  

Accuracy on both all-a proteins and all$ proteins increased 
by about 1% when  using the reduced training sets. Accuracy on 
a/P proteins decreased slightly as a result of misclassification 
of several of these as all-a  or all-fi. Accuracy on  “other” pro- 
teins actually increased slightly because several of these contain 
predominantly helix or sheet and were  misclassified into the all- 
Q or all-P classes. The average accuracy on  the entire  database 
(weighted by sequence  length)  increased by 0.38%, from 62.26% 
to 62.64%. Although these  results are less accurate than  the best 
results shown in Table 2, this is a consequence of the variation 
caused by the selection of a particular set  of  48 training proteins 
and 14 test proteins in those trials; the jackknife procedure used 
here yields a  more unbiased evaluation of prediction accuracy. 

We also tested the elimination of a/fi and  “other” proteins 
from the  training  sets, in addition to  the removal of all-a  and 
all$ proteins using the  algorithm presented above. If the class 
of a protein was predicted as a/O by any network in step 2, pro- 
teins from  the “other” class  were  removed from  the training set; 
i f  the class was predicted as “other” in step  2,  the a/@ proteins 

Table 9. Secondary structure prediction 
using reduced training setsa 

Prediction 
Reduction accuracy 

Test set (070) ( Q 3 )  

All-or proteins 16 62.03 
All-@ proteins 14 62.99 
or/0 proteins 5 61.91 
“Other”  proteins 7 64.69 
All proteins 10 62.64 

CH C E  

32  17 
11  33 
38  31 
39  27 
40  33 

~ __ 

CC 

32 
31 
35 
30 
34 

. 

a Reduced training sets are those from which all-or and all-0 proteins 
were potentially eliminated. Results are summarized by the actual class 
of the proteins tested (the test set). The reduction measures the decrease 
in the number of proteins in the reduced training sets, relative to  the full 
training  set, averaged over all proteins  in each class, e.g.,  for  proteins 
in  the all-or class, an average of 16% of the  proteins in the full training 
set were eliminated to  produce the reduced training sets. Tests  were done 
using jackknife cross-validation. Correlation coefficients are multiplied 
by 100. 
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Fig. 5. Reduced  versus  full  training  sets. A 19 X 2 X 2 network  was 
tested on  all  proteins  in  the  data  set,  using  jackknife  cross-validation. 
Training  was  paused  after  every 5 steps  to  measure  accuracy  on  both 
the  training  and  prediction sets. Results were weighted by sequence length 
and  averaged. Results using the  training  set  reducing  algorithm  are  com- 
pared to  results  using  the  entire  training  set.  The  reduced  results  con- 
sistently  remain 0.4-19'0 higher  than  the  unreduced  results  over 1,000 
training  steps. 

were removed  from  the  training set.  Results obtained using  this 
addition  to  the  reduction  algorithm  are  shown  in  Table 10. 

The  modified  reduction  method led to  a decrease in second- 
ary  structure  prediction  accuracy  for  proteins  from  most  struc- 
tural classes because  elimination  of the large a/@ proteins could 
remove  many  residues  from  the  training set without  changing 
the  proportions  of  secondary  structure  content.  Average  accu- 
racy on all  4 classes (weighted by sequence  length) decreased by 
0.42%. 

Discussion 

A pair of neural  network-based  algorithms  for  predicting  the 
secondary  structure  and  structural class of proteins is presented. 
By using information  provided  by  the  secondary  structure  pre- 
diction  network,  the  accuracy  of  the class prediction  network 
improves by 11.6070, from  62.3%  to  73.9%. Using predicted 
class information,  the  secondary  structure  prediction  network 
realizes a small  increase  in  accuracy,  from 62.26% to  62.64%. 
This  increase  may  not  be  significant. 

The  structural class prediction results demonstrate  that sec- 
ondary  structure  prediction, while an interesting  theoretical 
problem in itself, is also  useful  as a step  toward  the  prediction 
of  aspects  of  tertiary  structure,  such  as  the  structural class of 
a protein.  It is important  for a tertiary  structure  prediction  al- 
gorithm  to  make use of  all  other  relevant  predictions.  In  the 
present  case,  inclusion  of single sequence  secondary  structure 
predictions  improved results by 11.6%. It is possible that  the use 
of a more  accurate  multisequence  profile  secondary  structure 
prediction  algorithm  such  as  that  of  Rost  and  Sander (1993a) 
would  improve  this  result  further. 

The  multistage  secondary  structure  prediction  algorithm  also 
demonstrates  the possible  benefits of  cooperative  structure  pre- 
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Table 10. Secondary structure  prediction 
using reduced training setsa 
~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  "~ 

Prediction 
Reduction  accuracy 

- .~ 

Test set (9'0) (Q3) CH CE CC 

All-or proteins 31 60.21 30 11  30 
AIL0 proteins 29 62.48 5 30  30 
or/P proteins 41 62.98 38 31 36 
"Other"  proteins 28 60.23 23  21  24 
All proteins 32 61.84 38 31 33  

.~ 

- _________ 
a Reduced  training  sets  are  those  from which proteins  in  all 4 classes 

were potentially  eliminated.  Results are  summarized by the  actual  class 
of  the  proteins  tested  (the  test  set).  The  reduction  measures  the  decrease 
in  the  number of proteins in the  reduced  training sets, relative to  the full 
training  set,  averaged  over  all  proteins  in  each  class.  Tests  were  done 
using jackknife  cross-validation.  Correlation  coefficients  are  multiplied 
by 1 0 0 .  

"~ 

diction  algorithms.  Although  the  accuracy  of  the class  predic- 
tion  algorithms presented here is too low to reliably narrow  the 
training set down  to  proteins of a single structural  class,  the  al- 
gorithm  can,  with  near-perfect  accuracy,  eliminate  one or more 
structural classes as a possibility. This limited prediction results 
in marginal  improvements in secondary  structure  prediction  ac- 
curacy.  Removal  of a single  class from  the  training set results 
in  a  1.2% increase in accuracy for all-cr proteins (when all-@ pro- 
teins are removed), compared  to a 3% increase in  accuracy  when 
all  other classes are  removed  (Rost & Sander, 1993b). This in- 
crease  in accuracy is not  the result of simplifying the  secondary 
structure  prediction  problem  from 3 states to  2 states  (i.e., he- 
lix or  nonhelix  for all-helical proteins),  as  done by Kneller et al. 
(1990). In fact,  prediction  of  @-strands  in these all-a! proteins is 
actually slightly more  accurate  after  reducing  the  training set 
(C, increases  from 0.16 to 0.17 for  proteins  in  the all-a! class). 
Further  improvements  in  accuracy  could result from  the  use of 
larger  data sets. The  use  of  the class prediction  algorithm elim- 
inates  1/2  to  1/4  of  the  data in  this relatively small data set and 
so interferes with the ability of  the  neural network to  derive  gen- 
eral  rules  for  secondary  structure  prediction. We are  presently 
extending  the  approach  to  larger  data  sets  to  investigate  this 
effect. 

The  smoothing filter applied  in  the  secondary  structure pre- 
diction  algorithm  can  be a useful  tool  for  reducing noise  in the 
data  and slightly improving  the  accuracy  of  predictions  without 
the need for a more  complex  algorithm.  This filter is also use- 
ful  as a visualization  tool in viewing the  location  of helices and 
sheets in  a secondary  structure  prediction. 

Although  the work  presented  has  focused on prediction  of the 
secondary  structure  of single sequences,  both  the  methods  of 
smoothing  and  training set selection should  be  applicable  to al- 
gorithms  that  operate  on a profile of  multiple,  related  sequences 
such  as  that used by Rost  and  Sander (1993a),  which is based 
on a similar  network. 

Finally, we have  confirmed a significant  dependence  of  the 
results  obtained  from  the  neural  network  algorithms  on  the 
choice  of  training  and test sets  (Zhang et al., 1992; Rost & 
Sander, 1993a). Future  predictions  should use the  jackknife 
strategy  of  removal  of  each  protein individually from  the  data- 
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base to avoid  variation in the results caused by a  particular 
choice of training and test sets. If this method is impractical due 
to  the longer time  required, multiple cross-validation (several 
random partitionings of the  data set into training and test sets) 
should be used to eliminate bias. As a side effect, the jackknife 
method  reduces or eliminates the effects of overtraining  a 
network. 
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