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Abstract 

This work  provides  a  systematic comparison of vibrational CD (VCD) and electronic CD  (ECD)  methods  for spec- 
tral  prediction of secondary  structure.  The  VCD  and  ECD  data  are simplified to  a small set of  spectral  param- 
eters using the  principal  component  method of factor  analysis  (PC/FA). Regression  fits of  these  parameters  are 
made  to  the  X-ray-determined  fractional  components (FC) of  secondary  structure.  Predictive  capability is deter- 
mined by computing  structures  for  proteins  sequentially left out of the  regression. All  possible combinations of 
PC/FA  spectral  parameters (coefficients)  were  used to  form a full set of  restricted  multiple regressions  with the 
FC values,  both  independently  for  each  spectral  data set as well as  for  the  two  VCD  sets  and  all  the  data  grouped 
together.  The  complete  search  over  all possible combinations of spectral  parameters  for  different  types of spec- 
tral  data is a new feature  of  this  study,  and  the  focus on prediction is the  strength of this  approach.  The  PC/FA 
method was found  to  be  stable in detail  to  expansion  of  the  training set. Coupling  amide I1 to  amide I' param- 
eters  reduced  the  standard  deviations of the  VCD regression relationships,  and  combining  VCD  and  ECD  data 
led to  the best fits.  Prediction results had a minimum  error when dependent on relatively few spectral coefficients. 
Such a  limited dependence on spectral  variation is the key finding of this  work, which has  ramifications  for  pre- 
vious studies  as well as suggests future  directions  for  spectral  analysis of structure.  The best ECD  prediction  for 
helix and sheet uses only  one  parameter,  the  coefficient of the  first  subspectrum.  With  VCD,  the best predictions 
sample  coefficients  of  both  the  amide I' and I1 bands,  but  error is optimized using only a few coefficients.  In  this 
respect,  ECD is more  accurate  than  VCD for a-helix,  and  the  combined  VCD  (amide I '+II)  predicts  the P-sheet 
component  better  than  does  ECD.  Combining  VCD  and  ECD  data sets  yields  exceptionally good  predictions by 
utilizing the  strengths of each.  However,  the  residual  error,  its  distribution,  and,  most  importantly,  the lack of 
dependence  of  the  method  on  many of the  significant  components derived from  the  spectra  leads  to  the  conclu- 
sion  that  the  heterogeneity of protein  structure is a fundamental  limitation  to  the use of  such  spectral  analysis 
methods.  The  underutilization of  these data  for  prediction of secondary  structure suggests spectral  data  could pre- 
dict a more  detailed  descriptor. 

Keywords: circular  dichroism;  secondary  structure  prediction;  spectra-structure  correlation;  vibrational  circu- 
lar  dichroism 

Optical  spectroscopic  studies are particularly important  for  fast, been made  to  quantify  the  measured  spectra in terms of global 
universal,  qualitative  estimation of average  secondary  structure conformational  characteristics,  such  as  the  fractional  compo- 
in  proteins. The ability  of various such  techniques to sense  small nents (FC) of the  secondary  structure  that  are typically drawn 
changes in conformation is well established. Many  attempts have from  X-ray  crystal  structure  studies for comparison  to  spectra 
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- ~- __~____" 

Reprint  requests  to:  Timothy  A.  Keiderling,  Department of Chem- 1972; Chang et al., 1978; Siege1 et al., 1980; Hennessey & John- 
istry,  m/c 11 I ,  University of Illinois at  Chicago, 845 W. Taylor  Street, s o n ~  1981; Provencher & 1981; By1er ' susi* 1986; 
Chicago,  Illinois 60607-7061; e-mail:  tak@uic.edu. Compton & Johnson, 1986; Mantsch  et  al., 1986; Manavalan 

1384 



Secondary  structure  prediction with VCD and ECD 1385 

& Johnson, 1987; Dousseau & Pezolet, 1990;  Lee  et al., 1990; 
van Stokkum et al., 1990; Venyaminov & Kalnin, 1990; Pancoska 
et al., 1991; Pancoska& Keiderling, 1991; Perczel  et  al., 1991; 
Sarver & Krueger,  1991a, 1991b; Toumadje et al., 1992; Pribic 
et al., 1993; Sreerama&  Woody, 1993, 1994). However,  despite 
utilizing different  optical  techniques  and  analytical  methods  of 
increasing mathematical complexity, the  quantitative accuracy of 
such determinations never matches  the  qualitative sensitivity of 
the  methods  to  conformational  change (Keiderling et  al., 1995). 

Many previous  spectral-structure correlation studies  have fo- 
cused on electronic circular dichroism (ECD)  due  to its high sen- 
sitivity to  structural  variation  and  ease of measurement  (for 
reviews see Johnson, 1985, 1988, 1990; Yang et al., 1986; Man- 
ning, 1989; Sreerama& Woody, 1994). Most approaches  for  the 
interpretation  of  ECD  now  use  band  shape or pattern recogni- 
tion analyses to derive structural  correlations. A number  of  pro- 
tein structural  studies have  utilized vibrational  spectroscopic 
techniques, mostly Fourier  transform  (FT) IR  but also  Raman, 
which have a resolution  and  signal-to-noise  ratio (S/N) advan- 
tage (for  FTIR)  over  ECD (Byler & S u i ,  1986; Mantsch et al., 
1986; Williams, 1986; Berjot  et al., 1987;  Bussian & Sander, 
1989; Dousseau & Pezolet , 1990; Lee et al., 1990; Venyaminov 
& Kalnin, 1990; Sarver & Krueger, 1991a,  1991b; Pribic et al., 
1993). The  analyses of  these latter  spectroscopies in terms  of 
structure  has  primarily  depended  on  assignment  of  transition 
frequencies  that we have  earlier  shown  to be inherently  ambig- 
uous (Pancoska et a!., 1993) and  potentially misleading  if  used 
in isolation  without  reference to data  from  other  techniques 
(Dukor et al., 1992). Some  more recent studies have  utilized 
band-shape  methods  for  FTIR  spectra  (Dousseau & Pezolet, 
1990; Leeet al., 1990; Sarver & Krueger, 1991a,  1991b; Pribic 
et al., 1993). Somewhat between these two  approaches is the use 
of vibrational C D  (VCD), a hybrid of CD  and I R ,  to  predict 
protein conformation (Keiderling, 1993, 1994; Keiderling & Pan- 
coska, 1993). VCD, like IR or Raman,  can be used to sense sev- 
eral  different spectrally resolved transitions involving different 
localized vibrations  of  the  molecule,  which,  like  ECD, have  a 
distinct  dependence  on  molecular  stereochemistry.  VCD spec- 
tra will have shapes  that  represent relatively  local interactions 
of the  amides, but  these shapes  for local structural  components 
will be distributed  over  the  same  frequencies  as in IR spectra. 
The overall  VCD  spectral information derives from both the vi- 
brational frequencies of  the  component transitions and the band 
shapes resulting from their interaction.  Hence, VCD  has the  po- 
tential  to yield spectral-structure  correlation on two levels. 

Previously, we have demonstrated  that  VCD  measured  for 
the  amide I’ transition  (primarily  amide C = O  stretch  for 
N-deuterated  proteins)  has a qualitatively  enhanced sensitivity 
to  structure  as  compared  to IR and  ECD  (Pancoska et al., 1989; 
Keiderling et ai., 1995). This sensitivity arises from  both  the rel- 
a t i v e [ ~  higher  resolution  and  conformational sign dependence 
of  the  VCD  as  compared  to  ECD  and  IR, respectively, and  the 
relatively short-range  interaction  distances  that  characterize 
VCD (Yasui et al., 1986b; Dukor & Keiderling, 1991; Keiderling 
& Pancoska, 1993; Yoder et al., 1995). A quantitative  scheme 
(Pancoska et al., 1991) to derive FCvalues  from  the VCD  spec- 
tral  band  shapes was developed based on  the  principal  compo- 
nent method  of factor analysis (PC/FA) (Malinowski & Howery, 
1980). Similar  methods have  been used in previous  ECD  data 
analyses  that build on  the  seminal work of  Johnson’s  group 
(Hennessey & Johnson, 1981; Johnson, 1985) and have been ex- 

tended  to analysis  of FTIR  spectra of proteins  (Lee et al., 1990). 
Systematic  comparison  of  amide I’ VCD  for  proteins  in D,O 
with those  of  an exactly parallel  analysis of ECD for the  same 
small set of proteins  indicated  that,  indeed, VCD also  had a 
quantitative  advantage  for  determination  of  at least the @-sheet 
fraction,  whereas  ECD was better  for  the  a-helix  (Pancoska & 
Keiderling, 1991). Similar  deductions were  derived from  com- 
parative  analyses of ECD  and  FTIR  spectra  (Pribic et al., 1993). 

It is now  feasible to  measure  VCD for proteins in H 2 0  as 
well (Gupta & Keiderling, 1992; Baumruk & Keiderling, 1993), 
particularly  for  the  amide I1 (N-H  bending  and  C-N  stretch), 
which is accessible for all soluble  globular  proteins.  Amide I1 
data  are  also  characteristic  of  protein  secondary  structure but 
are  not  as  qualitatively  differentiated  as  are  the  amide I’ VCD 
of proteins in DzO. Because one of the  major  features  of  the 
VCD  technique is its ability to  probe several resolved transitions, 
it is important  to see if coupling  the  amide I1 data  to  that  of  the 
amide I’ will improve  the  quantitative  spectra-structure  analy- 
sis. Such a coupling  has  proven beneficial in previous  protein 
IR analyses (Lee et a]., 1990). Although amide I VCD (N-H  pro- 
tonated) is also  measurable  in  H20,  the set of  proteins  adapt- 
able  to  the higher concentrations  required is more  limited. 

In this  paper we present a systematic  comparison of the cor- 
relation of  protein  secondary structure with amide I’ and I1 VCD 
data  and with ECD  spectra.  The  overall  goal of this work is to 
probe  the limits of CD spectra,  vibrational and electronic, inpre- 
dirting the average  fractional  secondary  structure of proteins. 
Furthermore, it is a  well-known aspect of  spectral  analyses of 
protein  structure  that  correlations  are sometimes dependent  on 
the  training set chosen  (Yang et al., 1986; Manavalan & John- 
son, 1987; van Stokkum et al., 1990). It is important  to  dem- 
onstrate  that  our analyses are stable  upon inclusion of both more 
proteins  and  proteins of various  types  in  the  training  set.  The 
effects of expansion  of the  protein  data base in terms  of  spectral 
transitions used and  numbers  of  proteins with known  crystal 
structures included  in the training set are  both examined  here.4 

Although  correlation  of  observables with structure  can be in- 
tellectually stimulating,  the real justification  for  development 
of empirical  optical  spectra-structure  relationships is to predict 
the  structure of proteins  for which other  structural  reference 
data  are  unknown.  Therefore,  the  focus  of  this  paper is a sys- 
tematic  comparison of the relative  predictive  ability of  multi- 
component regression models  for  proteins  not  included in the 
regression development.  As employed in previous analyses (Hen- 
nessey & Johnson, 1981; Pancoska et al., 1991; Pribic et al., 
1993),  sets of  data with one  protein systematically  left out  pro- 
vide the basis for testing  prediction. An  important aspect of  our 
work is the  evaluation  of a  series  of restricted  regressions  that 
demonstrate  that  the  optimal  predictability  of these analyses is 
obtained with only selected components  of  the  spectral  data  for 
each protein. In contrast  to  the variable selection method  (VSM; 
Manavalan & Johnson, 1987), no proteins  are left out of  the re- 
gression analysis except for  that  one selected for prediction; and, 
in contrast  to  the  spectral  component  fitting  approach  (Pribic 
et al., 1993), all proteins  are included in the  PC/FA. Our meth- 

~ 

Due  to samplIng  constraints,  VCD for the  amide I in H 2 0  cannot 
be  measured  over  the  full  set of proteins  studied  here.  Therefore, the 
analysis of combined H 2 0  amide I and I1  VCD  and FTIR data will be 
presented  separately (V. Baumruk, P. Pancoska, & T.A. Keiderling, 
manuscript in prep.). 
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ods  are  an  alternate, complementary approach  to  the VSM anal- 
ysis whereby we select those  spectral  elements  that best predict 
secondary  structure  for  all  the  proteins  rather  than selecting 
those  proteins  for which the best analysis of a particular  un- 
known  results. 

Restricting  the  spectral  components led to  some  surprising 
predictive results. For  ECD  the  optimal  prediction  algorithm 
uses only  one  spectral  component.  The  full  analysis of the  im- 
pact  on  prediction of all  possible  combinations of independent 
spectral  components  as  done  in  this  study is generally new.  The 
analysis of separate and combined ECD  and VCD data provides 
insight  into  the  full  potential of using  coupled  optical  spectral 
data  sets  to  probe  protein  structure.  Together these aspects of 
our  study lead to  interpretations of the  structural prediction lim- 
itations of optical  spectral  data  that  are  the  central issue of  the 
paper. 

In  summary,  the  methodology  employed in this  paper is not 
to  develop a "best method" with reduction of error  at  any  cost. 
Rather,  this  paper  focuses  on  the  use of  a systematic  compari- 
son  of  methods  to  understand  the  sources of error in optical 
spectral  analysis of protein  structure.  Consequently, we do  not 
undertake  to  compare  error limits with  other  computational 
methods  of  spectral  analysis.  Nonetheless,  the  combination of 
ECD with VCD  data is systematically  shown  to  have  superior 
predictive  capabilities to  either  alone,  such  that  each  technique 
compensates for  the weaknesses of the  other, resulting in a more 
rugged  method of spectra-structure  correlation. 

P.  Pancoska et al. 

Materials and methods 

Samples 

The  proteins  chosen  for  our  expanded  training set of 23 known 
protein  structures are summarized  in  Table  1,  together with their 
source, species origin, Protein  Data Bank (PDB) codes, and sec- 
ondary  structure  composition  in  terms of FC values  as  derived 
from  the  Kabsch  and  Sander (1983) (KS) and Levitt and  Greer 
(1977) (LG)  secondary  structure  analysis  algorithms.  This  pro- 
tein subset (which we refer to  as  the  training  set) is the  source 
of the reference structural  information  for  our  quantitative anal- 
yses. Following our earlier study, we also include five extra  pro- 
teins in the  data set that  are  not in the  PDB  and  consequently 
have  no  structural  input  to  the  spectral  analysis  as  an  indepen- 
dent,  qualitative  monitor  for  the  behavior of the results. These 
five are  treated in the  same way one  should  treat real unknowns, 
which  in our  approach  are processed by the  PC/FA  together 
with the training set proteins  to generate subspectral coefficients 
for all in a consistent  manner.  Thus,  the  subsequent regression 
steps  are  based  on a  unified set of parameters.  This  approach 
avoids  some  potential  problems  inherent in other  variants of 
PC/FA where the coefficients for  unknowns  are  determined by 
fitting  spectra  to  the  subspectra  obtained  from  only  the  train- 
ing set. 

We made  an  effort  to select the best match possible  between 
crystal  forms in the  PDB  and  the  actual  proteins used for  our 

Table 1. Training set proteins, sources, and X-ray-determined secondary  structures 
" "_____ ~ _ _ _  _ _ _ ~  """ ~ " ~ -  - 

" 

Protein  name 

Alcohol  dehydrogenase 
Carbonic  anhydrase 
a-Chymotrypsinogen  A 
a-Chymotrypsin  type I1 
Concanavalin  A 
Cytochrome c 
Tosyl  elastase 
Glutathione  reductase 
Hemoglobin 
A-Immunoglobulin 
Lactate  dehydrogenase 
Lysozyme 
Myoglobin 
Papain 
Rhodanese 
Ribonuclease  A 
Ribonuclease S 
Subtilisin  BPN' 
Superoxide  dismutase 
Thermolysin 

PDB KS KS  KS KS KS LG LG LG LG LG 
Species Source file helix sheet turn  bend  other helix sheet LT RT  other 

Horse liver Fluka05648  4ADH  24.9  20.6  14.7  13.6  26.2  31.2  41.3  12.0  5.6  9.9 
Bovineerythrocytes  Sigma  C-7500  1CA2 16.0 28.9 12.9  15.2  27.0  19.1  42.8 15.2 9.3  13.6 
Bovine  pancreas  SigmaC-4879  2CGA 14.3 32.2  14.3  12.7  26.5  14.6  45.1  14.6 8.5 17.1 
Bovine pancreas  Sigma C-4129 SCHA  11.8 32.1 11.4  14.4  30.4  10.6 50.4 16.1 8.5  14.4 
Jack  bean  SigmaC-2010  3CNA  0.0 40.5 9.3 19.8 30.4 2.5 63.5  16.8  7.1 10.1 
Tuna  SigmaC-2011  lCYT  42.7 0.0 15.5 8.7 33.0  46.2  5.8  15.4  17.3  15.3 
Pig  porcine  pancreas  Sigma E-0127 3EST 10.8 34.2 17.1 10.4  27.5 11.6 45.2  17.0  9.5  16.6 
Wheat  germ  Sigma G-6004 2GRS  29.3  18.7 10.4 19.3  22.3  39.0 33.8 10.6  4.8 11.9 
Human Sigma H-7379 IHCO 62.7 0.0 18.8 6.6 11.9 81.7 0.0 12.0 0.0 6.3 
Human  Fluka56834  lREI  2.8  47.7  14.0 11.2 24.3 0.0 67.6  8.3 14.8 9.3 
Rabbit  Calbio.427217  4LDH  36.8  11.3  14.3 13.1 24.6  45.8  23.9 10.3 6.7  13.3 
Hen egg white  Sigma L-6876 7LYZ 38.8 7.8  20.9  16.3  16.3  50.0 12.3 12.3 13.1  12.3 
Horse  heart  Sigma "1882 IMBN 77.1 0.0 9.8 1.9 11.1 90.3 0.0 3.9 0.0 5.8 
Papaya  latex  Sigma P-4762 8PAP  24.5 16.5 8.5  20.3  30.2 28.2 24.9 15.5 12.2 19.3 
Bovine liver SigmaR-4125  lRHD 29.7  10.9  16.4  13.3 29.7 41.2 20.1  11.9  9.2  17.7 
Bovine  Sigma R-5125 lRN3 21.0 34.7 11.3 14.5 18.6  29.6 44.8 10.4 6.4 8.8 
Bovine  pancreas  Sigma R-6000 IRNS 20.8 35.2 7.2 14.4 22.4 30.4 42.4  4.8  11.2 11.2 
Bacterial  Sigma P-8038 lSBT 30.2 17.8 15.3 12.0 24.7 37.0  31.5 14.1 6.5  10.9 
Bovine erythrocytes  Fluka 86200 2SOD  2.0  38.4  14.6 20.5 24.5 3.3  59.2 15.1 9.2 13.2 
Bacterial  Sigma  P-1512  2TLN  33.5  15.2  14.6 16.5 20.3  43.8 28.7 10.1  5.1  12.3 

-__-~-___~-~ "~ ~. ___ - _ ~ _ _  - - -~ - ~~ ~~ ~~ 

Triose  phosphate  isomerase 
Trypsin  inhibitor 
Trypsin 
Albumin 
Lactoferrin 
Casein 
P-Lactoglobulin  A 
Thaumatin 

Yeast 
Soybean 
Bovine pancreas 
Bovine serum 
Human milk 
Bovine milk 
Bovine milk 
Bacterial 

SigmaT-2507  lTIM  45.8  17.0 7.3 8.9  21.1  54.4  22.6  6.85  4.8  11.3 
Sigma  T-9003  3PTI 20.7 24.1 6.9 19.0 29.3 25.4 40.7 8.5 10.2 15.3 
SigmaT-8253  3PTN  9.9  32.3  14.8 17.9 25.1 11.2 52.7 17.0 8.9 10.3 
Sigma A-0281 - 
Sigma L-5665 - 
Sigma C-7891 - 
Sigma L-7880 - 
Sigma T-7638 - 
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spectral  determinations  as  regards species and  general  condi- 
tions, which  in some  cases  required  recalculation  of  the KS pa- 
rameters  from revised or  alternate  crystal  structure  data.  It is 
important  to  note  that  the  original KS paper  assumed  that 
knowledge  of  the  characteristics  of  only a selected example  of 
a given protein  type was sufficient. We have  shown that  the small 
structural  variations between  species are sensed by ECD  and 
VCD, and,  consequently,  mismatches would be reflected  in the 
quality  of fit obtained with our  methods.  Thus, it is important, 
as  far  as is possible, to  compute  the reference structural  param- 
eters  for  the specific proteins used to  obtain  the  spectral  train- 
ing set. 

All proteins were  used as  obtained  without  further  purifica- 
tion.  For  VCD  and  IR  studies of the  amide I' band, these pro- 
teins  were  typically exchanged in D,O and lyophilized three 
times  before  small  volume  (-20 pL) solutions  of  each  sample 
were prepared  to a concentration  of -50 mg/mL in D 2 0  (Al- 
drich). For the  amide 11, proteins were directly dissolved  in a 
similarly  small amount of  double-distilled H 2 0  at -200 mg/mL. 
Solutions  to be studied were placed in cells consisting of two 
CaF,  windows  separated by a 0.025- or  0.015-mm  Teflon 
spacer  for  measurement  of  the  amide I'  or  amide I1 spectra, 
respectively. For  ECD,  more  dilute  solutions, - 1 mg/mL, were 
prepared in doubly  distilled H 2 0  and  placed  in  strain-free 
quartz cells (Precision Cells) of 0.05 or 0.1 cm  pathlength  (al- 
lowing measurement  to - 180 nm). 

Spectroscopy 

For  purposes  of  this  work,  an  important  factor in the  evalua- 
tion of the use of  spectroscopic  data  for  structural  correlation 
is self-consistency. We did  not  want  any  of  our  residual  errors 
to be attributable  to  different  instrumental  or  measurement 
conditions.  Consequently, all spectra were measured in our lab- 
oratory  as  described below and  none were taken  from  the liter- 
ature. To be sure  that we were not including any gross error  due 
to  protein  preparation  or  instrument  failure, extensive checks 
were made  to  assure  that our measured  spectra were consistent 
with  whatever  data were available in the  literature. A separate 
discussion  of  effects  of  experimental  error in the  VCD  experi- 
ments is available  (Pancoska et al., 1995). 

The  amide I' and I1 VCD  and  IR  absorbance  spectra  at  room 
temperature were measured  on  the  UIC dispersive  VCD instru- 
ment, which has been thoroughly  described elsewhere (Keider- 
ling, 1981, 1990). Details  of  our  sampling  and  data collection 
methods  for  amide I' (Pancoska et al., 1989, 1991) and I1 (Gupta 
& Keiderling, 1992) VCD have been previously reported. In  sum- 
mary,  the  VCD were obtained with - 10 cm" resolution  as  the 
average of four  scans.  VCD  spectra were calibrated with the 
usual  methods  (Keiderling, 1981, 1990) and were  baseline cor- 
rected with identical  scans  of poly-D,L-lysine as  before. Although 
the  amide I' spectra were  used as  measured,  the  lower  S/N  am- 
ide I1 VCD  spectra were smoothed using the  FT  method in the 
SpectraCalc  package (Galactic Industries,  Nashua, New Hamp- 
shire).  Amide I' spectra were normalized to  the  absorbance 
maximum in this region  (i.e.,  scaled so that A = 1 .O). This  nor- 
malization is subject to  some  error if the  spectra  do  not reach 
baseline  inside the  spectral  range  studied.  For  the  amide 11, due 
to  overlapping  band  contours, it was  necessary to  develop  an 
alternative  approach using band-shape  fitting.  The  absorbance 
band  shape  over  the  1,800-1,370-~m-~  range was  fit  with  sev- 

eral  Gaussian  band  components (typically 6-9). Of these, we se- 
lected those  having a frequency within the 1,580-1,510-cm" 
interval.  The  areas  of  these  components were summed  and  ar- 
bitrarily divided by 30 to  obtain a normalization of the VCD in 
units comparable  to those used in the  amide I' region. These nor- 
malization  schemes  are  potentially  the  source of some  error 
(Bitto, 1993). 

ECD  spectra were measured  on a JASCO 5-600 spectropo- 
larimeter at  room  temperature  and  are averages of up  to 12 scans 
to get a smooth overall high S/N representation  of the spectrum. 
Identical  scans  of  pure solvent  in the  same cell were  used for a 
baseline.  The  protein  concentrations of the  solutions were de- 
termined  from  known  extinction  coefficients  or  absorbance  at 
190 nm  (assuming a molar  absorptivity of  10,000 M" cm-I 
residue") (Johnson, 1988, 1990). The resulting ECD intensi- 
ties  were  critically  checked against  available  published  data 
(Brahms & Brahms, 1980; Hennessey & Johnson, 1981). When 
spectra  for  the  same  protein  form  and species were available, 
our  data were found  to be fully consistent with the  published 
spectra in both  shape  and  intensity. 

FTIR  absorption  spectra of all the  proteins  studied were re- 
measured over the  entire  spectral region on a  Digilab FTS-60 
FTIR  spectrometer  using a TGS  detector, 4 cm" resolution, 
and  an  average  of 1,024 scans.  Spectra were corrected  for wa- 
ter  interference by subtraction of separately collected  water va- 
por  and solvent absorbance  spectra. These  spectra were used for 
the  normalization  of  the  amide I1 VCD  spectra  as described 
above  and  for checking the frequency  consistency of the  disper- 
sive data.  Frequency  errors in our dispersive data were compu- 
tationally  corrected by shifting  the  dispersive  absorbance 
spectrum  to  overlay  the  FTIR  band  shapes  and using the  same 
correction  shift  for  the VCD. 

Sample  spectra  obtained with each of the  techniques  for  the 
proteins  studied  have been presented in our  previous  papers 
(Pancoska et al., 1991; Pancoska & Keiderling, 1991; Gupta & 
Keiderling, 1992). Data  for  any  particular  proteins, or for  the 
entire  set, as were  used in this  study, all in the  SpectraCalc  for- 
mat  that was used as  input  for  the  computations or in ASCII 
tables,  are  available in digital  form  from  the  authors  and in 
graphical  form  as  Figures Sl-S21 in the  Electronic  Appendix. 

Calculational methods 

The  description  of  the  principal  component  method of factor 
analysis  (Pancoska et al., 1979; Malinowski & Howery, 1980) 
as  applied  to  the  decomposition  of  the  amide I' and  amide I1 
VCD  spectra  into a linear  combination  of  orthogonal subspec- 
tra  can be found in our previous  paper  (Pancoska  et  al., 1991). 
Here we summarize  only  those  aspects  that  are new or  charac- 
teristic  for  this  study. 

The first steps  of  the  calculation were performed  separately 
for  amide I' and  amide I1 VCD  and  for  the  ECD  spectra.  The 
matrix  of  the  correlation coefficients, which are measules  of the 
spectral similarity, was calculated  numerically by a  spline func- 
tion  integration  algorithm  as  the  overlap  integrals of all pairs 
of  spectra  in  the set being analyzed  (VCD I', 11, or  ECD).  The 
resulting  matrix was diagonalized using the  TQL  and  TRED2 
algorithms  (Press, 1992). The  matrix  of  the  resulting eigenvec- 
tors  transforms  the  experimental  data  matrix  into a set of or- 
thogonal  subspectra.  The  transpose  of  the eigenvector matrix 
represents  the set of  coefficients necessary for  regeneration of 
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any  experimental  spectrum in the  subspectral  basis. By order- 
ing the  subspectra  according  to  their  associated  decreasing ei- 
genvalue,  the  most  significant  subspectra  can  be  identified, a 
linear  combination  of which can  be used to reproduce  the ex- 
perimental  spectra to  a level commensurate  with  their experi- 
mental reliability. This provides a simplification  represented by: 

where [e,] is a matrix  whose  columns  are all the n equidistantly 
digitized experimental  spectra being analyzed, [@;I is a matrix 
whose columns  are  the p significant subspectra  that  are retained 
for  the analysis, and [C,] is an n x p matrix  of coefficients for 
the  contribution  of  the  ith  subspectrum  to  thejth  experimen- 
tal protein spectrum.  Thus, each  continuously varying spectrum 
is transformed  into a compact  numerical  form  representable  as 
a vector of a few ( p )  coefficients.  Although p theoretically could 
be taken  to be as  large  as n,  this number is considerably  reduced 
by focusing  only on  the  significant  subspectra. For each spec- 
tral  data  set, p was  quantitatively  determined to be large enough 
so that  at least 98% of the  variance in the  data set was included 
in the  spectra, e,, as  reconstructed  from  the p subspectra, 
On a qualitative  basis, the residuals due  to  subspectra i > p yield 
no identifiable  band  shapes  (other  than noise). 

The  structural  data used for  correlation  to  the  spectra  are de- 
rived from X-ray crystal  structures  as found in  the PDB.  Atomic 
coordinates  from  PDB files were input  into  the KS DSSP  pro- 
gram  (Kabsch & Sander, 1983; Bitto, 1993) to  obtain  the  struc- 
tural  parameters, FC, values, used for  spectral  correlation. 
From  the  standard  output of this  program,  a-helical  and 3,0- 
helical structures were grouped  into  one class, denoted  as heli- 
cal (H), and  all  0-sheet  structures  form a  single  class (S). For 
testing the  prediction capability for  minor  components, we fur- 
ther selected bends (B, no  hydrogen  bond, Ca-Ca dihedral  an- 
gle <74”)  and  turns  (T,  roughly helical dihedral angles for  <4 
amino  acids). All other  amino  acid residues  were  assigned to a 
class we prefer  to  refer  to  as  “other” (C) because  it  lacks any 
common  descriptor.  For FC values corresponding  to  the Levitt 
and  Greer (1977) definition we wrote  our  own  program follow- 
ing their algorithm and chose the categories: helix (H), sheet (S), 
left-turn  (LT),  right-turn  (RT),  and  “other” (C). It  should be 
noted  that C is simply what is left over  and is not equivalent  to 
a “random coil” though it may  have  spectral  characteristics in 
common with that  structure  (Yasui & Keiderling,  1986; Dukor 
& Keiderling, 1991; Baumruk et al., 1994). 

For  the regression tests, the p ,  coefficients obtained  from  the 
amide I’ VCD analysis,  thep,,  ones  from  the  amide 11, and  the 
pE coefficients  from  the  ECD  spectra were  used first  sepa- 
rately, to  allow comparison of the  fits with each  data  set,  and 
then  combined  into  sets of ( p ,  + p,,) and ( p ,  + p m  + p E )  co- 
efficient  vectors for  combined analyses. Optimal restricted mul- 
tiple  linear  regression relationships  at each level were sought by 
testing all possible combinations of k  spectral  coefficients, where 
k = 1, 2, . . . , p ,  for  the  significance of the regression obtained 
for  each of the FC, values,  where {represents  a-helix,  0-sheet, 
bend,  turn,  and  “other”  crystallographic  secondary  structures. 
To our knowledge,  restricting  the regression to  a selection  of k 
coefficients  and  then testing the  dependence  of  the  quality of 
both  the regression and  prediction (see below) for all  possible 
combinations of coefficients  from  the set of p possibilities is 
not a method used before in spectral-structure  analyses. It is the 

key to  our gaining  insight  into  the sensitivity of the  method  to 
specific spectral  components. For the  purposes of  this compar- 
ative  study,  the  standard  multiple  correlation  coefficient rr is 
calculated  (Sharaf  et  al., 1986) and used to  rank  these  sets of 
regressions according  to  the  goodness of fit. For each set of co- 
efficients  of a given size, k,  the  combination providing the high- 
est rr is retained  and used for  further  calculations. 

Although  such a fitting exercise of  known  structural  data is 
definitely not our ultimate  goal in this  study, it  is  a  necessary 
first  step in the development of a  prediction algorithm.  As  such, 
it was  required  that we systematically test  the  statistical signifi- 
cance of the  corresponding multiple  linear regression model. We 
have  calculated  the  2-value  for a given  regression as 

Z = [ ( n  - k - I)/k]. [ r r 2 / ( l  - r r ’ ) ] ,  

where n is the  number  of  proteins in the  training set and k is 
the  number of subspectral coefficients considered in the regres- 
sion.  This value  was then  compared  with  the  critical values  of 
the  corresponding  F-distribution  (Sharaf et al., 1986) to  deter- 
mine significance at  the  99%  confidence level, unless stated  dif- 
ferently.  To get a feel for which coefficients  had  the  major 
impact  on  the  fit, we plotted  the rr values  vs. k.  Qualitatively, 
we  view the  most significant  regression as  that  one  containing 
the largest combination of coefficients, which still leads to a sub- 
stantial  improvement in rr. Such  a restricted regression has more 
physical consequence  as we  will demonstrate in our  prediction 
tests.  These results will be denoted  asfit  results,  as  they  dem- 
onstrate  the  capability of spectra  as  encoded  into C, values to 
be transformed  into  the FC values of  each  secondary  structure 

By contrast,  to test the predictive capability of the derived re- 
lationships between spectral  features  into  the FC values, we re- 
peated  the  above  procedures 23 times,  each  time  eliminating 
from  the  training set 1 of  the 23 proteins having  a known  struc- 
ture.  The  k-coefficient regression equations  of highest correla- 
tion  coefficient, rr, for k = 1 top for  each  reduced, 22-member 
training set were then used to predict the FC values for  the  pro- 
tein  left out.  After  each cycle the  predicted FC values are  com- 
pared  to  the  actual values  in Table 1, and  the  average  deviation 
is used to  characterize  the prediction capability of our method 
depending  on  the  data set being t e ~ t e d . ~  

type. 

Error parameters 

We use the  following  error  characteristics  of  the fit and predic- 
tion to  compare spectrally determined, FC;, and X-ray derived, 
FC;, secondary  structure  parameters  for  protein i and  struc- 
tural  type j :  

1. Average  error, 6; ( i  = 1 to 23), of FC values of individual 
proteins  over n, ( n ,  = 5 ,  normally)  types  of  secondary  struc- 
tures  considered in the analysis: 

”_ 

To give some  idea of the  scope of this  process, for the  combined 
amide I ’  + 11 and ECD analysis,  this  required 470,810 regression  cal- 
culations,  resulting  from  the  same  procedure of 94,162 determinations, 
being  independently  repeated for all five secondary  structure  types  con- 
sidered  here. 
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2. Standard  deviation  of FC values for given type  of  second- 
ary  structure, calculated from deviations of spectral from X-ray 
FC values for  all N (normally = 23) proteins  from  the  training 
set: 

uj = [ [ (FC; - - 1))’”. (4) 
I 

It  should be noted  that this formula is used to  evaluate  standard 
deviation  for f i t  as well as  for prediction. 

3. Relative  standard  deviation  in  the  percentage  of  the dy- 
namic range  of FC values for  the respective secondary  structure 
type: 

4. We also  monitored  the  non-negativity  of  the  predicted FC 
values and  the  difference  of  their  sum  from 100%. Neverthe- 
less, these “natura1”conditions were not directly included  in our 
calculations. Therefore, they  act as  independent measures  of the 
reliability of  the  resultant regression equations much as used in 
other spectral-structure  fitting  routines (Manavalan & Johnson, 
1987). Due  to  the  nature  of our algorithm,  the  sum of predicted 
FC values is composed  of five fully independent values  because 
the  individual  secondary  structure  types  are  treated  separately 
with  regard  to  development of a regression relation  and  testing 
of  its  statistical  significance. 

We have  shown recently that  the FC values for  globular  pro- 
teins  as  obtained  from  the  PDB  are  not  mutually  independent 
(Pancoska  et  al., 1992). This  fact  can  cause  substantial  confu- 
sion in the  interpretation  of  the reliability of  spectral-structure 
correlations  and,  to our knowledge, was not  considered explic- 
itly  in any  previous  spectral-structure  analyses.  Therefore,  for 
comparative  purposes, we have  also  calculated the predicted val- 
ues for  the  nonhelical  secondary  structure  types, FC;, as  de- 
rived from  the  X-ray-based helix fractions  for  each  protein, i, 
using those previously  published  relationships that were derived 
from a neural  network  analysis  of a large set of  crystal  struc- 
ture  data  for  globular  proteins. 

Results 

Factor analysis results 

PC/FA  decompositions were done  independently  for  the  am- 
ide I’ and  amide I1 VCD  and  ECD  spectra  of  the 28 proteins, 
23 from our training set along with the 5 “unknowns.”  From  the 
criteria  described  above  and  by  comparison  of  reconstructed 
spectra  to  the  experimental  spectra, we retained six orthogonal 
components  for  both  the  amide I’ and  amide I1 VCD  spectral 
regions  and five for  the  ECD  spectra  to  reproduce  the  experi- 
mental  spectra. Six is the  same  number  of  significant  subspec- 
tra  found  in our previous  study  of  the  amide I’ VCD  for a 
smaller  number (20 total)  of  proteins  (Pancoska et al., 1991). 
The  ECD result is in agreement  both  with our previous  (Pan- 
coska & Keiderling, 1991) and  other  ECD  spectral  analyses 
(Hennessey & Johnson, 1981; van  Stokkum  et  al., 1990) using 
similar projection techniques. The significance of these numbers 

10 15 20 25 30 
Number of proteins  in  the  set 

Fig. 1. Relative  average  deviation  of  the  subspectral  coefficients for the 
amide 1’ VCD obtained with various  protein  sets  of  reduced size as  com- 
pared to those obtained for the full set of 28 proteins. 

of coefficients and their  effects on  the analyses will be addressed 
in the next section. 

The  band shapes of both  the  ECD  and VCD amide I’ subspec- 
tra  found in this  analysis  are  not significantly different  from 
those calculated on  the reduced protein set in our previous study, 
implying that  the  decomposition  method is relatively stable with 
respect to  the  data set. Actually, having such  behavior is depen- 
dent  on  the  subset of proteins reflecting the  same  distribution 
of protein  types  as in the whole  set. I f  a subset is biased toward 
one type, the  subspectra will be different, resulting in an  empha- 
sis of different  spectral  features in each. To test the  generality 
of our set, we subdivided  the 28 proteins  into  four  clusters  that 
gave rise to  similar amide I’ VCD  spectra  as  found using the 
Lance-Williams flexible cluster  analysis  algorithm  (Einsight 
package).  Then  four  subsets of protein  spectra  containing 12, 
16, 20, and 24 proteins were assembled that  contained examples 
from  each of the  clusters in a roughly  equal  proportion.  These 
were subjected to an  independent  factor  analysis  and  the  coef- 
ficients for each protein were compared  to  the results found with 
the entire set of 28 proteins.  A  steady drop in the difference from 
the  final  coefficients  for  the full set was found with the largest 
deviations,  as  might be expected,  for  the  fifth  and sixth coeffi- 
cients.  These  trends  for  the  amide I’ data  are  illustrated in Fig- 
ure 1 ,  where  relative  differences  are  plotted versus the  number 
of  proteins in the  set.  The  final  changes  from 24 to 28 proteins 
involve <5% modifications in the coefficients. These results give 
us confidence  that  addition  of  more  proteins  to  the set will not 
substantially change our results. Of  course,  addition of proteins 
to  the set that  do  not reflect the  distribution  of  protein  confor- 
mations we have  selected may  have  significant  effects.  To  ob- 
tain a “general”  set,  in  the  complete set of 28 proteins, we tried 
to include the  major types of  folds (Levitt & Chothia, 1976) and 
to overlap the proteins used as bases for  other, independent spec- 
tral  analyses. 

The subspectral band shapes obtained by the  PC/FA  method 
reflect the  most  common  elements  of  the 28 experimental spec- 
tra  and  their  most  significant  variances. Because the  subspec- 
tra  are  stable  with  shapes  reflecting  those  presented  earlier 
(Pancoska et al., 1991), they  are  provided  graphically  only in 
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Table 2. Standard deviations and correlation coefficients for regression fits 
of spectral coefficients to secondary structure types 
~" 

____" 

" 

0 

AI'  restr.d 9.9 
Fullb 9.7 

AI1  restr. 11.1 
Full 10.4 

ECD  restr. 6.2 
Full 5.9 

AI'+AII  restr. 7.5 
Full 7.1 

AI'+AII+ECD  restr. 4.0 
Full 3.1 

U r d  4.0 
~- ""_ " - - 

__ 
rr 

0.850 
0.858 

0.808 
0.835 

0.943 
0.949 

0.918 
0.970 

0.977 
0.993 

"~ 
" 

Sheet  Bend Turn 

U rr 

7.1  0.857 
6.8  0.866 

7.9  0.814 
7.6  0.832 

8.3  0.793 
8.0 0.812 

5.9  0.903 
5.5 0.967 

4.4  0.948 
3.9  0.976 

8.1 

"" 

0 rr 
"____ 

3.6  0.283 
3.4  0.399 

3.3  0.485 
3.1  0.585 

3.4  0.424 
3.2  0.508 

3.3 0.485 
2.6 0.626 

2.2 0.871 
2.1  0.946 

14.9 

~ 

0 
" 

3.7 
3.6 

3.4 
3.3 

3.5 
3.4 

2.6 
2.5 

2.3 
2.1 

11 .1  

-~ 
rr 

0.597 
0.618 

0.688 
0.699 

0.657 
0.662 

0.829 
0.862 

0.874 
0.923 

__ 

_____ 
Other 

~~ 

0 rr 

4.5  0.621 
4.3  0.670 

4.0  0.722 
3.7  0.771 

3.3  0.815 
3.2  0.823 

2.5 0.903 
1.7 0.941 

1.5 0.965 
1.4  0.972 

6.4 

a Best fit  parameters  for  the  restricted  regression  fit giving the  best  prediction (see Table 3 for  number  of  coefficients  used). 

'Fit  parameters  using  complete  sets of subspectral  coefficients,  i.e., 6 for  amide I '  and  amide 11, 5 for  ECD, 12 for  amide 

' Relative  standard  deviation  for  the  full  AI'+AII+ECD  calculation. 

AI', amide 1'; All,  amide 11. 

l ' + l l ,  and 17 for amide  I'+II+ECD  calculation. 

the  Electronic  Appendix as Figures S22-S24. Briefly, the  first 
amide 1' subspectrum is dominated by a band  at 1,627 cm" be- 
cause  proteins  with  that  feature  dominate  our  training  set,  and 
the second subspectrum  has  major oppositely signed features  at 
1,659  and 1,641 cm-I,  representing  the  most  common  change 
from  the average! In the  amide 11, the first subspectrum  has  an 
intense  band  at 1,520 cm", whereas  the  second  subspectrum 
peaks  at 1,560 cm" . Linear combinations of  these two  encom- 
pass  most  of the spectral  change seen in the  amide 11 region; the 
remaining  four  are  much less significant  (Gupta & Keiderling, 
1992; Baumruk & Keiderling, 1993). The ECD decompositions 
are also  virtually the  same  as  for  our previous report  (Pancoska 
& Keiderling, 1991) with  the  first  subspectrum resembling the 
dominant  contribution  to  the  overall ECD, which is oppositely 
signed at 209 nm  and 190 nm. 

Correlation of spectra and structure 
via regression equations 

Table 2 summarizes  the  results of the  restricted  fits  and  those 
with  the  maximum  number of coefficients  (total  spectral vari- 
ation, labeled "full") in terms of the  standard deviations and re- 
gression coefficients  obtained for the  amide I', 11, ECD, l '+Il, 
and I'+II+ECD spectra, respectively. Errors are listed in the  ta- 
ble in terms of the  standard  deviations  on  the  actual FC, val- 
ues for each secondary  structure  subtype, {, as determined  from 
the KS analysis (Kabsch & Sander, 1983). The relative standard 
deviation,  as  determined  with  Equation 5, is also listed as  the 

Note  that  the  absolute sign of the  subspectrum is not  important,  be- 
cause  its  contributions  to  the  reconstruction of the  experimental  spec- 
tra  are  controlled by the  sign  as well as  magnitude  of  the  linear 
coefficients, C,,. 

final  entry  of  the  table,  corresponding  to  the  maximum  num- 
ber of coefficients. The relative standard deviations  enable more 
facile comparison of the  error  for  different  structural  param- 
eters, which are  determined  completely  independently in our 
method.  As detailed  in Supplementary  Tables  Sla-Sle (Elec- 
tronic  Appendix),  the regressions stop  showing  large  improve- 
ments  after  only a few  coefficients  are  considered.  This is 
illustrated  graphically by plotting rr versus k for  the helix and 
sheet  component in Figure 2. All fits  improve with increasing 
numbers of coefficients  used,  as  they  must,  but  the  degree of 
improvement with added coefficients is generally  small beyond 
the first few. For those regressions that meet the 99% confidence 
level on  the F test, we have  taken  the  break in the rise of corre- 
lation  coefficient  as  indicative  of  there being no  significant  im- 
provement  in  the regression with addition of more coefficients. 
In  general, these break  points  are  not precise and typically en- 
compass  the set found (see next section) to  be the best predict- 
ing.  Thus, in Table 2 we have used that "best  predicting" set 
(next section)  as  an  example of the  restricted regression set. 
These  are listed  in Table 2 as  "restricted regression" u and rr 
values.  It is clear from  comparing  these results that  only a few 
coefficients led to  almost  the  entire  fit.  That  means  that  the  ap- 
parent regression improvements  for  the  fits  that use the  total 
variance of the  spectral  data set are  not physically meaningful. 
The  fits  for  the VCD coefficients  for  these 23 proteins were de- 
graded in  precision as  compared  to  our earlier  results  with  only 
13 "known"  proteins,  but  the  corresponding ECD change be- 
tween  these protein  data  sets  was  much  smaller.  Furthermore 
the dependence on only  a few coefficients is also  consistent with 
our earlier  analysis of  the smaller set of  protein  data  (Pancoska 
et al., 1991). 

In  general we found  two classes of fit. Helix and sheet gave 
statistically  significant regressions to all data sets,  whereas bend 
and  turn gave  generally poorer regressions that were judged  to 
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t AI & All + ECD + AI+AII + all 

A 
0.7 

0 2 4 6 8 1 0 1 2  
Number of coefficients 

B 
0.7 1 I 

0 2 4 6 8 1 0 1 2  
Number of coefficients 

Fig. 2.  Effect  on  standard  deviation, rr, of  increasing  the  number, k ,  
of subspectral  coefficients in the  restricted  regression  tests  for  (A)  he- 
lix and (B) sheet fractions.  Plot  for  the  combined  amide I’+II VCD and 
ECD data  sets was truncated  at 12 for simplicity.  Final value is indicated 
by the  dashed  extension of the  curve. 

be  statistically  unreliable  for  the  turn  component, except for 
the  combined  amide I’+II VCD  plus ECD  computation.  The 
“other”  component was  in some cases  fit well and in others less 
reliably. The regression coefficients  for  the  a-helix  and &sheet 
fits are  quite high (>0.84 in most cases,  except the  amide I1 and 
the  ECD 0-sheet), the  standout being the  ECD correlation to he- 
lix content (rr > 0.94). Although  this  numerically  confirms  the 
well-appreciated  high  sensitivity of  ECD  to  the helical fraction, 
it also indicates that such  a  dependence is based on  the first sub- 
spectrum,  as rr does  not  improve  much  for  added  ECD  coeffi- 
cients.  The  same  flatness with k ,  but a much  worse rr value, is 
found  for  the  ECD  correlation  to @-sheet. In  contrast  to  ECD, 
the  amide 1’ VCD regression coefficients are virtually  equivalent 
for helix and  sheet  and achieve their  stable values by improv- 
ing  significantly with addition of at least a second  coefficient. 
This reflects the  inherently  different sensitivity of these spectral 
methods to  structural  variations in  peptides (and,  consequently, 
proteins)  (Keiderling et al., 1989; Freedman et al., 1995). 

When  spectral results from these three  methods were used in- 
dependently,  the  amide I’ VCD  coefficients typically gave  more 

precise fits than did the  amide I1 VCD coefficients, but  the  ECD, 
other  than  for @-sheet, gave even higher rr values. This loss of 
precision may relate to  amide I1 VCD spectra having  lower S/N 
ratios  and less band  shape  variability  over  the  training set than 
d o  the  amide I’ VCD,  whereas  the  ECD  have higher S/N than 
either  VCD  spectral  type.  However,  fits  based on the  amide I’ 
and I1 VCD  combined  are  generally  better  than  fits  to  coeffi- 
cients  from  the  individual  regions,  including  ECD, with the ex- 
ception of the  a-helical  component.  In  the  amide I’+II fits,  the 
best restricted  regressions contained coefficients from  both  am- 
ide I’ and  amide I1 sets. This  pattern is evident in all  fits  for  the 
I’+II data set except the single coefficient  ones.  In  the  case  of 
combining VCD and  ECD  data, again the regressions improved 
for all structural  types.  The best  selected  regressions  generally 
included  coefficients  from  both  ECD  and VCD. 

We re-emphasize  here  that our calculations were complete, 
which means  that by testing all possible combinations  of  coef- 
ficients  in this composite  case we necessarily include  sets  of  co- 
efficients from only one individual  spectral type. It is important 
to know  that  the specific subspectral  coefficients used  in the 
multiparameter fit that  has  the best rr value are  not  as  impor- 
tant  as  the  trends  found  upon  addition of coefficients.  Deter- 
mining which coefficients are sampled for  the collection of  better 
fits leads to a pattern  establishing  the  structural  relationship  to 
spectra. For a  given number  of  coefficients, k ,  a number  of re- 
gressions based on  different  combinations  of  coefficients were 
found  to have virtually equal rr values. These combinations usu- 
ally had in common  that  particular coefficient found  to be most 
important when only  one  coefficient was  used to  determine a 
fit.  The  form of  these  restricted  regressions apparently  impacts 
what we find below to give the best prediction  of  structure  for 
proteins left out of the regression. The restricted  regression  fits 
for  a-helix using the  amide 1’ VCD  data set  all depend on the 
coefficient of the  second  subspectrum  and, using ECD,  on  the 
first  subspectrum.  The  same  pattern is seen for 0-sheet. This re- 
liance of  two (or more)  structural types on  one  subspectral  con- 
tribution implies an interdependence. We have addressed  this 
issue in detail  separately  (Pancoska et al., 1992, 1995) and will 
return  to it  in the  Discussion. 

Although  the  absolute  errors  for  the  structural  parameters 
other  than helix and sheet appear  to be small, when one  accounts 
for  the  dynamic  range, Le., using are,, they are  demonstrated  to 
be much less well determined.  In  particular, except for  compu- 
tations involving all three  data sets, there was no statistically sig- 
nificant  correlation  found  with  the  turn  fraction  to even below 
the  95%  confidence level,  in agreement with our previously  re- 
ported  VCD-based  observation  (Pancoska et al., 1991). Simi- 
larly,  considering  just  the  amide I’ VCD  data,  for  the bend and 
“other”  secondary  structure types there is only  one  equation  for 
each structure (one-coefficient and two-coefficient, respectively), 
which surpasses  the  99%  confidence level. Both  have  remark- 
ably  smaller  correlation  coefficients  than  found  for helix and 
sheet structures. However for  the  amide 11, the  “other”  fraction 
is determined  on a level of confidence  comparable  to  those 
found  for regressions to helix and  sheet  fractions.  When both 
amide I’ and I1 are  combined,  the bend error  drops only slightly, 
but  the  “other”  error is almost  halved, clearly showing  the  ef- 
fect of  adding  the  amide I1 sensitivities to the  amide I’ set. Add- 
ing the  ECD  data  to  the  VCD  data  again  marginally  improves 
all the FC rr values as  compared  to  either  the  combined  VCD 
or  the  ECD  results. 
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Table 3 .  Standard deviations for prediction  of KS FC values for one protein left out of the  training set 
" 

Helix  Sheet Turn Bend  Other 
________ 

____- "" ~- "" ""_ 
u urn/ NO. u ure, NO. u urr/ NO. u urP, NO. u urr, NO. 

-~ ""_ - 

AI'  restr? 11.6 15.1 2  8.2 17.3 3 4.0 28.8 1 4.3 23.3 2 5.2 23.8  2 
Fullb 13.9 18.0 10.2 21.3 5.1 36.2 5.3 28.7 6.4 29.4 

A11 restr. 13.1 16.9 2  9.3 19.4 3  3.8 26.8 2  3.8 20.5 2  4.7 21.6  3 
Full 15.9 20.6 10.8 22.6 5.3 37.9 4.3 23.3 6.2 28.4 

ECD  restr. 6.7 8.7 1 9.5 19.9 I 3.8 26.9 1 3.9 20.8 1 3.7 17.1 2 
Full 8.5 11.0 12.5 26.3 4.7 33.5 5.0 27.2 4.3 19.6 

Al'+AII  restr. 10.1 13.1 6 7.4 15.5 4 3.8 26.8 2 3.3 17.9 5 3.3 15.3 4 
Full 19.0 24.6 17.8 37.2 8.6 61.6 6.3 33.9 4.1 21.6 

AI'+AII+ECD 5.6 7.3 5  6.9 14.4 6 2.6 18.7 7  3.7 19.8 8 2.8 12.6  6 
Full 15.9 20.6 21.7 45.4 8.6 61.7 14.3 77.2 9.2 42.0 

______ - """ ~ """ ~~~ ~"___"_______ "" ~~~-~ "" - - 

a Standard  deviations,  relative  standard  deviations,  and  the  number of subspectra for the  best  restricted  regression  predic- 

Standard  deviations  and  relative  standard  deviations  for  the  regression  predictions  using  complete  sets  of  subspectral  co- 
tion. AI', amide 1';  A11, amide 11. 

efficients,  as in Table 2. 

Use of regression relations for  prediction of structure data  sets, even  when combined. Similarly the  VCD  data,  par- 

The  complete  factor  analyses were  next recalculated  for 23 dif- 
ferent  protein  data sets, each encompassing  spectra for 22 train- 
ing set proteins,  one  systematically  omitted.  To  make  the 
computations  manageable,  the regression forms with the  high- 
est rr value for a given number of  spectral  coefficients were then 
used for testing predictions.' This series of regression types was 
then used repeatedly to  predict  the  structure  of  the 23 proteins 
left out,  and  the  results  of  those  23  predictions were compared 
to  the  X-ray values. This,  of  course, was done  for  each regres- 
sion  model k ,  k = I top, for  each  data  type: I', 11, ECD, I'+II, 
and  I'+II+ECD. As should  be  clear,  an  enormous  amount  of 
numbers  resulted  requiring  comparison.  Tables S2a-S2e in the 
Electronic  Appendix  encompass  some of these  data, which are 
then  summarized in Table 3 in terms of the  standard  and rela- 
tive deviations  of  the best predictions  of  the 23 protein  second- 
ary  structures  from  actual X-ray  values (KS).  For  comparison, 
prediction  errors  for  the  full  data  sets  are  also  included in Ta- 
ble 3. 

Overall in comparing Tables  2 and  3,  one  can see that predic- 
tion  standard  deviations  are  higher  than  for  the  fits.  Again we 
see two classes of prediction: helix and sheet as  compared  to  the 
rest.  In  the  ECD  and  both  combined  calculations,  the  "other" 
prediction is of the  same quality as  that of the sheet. This is best 
seen by comparing relative standard deviations. As might be ex- 
pected from  the  quality of the fits obtained  above,  the  ECD pre- 
diction of helix was  much  better  than  that for any  of  the  VCD 

ticularly  the  amide I '  and  the I'+II combination,  did a better 
job predicting the sheet content  than was possible with the  ECD 
data.  Thus,  the  trends seen in the regression are  again evident 
here  for  prediction. 

From  another point of view, our prediction results can be seen 
to be fully compatible with the  independent criteria that  the pre- 
dicted FC values should be >O and  that  they  should  sum  to 
100%. For  any given analysis based on a specific set of  spectral 
data,  at  most  one  predicted  coefficient was found  to  be nega- 
tive.  Averages  of the  summed FC values for  each  protein were 
found  to be 100,99.9,  and 99.9% for  the  amide I', amide 11, and 
ECD-based  predictions, with standard  deviations  of  2.2, 4.5, 
and  1.9%, respectively. In the combined  calculations these num- 
bers were even better. 

As shown  in  Figure  3, by plotting  the  prediction  error  as a 
function  of  the  number of coefficients used to  predict helix, 
sheet,  and  "other"  fractions  from  the  different  data  sets, it is 
clear that these errors do  not in general  decrease  as  more  coef- 
ficients  are  added  to  the  scheme  but in fact go through a mini- 
mum  and  then increase,  in some cases to large prediction errors. 
An  optimal  predictive  capability is generally found  with  just a 
few parameters  for  all  the  data sets. The  most  extreme case is 
for  ECD  where  just one parameter yields the best prediction re- 
lationship  for  everything  but  "other."  This  demonstration  that 
the regression with the  minimal predictive error  depends  on  just 
a few parameters directly parallels  our experience  in determin- 
ing improvement  for regression fits  as  noted  above.  That was 
exactly our  original  reasoning  for  using a restricted  regression 

~- "_ 
'To  confirm  that  using  only  the  best  regression  for  prediction  test- 

analysis for VCD and  ECD  siectra  (Pancoska et al., 1991; Pan- 

ing  causes  no  significant  error, we selected the 6-10 best  regressions of coska 8~ Keiderling, 1991). we then that such an approach 
each  type  for  the  amide 1' set and  computed  the  prediction  quality  for would  enhance  the reliability Of prediction,  and  the results il- 
each.  In  all  cases,  the  regression of highest rr value  gave  the  best  pre- lustrated in Figure 3 bear  out  that  hypothesis.  Thus,  the  steady, 

era1 combinations  with  near  equivalent  predictive  ability,  but  these  all 
diction. For multiple  coefficient-based  predictions,  there were Often sev- but  not significant,  reduction  in  noted above for the f i t  re- 

had  common  elements. For example all the best  amide I' VCD  predic- gressions as  obtained with  increasing numbers of spectral  coef- 
tors of the helix fraction  depended  on  the  coefficient of the  second ficients (Fig. 2) is not realizable for prediction (Fig. 3). This  has 
subspectrum. ramifications on  the real  predictive  ability of many  other  meth- 
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Fig. 3. Standard deviations for  the best predictions of (A) helix, (B) 
sheet, and (C) “other”secondary structure  components with the  amide 
I’, I1  VCD and ECD, and combined VCD and  VCD+ECD  data sets as 
a function of increasing the number of spectral coefficients (symbols as 
in Fig. 2). 

ods  now used to  interpret  spectra  data  in  terms  of  structure  as 
discussed in  the next section. 

For ECD,  the  optimal  function  for  prediction  of helix and 
sheet has  one coefficient, that  of  the first subspectrum, bend also 
has  just  one,  whereas  for  “other”  it  has  just  two,  and  turn  pre- 
dictions  from  just  ECD  are  unreliable.  Incorporation  of  any 
other  subspectral  coefficient  leads  to  an  increase  of  the  predic- 
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tion  error  for  ECD  analysis. For example,  prediction  of helix 
with a one-coefficient function  has 1.3 times  smaller error  than 
by using all five coefficients  such  as  would  be  implemented in 
a conventional  full  transformation  of  the  spectral  data  into 
structure. 

For the  VCD  from  the  amide I’ and  amide I1 regions  analyzed 
separately,  two-coefficient  equations  are  optimal  in  prediction 
of helix, and  three-coefficient  ones  for  prediction of sheet FC 
values. The rest of the  components  are  not  predicted nearly so 
well but  also  optimize with 2-3 coefficients.  Combination  of 
amide I’ and  amide I1 information in all cases improves the pre- 
diction  performance  of  the  VCD  analyses.  The  optimal  com- 
bined regressions always  involve  coefficients from  both regions, 
paralleling  the  fit  results,  and in most cases  involve only a few 
coefficients. The  improvement  obtained by combining the spec- 
tra is up  to a factor  of 1.4 in standard  deviation  reduction. For 
all  structural  components  but helix, the  combined  VCD  analy- 
ses provide  better  prediction  than  does  the  ECD  analysis. For 
helix, the  prediction  ability  of  the  optimal (six-coefficient) am- 
ide I ’+II  equation still does  not exceed that of the single coef- 
ficient ECD  prediction, being  a factor of 1.5 worse  in terms  of 
error.  The  improvement  factor  of  the  combined  VCD  predic- 
tion  over  that  of  ECD is less, being  largest for  sheet,  at 1.28, 
and  smaller yet for  “other,”  at 1.12, and  for  bend, 1.16. 

Another  dimension of the  performance of various regression 
results can be discovered by inspection of the  individual  errors 
for prediction of FC values for specific proteins using different 
data sets (see Table 4). There is no  significant  overall  correla- 
tion between the  errors  found in prediction with one set of data 
and  those with another, but some  proteins  are  poorly predicted 
with several sets and  some  are relatively good. For example,  con- 
canavalin A has a large helix error using VCD  and  ECD  data 
sets as well as with the  combined  set,  though it improved  there, 
but its sheet error is relatively low for  the  amide I1 and combined 
sets. Hemoglobin is predicted well with  both techniques, but  the 
myoglobin helix content is poorly  predicted in the VCD calcu- 
lations while having  only an average error with ECD. However, 
for  the sheet content  the  myoglobin  situation is reversed,  with 
VCD  doing a much  better job  than  ECD.  The  spectra  cannot 
seem to encompass myoglobin’s very high degree of helicity. Cy- 
tochrome c and  superoxide  dismutase  have  anomalously high 
errors with ECD but are relatively well predicted with VCD. On 
combining sets,  they both yield reasonable  errors.  On  the  other 
end  of  the  scale, several proteins,  for  example,  alcohol  de- 
hydrogenase,  glutathione  reductase,  and  trypsin,  are relatively 
low in  average  error  for  most  of  the  data sets.  Several proteins 
are very  well predicted using the combined data sets, which com- 
pensate  for  the  limitations  of  each  CD  type  as is evident by the 
much lower errors in the  fourth  column  under  each  secondary 
structural  type. 

Despite  the  large  number  of possible prediction  algorithms 
tested,  there  are  more possible. To determine if our selection of 
the best  regression for  any given number of parameters biased 
our prediction  results,  for  the  amide I’ we tested the next  best 
regressions  for  each k where  the rr values of  the  fit were com- 
parable  for  prediction  error.  This  proved  to be very enlighten- 
ing  in terms  of  finding  the  internal  interdependencies  of our 
prediction  algorithms. For one  parameter,  the helix and  sheet 
fraction were  best predicted with the  coefficient  of  the  second 
amide I’ VCD  subspectrum,  and  only  marginally  as well by the 
first  subspectral  coefficient. The  others were significantly worse. 
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Table 4. Errors in predicled FC values of individual proteins for  helix, sheet, and "other".for best predicting models 
~~ - _______ __"___ "____________ - -~"""""_I_" 

"" 

Helix 

Protein  name  Al'd  Alla  ECD Comb." 
~ ~ """" ~ """_ 
a-Chymotrypsinogen A 
Alcohol  dehydrogenase 
a-Chymotrypsin  type I I  
Concanavalin A 
Carbonic  anhydrase 
Cytochrome c 
Tosyl  elastase 
Glutathione  reductase 
Hemoglobin 
X-Immunoglobulin 
Lactate  dehydrogenase 
Lysozyme 
Myoglobin 
Papain 
Rhodanese 
Ribonuclease  A 
Ribonuclease S 
Subtilisin  BPN' 
Superoxide  dismutase 
Thermolysin 
Triose  phosphate  isomerase 
Trypsin  inhibitor 
Trypsin 

10.9 8.8 1.5 
0.1 2.3 1.4 
5.9 12.7 1.3 

16.9 12.7 13.4 
0.9 6.9 8.1 
8.3 5.6 11.8 

15.3 3.0 1.5 
5.1 2.2 1.6 
0.4 3.5 1.1 

12.5 2.3 3.5 
19.7 12.8 4.2 
11.9 3.3 4.2 
28.6 29.1 5.1 
7.9 5.1 0.9 

11.7 1.3 3.6 
5.3 1.3 2.0 

13.2 7.3 2.4 
4.0 19.4 6.7 
4.3 19.7 17.3 
4.0 14.2 7.2 

12.6 18.2 1.2 
6.5 23.2 9.4 
7.1 15.5 1.0 

2.0 
4.1 
3.7 
7.4 
3.2 
0.6 
2.3 
0.6 
4.2 
1.6 
6.3 
0.2 
3.8 
2.0 
2.4 
I .o 
1.8 
2.9 
6.7 
9.2 
4. I 
1.6 
2.9 
~- 
" . 

Sheet 

AI' AI1 ECD  Comb 
"- - - - - 
- 

0.6 3.8 3.4 
2.9 2.0 3.7 
6.5 1.9 1.6 

12.2 3.1 10.3 
1.8 5.5 4.8 
0.1 5.9 20.3 

14.9 3.5 1.5 
5.4 2.5 3.0 
5.0 13.4 0.9 

14.7 15.5 14.2 
9.1 6.6 2.5 

14.7 4.8 10.1 
2.9 7.9 19.0 
2.7 15.8 8.0 

16.5 9.4 7 . 8  
4.9 11.6 10.6 
0.1 12.9 11.3 
8.9 9.0 6.7 
1.2 13.4 11.7 
6.2 3.0 7.4 
2.1 7.4 8.0 
6.2 23.4 7.7 
4.8 9.5 0.4 

1.8 
5.4 
2.9 
3.4 
0.1 
2.4 
7.2 
0.9 
I .7 
8.8 
0.2 
0.8 
8.2 
4.9 
8.5 
2.6 
1.8 
2.8 
5 .o 
3 .O 
2.6 
2.1 
I .9 

" 

Other  Averagesb 
"""" ~ 

AI'  AI1 ECD  Comb 
- 

1.7 1 . 1  2.0 
1.8 0.3 2.1 
0.4 5.9 3.5 
6.9  2.5  0.9 
1.4 3.7  0.2 
9.3 17.0 6.7 
1.8 0.5 0.2 
2.5  3.2  0.4 

11 .1  5.5 5.6 
2.4  5.3  5.6 
1.9 9.4 5.3 
6.6  7.7  3.1 

10.9  7.6 1.2 
6.2 6.2 0.4 
1.2 4.9 8.8 
1.2 4.5 5.4 
0.8  3.0  1.2 
0.7 4.2 0.1 
1.5 0.6 2.3 
5.7 4.8 2.1 
0.8  0.3  2.4 
1.1 2.6  0.3 
3.4  1.2  4.2 

~" 

2.8 
1.1 
2.8 
2.7 
1.9 
1 . 3  
0.8 
3.7 
2.3 
1.5 
3.5 
0.4 
0.2 
0.1 
5.6 
4.7 
2.3 
I .8 
2.4 
2.2 
0.4 
2.2 
0.4 

4.4 4.6 2.3 
1.6 1.5 2.4 
4.3 6.8 2.1 

12.0 6.1 8.2 
1.4 5.4 4.4 
5.9 9.5 12.9 

10.7 2.3 1 . 1  
4.3 2.6 1.7 
5.5 7.5 2.5 
9.9 7.7 7.8 

12.2 9.6 4.0 
11.1 5.3 5.8 
14.1 14.9 8.4 
5.6 9.0 3.1 
9.8 7.2 6.7 
3.8 5.8 6.0 
4.7 1.7 4.9 
4.5 10.9 4.5 
2.3 11.2 10.4 
5.3 7.3 5.6 
5.2 8.6 3.9 
4.6 16.4 5.8 
5.1 8.7 1.9 

2.2 
3.5 
3.1 
4.5 
1.7 
1.4 
3.4 
1.7 
2.7 
4.0 
3.3 
0.5 
4.1 
2.3 
5.5 
2.8 
2.0 
2.5 
4.7 
4.8 
2.4 
2.0 
I .7 

AI', amide I ;  All,  amide 11; Comb.,  combined  amide l', amide 11, and  ECD  data sets. 
'Average  error  calculated  as  the  arithmetic  mean of the  helix,  sheet, and  "other"  prediction  errors listed here. 

For two  coefficients  the five best combinations all  involved the 
coefficient of  the second subspectrum, which was  the dominant 
single predictor.  The  combination of two  coefficients  that  had 
the best prediction  ability  for  the  proteins successively left out 
in fact  turned  out  to  be  that with the highest  regression coeffi- 
cient for the  entire  set.  This  pattern  was  maintained  for  predic- 
tions with other  sets of multiple  coefficients  to a level where 
predictions  based  on  another set of  coefficients were either in- 
significantly  different  from  that with the best  regression coef- 
ficient or were  definitely  worse. None were  significantly better. 
Thus, our method  of selecting out  the regression with  the best 
rr value is justified by example. The  only caveat is that  although 
the  major  contributors  to  the  predictions,  as  identified  above, 
are  indeed  significant,  one  should  not  put excessive weight on 
specifically  which coefficients  are used as  minor  contributors in 
the  multiple  coefficient-based  predictions. 

Discussion 

Fits and predictions 

We have  demonstrated  that  the  amide 1' and I1 VCD  as well as 
the  ECD  spectra  can  be  decomposed  into a  series of subspectra 
and  coefficients  and  that it is possible to develop a correlation 
between these  spectral coefficients and secondary  structure. Fur- 
thermore,  the  amide I1 correlation is determined to  be less sig- 
nificant  than  the  amide I' as  might  have been predicted  from 
qualitative  observation of the  reduced  variance of the  amide I1 
VCD  band  shape  with  structural  change  (Gupta & Keiderling, 

1992; Baumruk & Keiderling, 1993). Combining  the  components 
of  the  two  vibrational  transitions,  amide ['+I[, did  improve  the 
VCD  correlation with structure, much as was seen previously for 
FTIR  spectral  analyses  (Dousseau & Pezolet, 1990; Lee et ai., 
1990; Pribic et al., 1993), but aside from  the "other" component, 
the  change was not  dramatic.  On  the  other  hand, a dramatic in- 
crease  in the  quality  of  the fit was obtained by coupling  the two 
VCD  spectra with the  ECD results  in a combined  analysis. All 
structural types show  an  improvement in  fit with this more flex- 
ible  approach,  and even the  turn  fraction is fit  to a statistically 
significant level. In  terms  of  the  dynamic  range,  errors  drop  to 
10% or below  in most  cases.  Each  type of spectrum is shown 
to have its own  strengths  and weaknesses for  determining  av- 
erage secondary  structure SO that their combination gives the fit- 
ting  routine  the  most flexibility. Clearly,  the  fits  improve with 
added  coefficients,  as  they  must, yet this  improvement is small 
beyond a few coefficients  for  each  structural  type. 

If fitting  known  structures were our goal, or even if  it  were 
useful, we would  be very pleased with  the  combined  approach 
to spectral-structure regressions. However,  accurate prediction 
of  the  secondary  structure of proteins  not in  the  training set was 
and  remains a more  important  and  useful  goal.  In  this  regard, 
errors were higher and less strikingly improved in the  total  com- 
bined set. In  fact,  only a few coefficients  are used to yield the 
most reliable predictions for proteins  left  out  of  the  analysis. 
This is most  striking in the  ECD  analysis,  where  the helix and 
sheet  determinations  depend  significantly  on  only  one  coeffi- 
cient.  Furthermore we have  shown  these  predictions  to  worsen 
significantly as the  number of coefficients used is increased.  It 
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is important  to realize that our methods  of  testing all possible 
combinations  of  spectral  components  and  comparing  them ex- 
plicitly for their  predictive  capability is a new and, we think, im- 
portant  approach  to  the use of  optical  spectra  for  secondary 
structure  analyses. It might be noted  that  the VSM method 
(Manavalan & Johnson, 1987) is complementary  in  this respect 
by systematically  searching  for  the  most  important  proteins  to 
eliminate  from  the  training set  while  keeping all  their  spectral 
components  that were  previously judged to  be significant. This 
aspect  combined with the  coupling  of  data  from  different tech- 
niques is central  to  the  advance  offered  in  this  work. It should 
be noted that Sarver and Krueger (1991b) and  Pribic et al. (1993) 
previously  reported  combining  ECD  and  FTIR  data  for  im- 
proved  analyses with a linear  model.  From  their  analyses,  the 
improvements followed  a  similar pattern,  ECD yielding the bet- 
ter helix and FTIR better sheet predictions, but the improvement 
was not  as  dramatic  as seen here. 

It is precisely due  to this  lack of  dimensionality in ECD 
structural  response, first noted in our qualitative  comparisons 
(Pancoska et al., 1989; Keiderling, 1993, 1994; Pancoska & 
Keiderling, 1993), that  the  VCD  studies were designed.  How- 
ever,  despite all of the  improvement  found in the regressions by 
inclusion  of  both  amide I’ and I1 VCD  data,  the  predictions d o  
not  show  the  hoped-for  large  improvement in accuracy when 
aimed  at  determining  just  fractional  secondary  structure.  The 
predictive reliability for  the best set of  coefficients from  the com- 
bined amide I’ + I1 VCD  data set was  10-20% better  than with 
just  the  amide 1’. Although, in principle,  adding  data  from  am- 
ide 111 or other  transitions yet to be sampled  could  help, our ex- 
perience here (see below) argues  that it will not  be  significant. 

On  the  other  hand,  combining  VCD with ECD  data  has re- 
sulted in a significantly improved analysis and  an ability to pre- 
dict  structure  that is far  superior  to all our  analyses based on 
single techniques using the  same systematic  restricted regression 
methods. Improvements for  the  dual,  ECD plus VCD, technique 
predictions  correspond to  a reduction in average  error  on  the 
order of 30% (Table 3) over the single data set predictions.  How- 
ever,  the real impact of the  improvement is seen in Table 4, 
where  the  individual  protein  prediction  errors  for  the  combined 
data set are  more  equivalent. All errors  are less than  10%  for 
both helix and  sheet with the  combined set (Table  4,  columns 
5 ,  9),  and  the largest average  error  (Table  4,  column 17) for he- 
lix, sheet,  and  other is 5 . 5 % .  The relative strengths of ECD  and 
VCD  prediction  capabilities reflect the  individual  strengths  of 
the  components being  used  in the  combined  prediction.  Al- 
though  combining  the  ECD  and  VCD  data sets does  not result 
in a revolutionary  decrease  of  predictive  error, it must be rec- 
ognized  that  the  combined  ECD-VCD  prediction is definitely 
stronger  than  either  alone;  each  method  compensates  for  the 
weaknesses  of the  other.  The  end result is really  excellent:  he- 
lix, sheet,  and even “other”  are  predicted with small  error  mar- 
gins (7-15% of  their  dynamic  range in the test set); and,  for  the 
first  time, in our  opinion,  turn  and bend predictions have some 
predictive reliability (-20%). 

Limitations of the method 

The incremental  improvement in the prediction error with added 
spectral  information is intimately  coupled to  our observation 
that  prediction  error  not  only fails to  improve  but, in fact, wors- 
ens  upon  addition  of  coefficients  to  the regression beyond  the 

few of  most  significance  to  secondary  structure.  Such a behav- 
ior was implied in the  results  of  van  Stokkum  et  al. (1990) and 
Pribic et al. (1993) who  saw  degraded  predictions with matri- 
ces of higher  rank.  However,  their  methods  do  not seem to  en- 
compass selection of  the  components based on significance for 
secondary structure,  but  rather  take  them in order  of significance 
in terms  of  spectral residue. The  degradation  of  prediction with 
increase  of  spectral  components (or rank  of  the  matrix  for in- 
version methods)  speaks directly to  the  method used or to  the 
question being posed. We now feel it is the  latter  that is in most 
need of revision. Our observations  also lead to a corollary  ob- 
servation  that, if one uses the  total  spectral  variation  available 
to predict  structure in terms  of FC values, the  results  could  be 
dramatically  bad,  leading  to real qualitative  error in interpre- 
tation.  An  approach  of  totally  correlating  the  spectral  variation 
with  secondary  structure is a common  underlying  assumption 
of  many  spectral  band  shape  interpretive  methods  (Manning, 
1989; Sreerama & Woody 1993, 1994). We feel this is too limit- 
ing and  not  warranted by other  observations.  This conflict  over 
goals  of the  structural biologist and limits of the  approach leads 
to  the  core  of  this  work.  What is the  fundamental limit for sec- 
ondary  structure  prediction  that we are seeing, and what can  be 
done  to  address it so that  spectral  data  might  be  better used for 
determining  structures  for  globular  proteins in solution? 

Before  addressing these fundamental issues directly, it is 
worthwhile  to briefly  investigate other possibilities for  the  ap- 
parent  limitations  of these analyses.  As  shown  in  Figure  1,  the 
analysis is reasonably  stable  to increase  in the  number  of  the 
proteins used. In  fact,  the  training set used is about  the  same 
size as used in many  protein  spectral  analyses  that  have been 
reported in recent years. However, increasing the size of the basis 
set of  proteins  did  decrease  the  accuracy  of  prediction  for  the 
amide I’ VCD  as compared  to our previous  study (Pancoska et al., 
1991). The  effect was less for  ECD  (Pancoska & Keiderling, 
1991). In  comparing  predictions  made with the full set of  pro- 
teins  as  compared  to  one  of  the  abbreviated  sets used for  the 
Figure 1 stability test, we found  the  difference in prediction ac- 
curacy  to be not very large. The  parallel  analyses of ECD  also 
point  out  that  the  limitations  of this approach  are  not a prob- 
lem of using VCD data but are  more general.  A  similar  decrease 
in accuracy was noted by Pribic et al. (1993) in comparing their 
21 protein set to  the 10 protein set of Sarver and Krueger (1990). 

One  might have thought  the  problem  could  arise  from  the 
noise level inherent in VCD  spectra.  There is no  doubt  that  the 
VCD  spectra  are in some sense  limited by S/N considerations. 
The  corollary  techniques of ECD  and  FTIR  can  both  generate 
spectra  of higher S/N. However,  those  spectra d o  not  have  the 
intrinsic  band-shape  variations  of VCD. Thus, even burdened 
by reduced S/N, VCD  can  exhibit  distinct  reproducible  and 
identifiable  spectral  variations with structure.  This  property  ac- 
tually  manifests itself in the  number of subspectra  identified  in 
the  factor analysis methods.  Although ECD with relatively good 
SIN yields five significant subspectra,  VCD  in the  amide I’ band 
has six.8 In  this light  it is interesting to  note  that  parallel style 
analyses of very high SIN FTIR spectra of the  amide I band (Lee 
et al., 1990) have  indicated as many as 1 1  subspectra  can be iden- 

‘The  amide I1 also has six, but it is doubtful  that  these all arise  from 
real  variation  in  the  amide I1 VCD  bandshape.  Interferences  with  side- 
chain  vibrations  and lower intrinsic SIN may be the  root  source of some 
of the  higher  subspectra  for  the  amide 11. 
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tified, yet subsequent  tests  (Pribic  et al., 1993) show  that  only 
a few of these are  needed  for  optimal  prediction. Because VCD 
samples  the very same  transitions  as  FTIR,  one might  expect to  
obtain  at least that  many  subspectra in  VCD. There  are  three 
main  differences between VCD  and  FTIR:  the  VCD  spectra  are 
obtained  at lower  resolution and lower S/N than  the  FTIR,  and 
the  two spectroscopies  have different intensity  mechanisms. The 
first will cause higher resolution  components  to decrease in rel- 
ative  contribution  to  the  band  shape,  and  the  second will con- 
volute some of the high-resolution  subspectral components with 
noise. The  difference in intensity  mechanism  means  that  some 
transitions could be observable with FTIR  and  not VCD, or vice 
versa,  leading to  spectral  variation  differences between the  two 
techniques.  Hence,  all  three  of  these  differences  can result  in 
subspectra  of lower significance being unimportant in our study. 
We have  tested this  contention  regarding noise  effects by doing 
a repeat analysis on  the  amide I’ VCD  data  after  smoothing  the 
spectra  to  reduce  the  noise  contribution.  Still, six significant 
spectra were found,  and  the  errors  in  prediction were virtually 
indistinguishable  from  those  in  Table 3. Thus, in practice,  the 
factor  analysis  does  segregate  out  the  largest  part  of  the noise 
contribution,  as it should. 

Although it might seem serious  that  some of our  spectral  in- 
formation is not being isolated and identified due  to noise or res- 
olution  problems, this is not really cause for significant  concern 
because  the  overriding issue here is really why so much of the 
spectral  data  that we do isolate is not used for  prediction in the 
first  place.  Our  results suggest that, if more  spectral  data were 
used in the analyses, the  quality  of  the prediction  would  actually 
deteriorate.  For  the  problem originally  laid out in this  paper, 
i x . ,  determination  of  fractional  secondary  structure, inclusion 
of  more  spectral  components is  definitely not  the  solution. 

The  problem of concentration  determination,  functionally 
equivalent to  overall  intensity  variation, clearly should  be a 
source  of  error. We have  separately tested this  and  have  shown 
that  up  to  about 20% random  error in intensity,  the  fitting  er- 
ror for  the  amide I’ or for  the  ECD is not significantly impacted 
(Bitto, 1993; Pancoska et al., 1995). However, if one  had a sys- 
tematic  concentration  error,  the  results  could  be  affected  more 
severely because  that  would skew the  calibration (in an  analyt- 
ical  sense) provided by the  training set. We have  used three  dif- 
ferent  means  of  concentration  normalization. For ECD, we tried 
to  determine  concentration  spectrophotometrically.  Although 
these concentrations  are possibly only  good  to -IO%, these er- 
rors are most likely random  and  the tests above indicate that pre- 
diction  should  be  preserved.  In  the  VCD,  both  normalizations 
implicitly assume  that all conformations  have a common  mo- 
lar  absorbance.  This is not  correct,  but  the  band-shape  analy- 
sis can  partially  offset  such  an  error in that  the  correlation 
sought is to a component of the  band  shape  and its relative con- 
tribution  to  the  whole.  Our  algorithm  does  not  force  the  corre- 
lation  to  be simple, and  non-zero  offsets in the linear equations 
are  the  rule.  These  can  act  as a first-order  correction  for  absor- 
bance  variations by structural  type. 

Another  potential  problem is interferants,  components of the 
molecule (or sample  preparation)  that  lead  to  spectral  overlap 
in  the region of  interest  that we wish to  assign  fully to  amide 
transitions. A common  problem relates to  side-chain  absorb- 
ances. In  the near UV, the  aromatic  group  and disulfide  near UV 
transitions  cause  some  problem  with  analysis  (Manning, 1989; 
Manning & Woody, 1989; Manning et al., 1992; Grishina & 

Woody, 1995). Similarly,  glycosylation can  be a problem  in  the 
far UV (Urbanova et al., 1994). Both  remain  somewhat  diffi- 
cult to  overcome  for  ECD analyses. For VCD,  side-chain  ab- 
sorbances  are  more of a problem in the  amide I1 than  amide  I; 
but in both cases they  are generally  weak due  to  their  arising 
from specific,  well-separated groups  that give rise to  sharp  tran- 
sitions  at relatively  fixed frequencies,  resulting in  small  incre- 
ments to  the  integrated  absorbance with consequently little 
impact  on  the  normalization. If such  groups give rise to  VCD, 
they would contribute  to higher-order  subspectra and be reduced 
in impact  due  to  their lack of  correlation with the  amide spec- 
tral variance. In practice, we have not seen significant side-chain 
VCD even in our model  studies  of  homo-oligo- and polypeptides 
(Keiderling  et al., 1989; Freedman et al., 1995). Thus, we do  not 
expect that  the side chains  are  the  root  cause  of  the  problem of 
fractional  secondary  structure  determination. 

A different  type of interferant is potentially  more pernicious. 
We do  not discriminate between a-helices  and 3,,-helices in our 
analyses,  nor do we distinguish  parallel and  antiparallel sheets. 
To test for effects  of the  former  approximation, using both  the 
ECD  and  the  amide 1’ VCD  data  sets, we ran a  series  of  regres- 
sion and prediction  tests with the 310-helix fraction moved from 
the H to  the C component.  Inclusion or separation of the  310 
component in the helix fraction  had  virtually  no  effect  on  the 
prediction  accuracy, in terms  of relative error,  of  the  a-helix. 
Tested separately,  the 3,,-helix could  not be predicted with any 
statistical reliability at all over its limited range, which is  less than 
15%  for our training  set.  Having values so close to  the predic- 
tion  error  for  total helix, the 310 component,  though a  signifi- 
cant  structural  feature,  proves  to  have  too little impact  on  the 
spectral  correlation  to  fractional  structure. It is important  to re- 
alize  that 310-helices d o  give qualitatively  identifiable  VCD 
spectra in oligopeptides  (Yasui et al., 1986a), but  for  the  am- 
ide I’ they are very weak and discrimination is dependent on  am- 
ide 11 measurement.  The  ECD  spectra of 3,,-helices are  poorly 
distinguished  from  those  of  a-helices  (Toniolo et al., 1991). 
These  aspects  contribute  to  the  problem  of  identifying  310- 
helical contributions in protein  spectra. Despite the  qualitative 
issues, the real  issue for  this  paper is that  the  method of treat- 
ing 3,,-helices in the regression makes no significant difference 
to  the  fundamental  prediction  error. 

A question  that might arise  regarding  the  errors in our  pre- 
diction  methods is the  method used to  determine  the  reference 
structures. It is clear that crystallographers do  not have  a uniform 
method of allocating  residues  to specific secondary  structural 
types.  Thus, we and  many  others  have used more  “objective” 
routines,  at least not biased by our  usage,  to  obtain  such de- 
scriptors  (Sreerama & Woody, 1993). We have relied most  on 
the KS data set and  the DSSP routine  for abstracting  parameters 
from  structures in the  PDB  (Kabsch & Sander, 1983). This  de- 
scription  can be viewed as  somewhat conservative for helix and 
sheet,  emphasizing  residue  conformations  compatible  with hy- 
drogen  bond  formation.  Perhaps a broader  description is more 
appropriate  for  spectra  that  are  in  large  part  determined by the 
through-space  interactions  afforded by dipole  coupling. TO  test 
this possibility, we developed a code  to  download  PDB  struc- 
tural  parameters  and generate  fractional  secondary structure rep- 
resentations in the L C  (Levitt & Greer, 1977) algorithm.  This 
was  tested  for  predictability using the  amide I’ and  ECD  data 
sets in the  manner  described  above  for  the KS structures with 
the  results  summarized  in  Table 5 .  The  net  prediction relative 
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Table 5. Standard  deviations for prediction of LG FC values for one protein left out of the training set 

Helix  Sheet RT LT Other 

- 

- _ _  
Cl are/ NO. u u,/ NO. u ure/ NO. u u,/ NO. u u,/ NO. 

AI’= 14.7 16.3 1 11.7 17.3 3  3.9 29.8 2 4.1 23.8 1 3.4 25.6 3 
E C D  8.5 9.5 2 11.8 17.5 1 3.6 27.5 1 3.5 20.4 1 3.0 22.3 1 

~_____ 
a Standard  deviations,  relative  standard  deviations,  and  the  number of subspectra for the  best  restricted  regression  predic- 

_ _ _ ~  

tion. AI’, amide 1’. 

errors  found  for  amide I’ VCD were a bit  worse than  the results 
in Table 3 for  the KS structure  descriptors.  For  ECD,  the  error 
for  the sheet fraction slightly improved  and  that  for  the  “other” 
category  worsened.  Both  are  probably related to  the  redistribu- 
tion  of  contribution  from  “other”  to  better  defined  structures 
using the LG definitions; but neither  change was large  enough 
to  merit  further  consideration.  Given this and  the  similar  find- 
ing by Sreerama  and Woody (1993) that  the KS set gave the best 
results for their self-consistent correlation  of structure  and  ECD, 
it is reasonable to continue using the KS values as a  basis for 
our  analyses. 

It might be noted  that, considering just  the  amide I’ data  set, 
the regression  fit for  the  a-helix is not  as  good with this ex- 
panded training set of 23 proteins as  found before with a smaller 
set (13 of  these proteins)  (Pancoska et al., 1991). The  errors  for 
the  other  components  are smaller in this  larger  set, though those 
differences between the  two  calculations  are  small.  This implies 
that  expansion  of  the set has  introduced  error in terms of the 
helical content. A better  comparison in  this  sense  would be to 
predictions  made with our  reduced  training sets whose  factor 
analyses were summarized in Figure  1.  For five separate  com- 
binations  of  proteins  from  our  training  set,  ranging  from 11 to 
19 members,  the prediction error  for helix and sheet varied both 
above  and below what were found  for  the  23  protein set as re- 
ported in Table  3.  The  larger sets from  these  subsets  did  have 
errors  somewhat higher than  for  the full set,  and  one smaller set 
(12 proteins)  did  have  better  prediction errors. Such an improve- 
ment in prediction by using reduced training sets was found pre- 
viously by Johnson  and  coworkers  and led to  development  of 
the VSM for  ECD analysis (Manavalan & Johnson, 1987). These 
results suggest that  the  original  data set did  not  adequately rep- 
resent the  variance  of  protein  VCD  that  might be observed or 
conversely  that  the  original set was more  uniform in structure 
or in the  relationship of its  secondary  structures  to its spectra 
than is the  case  for  the  larger set studied  here. It is important 
to realize that  these  subsets  of  proteins were  selected on  the  ba- 
sis of  maintaining  representation  from  each  of  the  dominant 
VCD  spectral types as  identified by cluster  analysis of  the spec- 
tra.  Thus,  the  variation seen  in prediction  capability  should  be 
optimal  for  VCD  and  must reflect the sensitivity of  the regres- 
sion  surface  to inclusion of  individual  proteins (see below). 

One possible variation in the  VCD  spectrum  that might not 
have been fully represented in the  smaller set could  be a differ- 
ence in the  degree  of  deuteration  of  the helices in the  two sets. 
Deuteration  has  definite effects on the helix VCD, changing  the 
amide I from a couplet to  a three-feature  band  shape (Sen & 
Keiderling, 1984; Baumruk & Keiderling, 1993). It is reasonable 
to  assume  that  some,  perhaps smaller,  changes will occur for  the 

VCD of other  secondary  structure  types  on  deuteration.  Our 
method implicitly assumes  that  the  proteins  are fully or a t  least 
uniformly exchanged. However,  some  proteins do  not exchange 
as well under  our  conditions of repeated  dissolution  and  stand- 
ing at  ambient  temperature in D20. This could  cause a variance 
in the  spectral  coefficient  distribution  that  would  not fit the re- 
gression well. Such  effects  would  be very minor  for  ECD  and 
could be one  molecular  factor  behind  the  observation  that  its 
analysis seems less sensitive to expansion of the training set (Pan- 
coska & Keiderling, 1991). We plan to  address this issue directly 
in a study  now underway in our  laboratory  that uses amide I and 
I1 VCD  data exclusively from H 2 0  solution,  thereby  avoiding 
the issue of  deuteration  (Baumruk et al., in prep.). 

Restricted regression method  and prediction accuracy 

The key to  appreciating, if not  understanding,  the  difference in 
the  prediction  accuracy  from  the regression accuracy is to con- 
sider  how  the regression responds  to  removal  of  one  protein 
from  the set. Although  the  original  linear  relationship was op- 
timized to all the  data, with one  protein  removed  from  the  set, 
the regression no  longer needs to  compensate  for  errors involv- 
ing that selected protein.  Thus, the regression surface will always 
tend  to  move  away  from  the  protein  left  out  and  the  prediction 
error will always be larger than  the fit error when it is included. 
That, of  course, does not explain why the  change is so large. The 
surface  must  respond  to all contributions  to  the  error,  and  at 
present we cannot conclusively determine which source is the 
cause  of  this  response.  However,  our tests of induced  intensity 
fluctuation  and reduced noise by smoothing  as described above 
imply  that  random  error is not  the  source  of  this  problem.  If, 
following  the  above  discussion,  that  original set was more  ho- 
mogeneous,  then  removal of one  protein would  have less effect. 
I f  the  error was random  and  only a few coefficients were  used 
in the  fit,  removal  of a protein  would  have little impact.  That 
is why the  more limited  regressions give better predictions:  they 
are  more  stable.  The  more  parameters used to fit the  set,  the 
more sensitive  it will be  to a given  protein’s removal. I f  there 
is a systematic  error  due  to a nonuniform  spectral  response  to 
a structural  variation, removal  of one  of these “outlier”  proteins 
will have a large  impact  on  the regression surface  determined 
with the set and  the  prediction  error for that  protein  taken out 
will be large. 

Our new approach,  reported  here, which generates  complete 
searches  of  the  multiple  coefficient  fits  and  predictions,  expo- 
ses these sensitivities. Thus,  for a large  number  of  coefficients, 
the regression surface  has flexibility to  conform  to  the  individ- 
ual  variations in the set with modest  error. Because these  spec- 
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tral  variations  are,  in  principle,  independent,  they  could  form 
a separate  coordinate on which the  surface  varied (as empha- 
sized by the  PC/FA  approach). If a given protein is removed, 
the regression surface  does  not need to  adjust  to its contribu- 
tion  to  the  “independent  coordinate”  any  more  and  can  thereby 
move significantly away  from  the  removed protein’s spectral- 
structural relationship. That is the source of the continued wors- 
ening  of  the  predictions  with  increase  in  the  number of 
parameters,  some  of which represent these “independent”  con- 
tributions  to  the  spectra. 

In  summary,  although  our  factor  analysis is apparently  sta- 
ble to  addition  of  proteins  judged  at  the level of  band-shape 
comparison,  the regression analyses  with  multiple  parameters 
are sensitive to  the  nature  of  the  training set used.  What is dif- 
ferent  in  our  regressions, which make use of  only a few coeffi- 
cients? With fewer parameters,  the regression  must compensate 
for its  lack of flexibility and  in  effect  become  more  stable  to 
change in the  training  set.  Thus,  although we can gain precision 
in terms of fitting by expanding  the  number of spectral  coeffi- 
cients used, we do  not increase the  accuracy of prediction.  Pre- 
diction  accuracy is enhanced by having  the  most  encompassing 
relationship;  that means one of less precision but  more stability. 

It is important  to see that these observations  have a wider 
impact  than this  particular study. Because in  most other spectra- 
structure  prediction  methods  the  entire  spectral  representation 
developed with the  principal  component  method  are merely  fit 
in  some  sort of  regression scheme or are  totally  projected  onto 
the  structural  descriptor,  those results are equivalent to  our  “full 
set” fits. In terms of prediction,  the results  presented  here imply 
that  this  must  be unwise at  best.  Johnson  and  others  (Hennes- 
sey & Johnson, 1981; Manavalan & Johnson, 1987; van  Stok- 
kum et al., 1990; Pribic et al., 1993; Sreerama & Woody, 1993, 
1994) have been aware  of  the need to  look  at predictive capa- 
bility of their  analyses  for  some  time.  One  response was the 
development of the  variable selection method  (Manavalan & 
Johnson, 1987). That  method still uses the  entire  spectral  data 
set to  develop a relationship between spectra  and  structure  but 
eliminates  contributions  from selected proteins. Because the 
VSM selects a set of  proteins  most similar to  the  one  of  inter- 
est,  it  tends  to  minimize  the hypersensitivity  of the  fitted  sur- 
face to  any  proteins  left  out,  such  as  the  unknown  protein  for 
which one wishes to  predict structure. Alternatively, Pribic et al. 
(1993) have  restricted the  rank  of  the  spectral  matrix, which ef- 
fectively reduces  the  dimension of the  fitting  surface,  and  also 
restricted the  proteins used  with  a locally linearized (LL)  model, 
a version  of the VSM. A combined  approach is the self-consistent 
method of Sreerama  and  Woody (1993, 1994) that uses the  LL 
with  inclusion of the  unknown  in  the basis  set and  iteration  to 
a  self-consistent prediction  of its structural  parameters.  Studies 
using FTIR  data suggest that use of  large  numbers of coefficients 
in  the regression analyses  (Lee et al., 1990) can  reduce  the  pre- 
dictive  ability  of those  results, which is consistent with our  con- 
clusions. We go  one  step  further by selecting just  those  spectral 
components  that  most  strongly  relate  to  secondary  structure, 
rather  than  those  that  most  strongly  contribute  to  the  observed 
intensity,  but we keep  all  proteins.  Future  extension  to a VSM 
or LL  approach with our restricted  regression methods could be 
interesting,  but we feel that is not  the right direction  to  pursue 
now. 

Going  beyond  how  many  subspectra  are  important  for  pre- 
diction, we should  look at which ones  are most  influential. Here, 

a perhaps  surprising  pattern  emerges. For ECD,  the single  co- 
efficient  important  for  both helix and sheet prediction  corre- 
sponds  to  the  first  subspectrum.  Inspection of the  first  ECD 
subspectrum  shows it to  resemble the expected band  shape  for 
an  a-helix.  That  the first subspectrum is so shaped  should  not 
be  surprising because the  a-helix  contribution effectively dom- 
inates  globular  protein  ECD.  This is presumably why the  meth- 
ods of Perczel et al. (1991) and  the  older,  simpler  method  of 
using  the ellipticity at 222 nm  to  determine helix content  work 
at all (Yang et al., 1986; Johnson, 1988). In  the  amide I’ VCD, 
the second subspectrum is essential to predicting both helix and 
sheet,  but  the best predictions  make use of  other  coefficients 
also. In a  striking  parallel to  the  ECD  situation,  the second  sub- 
spectrum  of  the  amide I‘ VCD resembles the  VCD  found  for 
highly  helical proteins.  The  amide 11 situation is less clear.  The 
first  amide I1 subspectrum  mostly resembles spectra  found  for 
cy$ proteins.  The  second  subspectrum  peaks  at 1,560 cm” 
and, with the  first,  can  encompass  most of the  change seen  in 
the  amide 11. Both  of  these are  important in predicting helix and 
sheet.  Thus, a consistent  pattern  emerges between ECD  and 
VCD where the coefficient of the  subspectrum most like that ex- 
pected  for  an cy-helix  is the best predictor  for helix (naturally) 
but is also best for  predicting  sheet. 

Given our  earlier  development of a relationship between the 
helical and sheet fractions in  a very large  subset of the  proteins 
in the  PDB, this interrelation of  subspectral  dependencies is un- 
derstandable  (Pancoska et al., 1992). However,  the lack of any 
other  contributions on any significant level was surprising.  Our 
method  has  the  ECD,  for  example, predicting the helix well due 
to its  high  sensitivity to  the helical ECD  signature  and  predict- 
ing the sheet component  only  from  the  interrelationship of the 
helix and  sheet.  Although  0-sheets give a qualitatively  identifi- 
able  ECD  spectrum,  the  relationship  of  that  spectral  contribu- 
tion  to  variation in the FC value  representative of the  structure 
must  be less well defined  than  the  correlation between a-helix 
and P-sheet content.  Our  ECD regression  selects the  predictor 
of sheet  with the highest correlation  to its FC value. This  ap- 
pears to be the helical component,  and  therefore  the  qualitative 
spectral  manifestation of sheet is not utilized  directly  in the 
quantitative scheme. In  fact,  including  more  spectral  compo- 
nents so as  to  encompass it degrades  the  sheet  prediction.  One 
could say that  at  our level of predictor, sheet is not directly mea- 
sured using ECD  but is  simply inferred  from  the excellent de- 
termination  of helix. These  observations  have  fundamental 
repercussions  in  the  array  of  various  structure-predicting  algo- 
rithms in the literature that rely only on ECD spectral input.  One 
reason  that  one might  have problems  analyzing  the  structure of 
some  unknown  protein with ECD is that if its ratio of helix to 
sheet does  not reflect the  pattern in the  PDB,  or  more precisely 
in the training set used for a particular analysis, the  method can- 
not  predict  the sheet contribution  because, in general, it does 
not sense it. 

On  the  other  hand,  VCD,  although exhibiting the  same  prob- 
lem,  does utilize more  of  the  spectral  data  for  prediction so it 
can sense the  sheet  contribution  marginally  better.  To  explore 
this, we predicted  the  sheet  components  for  the  proteins in our 
training set from their  crystal structure helix fractions,  from  the 
ECD-predicted  helix  fractions,  and  from  the  VCD  helix- 
predicted  fractions  and,  as  summarized in Table 6, compared 
them  to  the values found with our spectral  prediction  algorithms 
and  to  the crystal structure values in Table 1. It is clear from  Ta- 
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Table 6. Comparison of deviations in  FC, determined from 
the  crystal  structure  derived  FC,-FC,  relationship 
with errors in FC, predictions from spectra 

X-ray  Amide I’ Amide I1 ECD 

Ua 5.8 9.5 10.2 8.3 
U r d  a 12.2 19.9 21.3 17.4 
ure, Spectrab - 17.3 19.4 19.9 

a Standard  deviations  of FC, values for training  set  proteins  calcu- 
lated  from FCa taken  from  X-ray or predicted  from  spectra  as  indi- 
cated  in  the  column  headings. 

Relative  standard  deviation of best predictions  of FC, from  spec- 
tra  as  taken  from  Table  3  for  comparison. 

ble 6 that if one knew the helix fraction exactly, the helix-sheet 
relationships derived previously from  neural network analysis 
of the  PDB  (Pancoska et al., 1992) would provide an estima- 
tion of the sheet content superior to any of those available from 
the spectroscopic regressions. However, that is not  the case for 
any real unknown. ECD gives us the best estimation of helix 
content. Using  it  as input to the helix-sheet relation in fact gives 
a  better prediction of sheet than does our spectral prediction. 
On  the  other  hand, use of the VCD-generated helix fractions 
with the helix-sheet relation does worse than the relative error 
of  the  spectral  predictions as compared to  the values from Ta- 
ble 3. Admittedly the differences are not huge, but the  patterns 
are totally  consistent, lending more significance to this discus- 
sion. This demonstrates that the VCD prediction method senses 
the sheet content beyond its being a counterpoint to helix. Thus, 
although the  ECD predictions of sheet content are dominated 
by the relationships following from interdependence of helix and 
sheet in the training set proteins, the VCD-predicted values are 
less so. However, it must be  recognized that interdependence still 
exists in the training  set, so that any  algorithm will reflect it to 
some degree. That is evidenced by the “perfect” helix  values  giv- 
ing better predictions of sheet than any spectral method. 

Conclusions 

Our work  shows that, although spectral analyses in terms of av- 
erage secondary structure as represented by FC values can be 
improved to  an excellent level of accuracy by combining data 
from  ECD  and VCD, overall, such methods are subject to  fun- 
damental limitations that yield errors characteristic  of the pro- 
teins  themselves and not of the methods. It is projected that such 
understanding will provide  a means for  future analyses, which 
can  go beyond such limitations,  through use of a  different ba- 
sis for protein  structural  description as regards optical spectra. 

Given the intrinsic limits to accuracy in predicting fractional 
secondary structure  that we have found, one might ask: what 
is the logical next step? Our work demonstrates that there is a 
wealth of spectral information available that is not now being 
used  in trying to address the relatively narrow question of frac- 
tional secondary structure, represented by a vector of a few num- 
bers summing to 1.0. Describing the  proteins in terms of 
fractional  secondary structure is a major part  of the problem 
in utilizing all of the spectral information. By no means are the 
segments uniform as assigned to various categories by any al- 

gorithm. It is  this distortion from ideality that we feel is the big- 
gest problem with the  standard approaches  taken to interpret 
spectra in terms of structure. One  approach  that we have sug- 
gested (Pancoska et al., 1995) and  are now testing is to repre- 
sent the segments and their  interconnectivities by a more detailed 
descriptor that would have a  matrix  rather than a vector form. 
Due  to  the  conformational  distortions at the  junctions, the res- 
idues involved will certainly have a  different spectral response 
than  the segments they connect. Similarly, the  distribution of 
lengths of coherent segments can affect  the overall spectral re- 
sponse for VCD (Dousseau & Pezolet, 1990; LaBrake et al., 
1993) as well as  ECD (Yang et al., 1986). Both of these issues 
affect  the  descriptors  currently being tested (Pancoska et al., 
1995), but  the  optimal design to fit the various types of spec- 
tral data available in the IR and UV regions of the  spectrum is 
far  from settled. 

Supplementary material in the Electronic  Appendix 

Included in subdirectory Pancoska.SI.JP of  the  SUPLEMNT 
directory of the Electronic  Appendix are x, y-formatted ASCII 
data  to create graphical representations of the original VCD 
(amide I‘ and 11) and  ECD spectra  for the 28 proteins as well 
as of the PC/FA subspectra derived from them. More complete 
tables of the fit and prediction errors with regard to crystal struc- 
ture values for different  numbers of coefficients based on  the 
various data sets, amide I’, 11, I’+lI, ECD, and I’+II+ECD  are 
also  provided. 
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