
Protein Science (1995), 4:1618-1632. Cambridge University Press.  Printed in the USA. 
Copyright 0 1995 The Protein Society 

Gibbs  motif  sampling:  Detection of bacterial  outer 
membrane  protein  repeats 

ANDREW F. NEUWALD,' JUN  S. LIU,2 AND CHARLES E. 
' National  Center  for Biotechnology Information, National  Library of Medicine, National Institutes of Health, 

* Department of Statistics, Stanford University, Stanford, California 94305 
Bethesda, Maryland 20894 

Biometrics Laboratory, Wadsworth Center for Laboratories  and Research, New  York State Department of Health, 
Albany, New York 12201 

(RECEIVED April 4, 1995; ACCEPTED May 24, 1995) 

Abstract 

The detection and alignment of locally conserved regions (motifs) in multiple sequences can provide insight into 
protein structure, function, and evolution. A new Gibbs sampling algorithm is described that detects motif-encoding 
regions in sequences and optimally  partitions  them into distinct motif models; this is illustrated using a set  of  im- 
munoglobulin  fold  proteins. When applied to sequences sharing  a single motif,  the sampler can be used to clas- 
sify motif regions into related submodels, as is illustrated using helix-turn-helix DNA-binding proteins. Other 
statistically based procedures are described for searching a  database for sequences matching motifs found by the 
sampler.  When applied to a set of 32  very distantly related bacterial integral outer  membrane  proteins, the sam- 
pler revealed that they share a  subtle, repetitive motif. Although BLAST (Altschul SF et al., 1990, J Mol Biol 
215:403-410) fails to detect significant pairwise similarity between any of the sequences, the repeats present in 
these outer membrane  proteins,  taken as a whole, are highly significant (based on a generally applicable statisti- 
cal test for motifs described here). Analysis of bacterial porins with known trimeric 0-barrel  structure  and related 
proteins reveals a similar repetitive motif corresponding to alternating  membrane-spanning  0-strands. These 
&strands occur on  the membrane  interface (as opposed to the trimeric interface) of the &barrel.  The  broad  con- 
servation and  structural location of these repeats suggests that they play important functional roles. 

Keywords: Bayesian inference; multiple alignment algorithms; outer membrane proteins; pattern recognition; por- 
ins; protein  motifs; statistical significance; Wilcoxon signed rank test 

Sequence similarity, found using either pairwise alignment, mul- 
tiple alignment, or motif detection methods, often yields the first 
clues to protein structure and function. The detection of  weakly 
conserved patterns (motifs) among  distantly related sequences 
can be particularly  informative because they often correspond 
to structurally or functionally important residues. Such infor- 
mation is useful for targeting specific sites for in vitro mutagen- 
esis and in classifying diverse proteins  according to implied 
structural  and/or mechanistic similarities. Alignment profiles of 
conserved regions have been useful for detecting very distant re- 
lationships (Gribskov et al., 1987,  1990; Luthy et al., 1994) and, 
when compiled into profile databases, can be useful for screening 
new sequences for motifs  (Henikoff & Henikoff, 1991, 1994). 

Reprint requests to: Andrew F. Neuwald, National Center for Bio- 
technology Information, National Library of Medicine, National Insti- 
tutes of Health, Bethesda, Maryland 20894; e-mail: neuwaldQncbi. 
nlm.nih.gov. 

Abbreviations: EM, expectation-maximization; HMM, hidden Mar- 
kov model; hth, helix-turn-helix; iomp, integral outer  membrane pro- 
tein; ipp,  information per parameter; MSP, maximal segment pair. 
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Pairwise and multiple sequence analysis methods for detect- 
ing similarity between relatively closely related sequences have 
been available for some time now (Needleman & Wunsch, 1970; 
Smith & Waterman, 1981; Pearson & Lipman, 1988; Altschul 
et al., 1990; for  a review  of multiple alignment methods see Chan 
et al., 1992). Only more recently, however, have efficient meth- 
ods been developed that can detect subtle similarities common 
to large sets of distantly related or (possibly) evolutionarily un- 
related sequences (Lawrence et al., 1993; Neuwald & Green, 
1994). The development of these methods has been motivated 
by the current rapid increase in  sequence data because  relatively 
large sets (containing, for example, more than 15 sequences) 
are needed for weakly conserved patterns to reach statistical 
significance. 

Lawrence et al. (1993) describe a  Gibbs sampling strategy for 
detecting conserved patterns in multiple sequences that is a sto- 
chastic  analog of earlier expectation-maximization methods 
(Lawrence & Reilly, 1990; Cardon & Stormo, 1992) and  that is 
closely related to (EM-based) hidden Markov model multiple se- 
quence alignment methods  (Baldi et al., 1994; Krogh et al., 
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1994), which,  unlike  the  Gibbs  sampler,  permit  gaps  anywhere 
in the  sequences.  This  Gibbs  sampler (which is referred to  here 
as  the site sampler)  addresses  the  problem  of  finding  motifs 
when the  number of  occurrences  of each motif  in each sequence 
is assumed.  Using  such  prior  information,  when  justified,  can 
greatly assist in  the  identification of subtle  motifs. 

Here we describe a new Gibbs strategy, called motif  sampling, 
that  addresses  the  problem  of  detecting  motifs when  little prior 
information  about  the  number  of  occurrences  of  each  motif is 
available. This is important because often  some of the sequences 
under  investigation  may  not  contain  the  motifs  common to  the 
remaining  sequences or the  sequences  may  share  varying  num- 
bers  of  repetitive  motifs.  In  contrast to  the  site  sampler, which 
iteratively  samples sites for  each  motif,  the  motif  sampler  iter- 
atively samples  motif  models (or possibly no model)  for  each 
site and thereby  optimally partitions motif-encoding regions into 
different  motifs.  It  can  also  be  used  to classify related  motifs 
(and  the  proteins  containing  them).  Another  Gibbs  sampling 
strategy  (column  sampling), which is applied within the  motif 
sampling  algorithm,  optimizes  motif  lengths. 

Porins  are a major class of bacterial  integral outer  membrane 
proteins  (iomps)  that  serve  as  diffusion  channels  for  nutrients, 
waste  products,  and  antibiotics  (Nikaido, 1992,  1994; Cowan, 
1993). X-ray and electron  crystallographic analyses of four bacte- 
rial porins  (the Rhodobacter capsulatus and Rhodopseudomonas 
blastica porins  and Escherichia coli OmpF  and  PhoE) reveal that 
they form trimers of 16-stranded  antiparallel  @-barrels  containing 
pores (Weiss  et al., 1990; Jap et al., 1991; Cowan et al., 1992; 
Kreusch  et al., 1994). There is evidence that  other  iomps,  for ex- 
ample,  OmpA  and  some specific uptake  channels,  also exist as 
@-barrels (Morona et al., 1984; Vogel & Jahnig, 1986; Nikaido, 
1992 and references therein). In such proteins many of the @-strands 
that  traverse  the  outer  membrane  would be expected to  share 
similar  environments  (a  hydrophilic  pore  on  one side of the 
@-sheet and  membrane  phospholipids  on  the  other);  therefore, 
it  is possible that  many  iomps  share repetitive motifs  correspond- 
ing to  these  strands.  Previous  predictions  of  @-strands in outer 
membrane  proteins  have been  limited to specific  families and 
have relied on global  multiple sequence alignments and biochem- 
ical heuristics  (Jeanteur et al., 1991,  1993; Schirmer & Cowan, 
1993). Here  motif  sampling is used to  automatically detect pat- 
terns  conserved  among very distantly  related  outer  membrane 
proteins (a  statistical  significance test is used to  distinguish  these 
patterns  from  chance similarities). When  applied  to  bacterial 
porins  of  known  structure  and related proteins,  the  sampler de- 
tected  similar  repeats that  correspond  to  alternating  membrane- 
spanning  0-strands. 

Results and discussion 

Gibbs  motif  sampling  for  detecting  multiple  motifs  and  for  de- 
tecting and classifying a single motif is  illustrated  using distantly 
related immunoglobulin fold  proteins and helix-turn-helix DNA- 
binding  proteins, respectively. It is then used to discover sub- 
tle,  repetitive  motifs in bacterial  iomps. 

Detecting multiple motifs: The immunoglobulin fold 

The sampler’s  general  applicability  is  illustrated by searching for 
multiple motifs in immunoglobulin  fold  proteins.  The  immuno- 
globulin  fold is a structural  domain  present  in  many  sequences 

including  proteins  that  function  in  the  immune system and cell- 
cell recognition, in  several types of  receptor  proteins,  and in 
other  proteins  with  various  functions  (Hunkapiller & Hood, 
1986; Williams & Barclay, 1988; Kuma et  al., 1991; Jones, 1993; 
Bork  et al., 1994; Harpaz & Chothia, 1994). It consists of  about 
100 residues forming  two  sets  of  antiparallel  0-strands usually 
stabilized by a disulfide  bond.  Members  of  the  immunoglobu- 
lin superfamily  have been  assigned to  four  different  sets, V, CI ,  
C2 (Williams & Barclay, 1988), and I (Harpaz & Chothia, 1994), 
having several distinguishing  features yet also  sharing  some 
structural  and  sequence similarities. This  superfamily  provides 
an excellent  test of  the  motif  sampling  algorithm because the 
proteins  are highly diverse and  contain  variable  numbers  of im- 
munoglobulin  domains  (from  one  to  four or more). 

Proteins  from  the  immunoglobulin  fold  superfamily (258 se- 
quences) were  retrieved from  the  SwissProt  database (version 
29) (Bairoch & Boeckmann, 1992) and, in order  to devise a  strin- 
gent test set, similar sequences were removed using PURGE with 
an  MSP  cutoff  score  of  60 (see Methods),  thereby leaving  a  set 
of 47 distantly  related  proteins  (with  an  average pairwise MSP 
score  of 35). Three  motifs were  specified for  the  search.  The 
sampler converged on  alignments of 66, 35, and 63  segments in 
32, 18, and 34 sequences, respectively (Fig. 1). These  correspond 
to  the A”B, C,  and  E-F  0-strands  of  the  immunoglobulin  fold 
that were previously detected by a combination of pairwise align- 
ment  and visual inspection  (Williams & Barclay, 1988; Harpaz 
& Chothia, 1994) and  to conserved  segments  observed in V- and 
C2-type  domains by Kuma et al. (1991). 

The  alignments  from  these  motifs  were  used  to  search 
the  SwissProt  database  for  additional  (unknown)  members of 
the  immunoglobulin  superfamily using SCAN with the  order 
option (see Methods).  Two  viral  proteins  (VGL2-EBV  and 
YF30-FOWPI)  had highly significant  matches  to  the  motifs 
( P  = 0.00001 and 0.0000002,  respectively) (Fig. 2A).  Neither 
VGL2_EBV,  which is a probable  membrane  glycoprotein 
(Mackett et al., 1990), nor  YF30-FOWP1, whose function is 
unknown,  had  significant  BLAST  matches ( P  I 0.01 using  a 
blosum62  scoring  matrix) to  any  protein with  Ig-like domains 
in  the  NCBl  nonredundant  database.  Another  protein,  the 
sodium  channel @, subunit  from  rat  (CINB-RAT),  showed 
marginally  significant  similarity  to  the  motifs ( P  = 0.03); the 
presence of  an Ig-like domain was confirmed by further  analy- 
sis (Fig. 2B), which revealed weak yet significant, nearly global 
similarity  to  one  protein, myelin PO, which is postulated  to  be 
the closest  relative to  the  ancestral  gene  for  the  immunoglobu- 
lin superfamily  (Lemke  et  al., 1988; Williams & Barclay, 1988). 
Because  all  Ig-like domains  appear  to be involved  in binding 
functions, it is worth  noting  that  the  sodium  channel 0, subunit 
seems to  exert  its  effects  through  binding to  the  sodium  chan- 
nel a subunit  (Bennet  et  al., 1993). 

Motif classification: The hth motif 

Proteins  are classified at  different levels of divergence (for ex- 
ample,  into  superfamilies,  families, or subfamilies)  depending 
on the  amount  of conserved sequence similarity. Similarly, a mo- 
tif model  that seeks to capture  the distinguishing  characteristics 
of  a set of  related sequences can  be  constructed  at  different lev- 
els of divergence with less stringent  models  corresponding to mo- 
tif  “superfamilies”  and  more  stringent  models  corresponding  to 
motif  “families” or “subfamilies.” The motif  sampler can  be used 
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motif A site  prob.  protein 
~SESLLKPLANVTLTCQAR 13  0.9345 AIBC-HUMAN 

motif B site  prob.  protein 
ETPDFQLFKNGVAO' 33  AI%-HUMAN 

ESSQVLHPGNKVTLTCVAP 
EFSPEPESGRALRLRCLAP 
PPFGGSAPSERLELHVDGP 
TWSGAVLAGRDAVLRCEGP 
PHTFESELSDPVELLVAES 
KKSEHGNEGDVGVLTCKSP 
LVWTWSGSNVTLNISES 
LSSVPSSAHGHLQLVCHVS 
QATLDVEAGEEAGLACRVK 

SQDLTMAPGSTLWLSCGVP 
PLVVKVEEGDNAVLQCLKG 

REVYLGKAGDAVELPCQTS 
SNTFYAREGDQVEFSFPLS 
PHCTTVPVGASVNITCSTS 
PKRWAELGQKVDLVCEVL 
WGGTVKVGEDITFIAKVK 
LEDTTDYCGERVELECEVS 
LTDQTVNLGKEICLKCEIS 
DNTVTVIAGNKLRLEIPIS 
LVNRLCHSGYMATLNCSVR 
PSWLASSHGVASFPCEYS 
PNTALLNEGDRTELLCRYG 
NREGYFNEGTEFRARCSVR 

TPHLEFQEGETIVLRCHSW 
PQWINVLQEDSWLTCRGT 

NIGYTLYSSKPVTITVQAP 
LPQLFLKVGEPLWIRCKAV 

KKSLIAYVGDSTVLKCVCQ 
EENVILEKPSHVELKCVYT 

TPEVKVACSEDVDLPCTAP 
THEKTPIEGRPFQLDCVLP 
SKDMMAKAGDVTMIYCHYG 
EKVIVYKQGQDVTIPCKVT 

KTSATVICRKNASISVRAQ 
LDWYPDAPGEMVYLTCDTP 

LSEPEVSEWTTVTVECEAP 
PKKLAVEPKGSLEVNCSTT 
LQPTLVAVGKSFTIECRVP 
NGTVTSLPGATVTLICPGK 
SVGKTLSPGTQVTTCCNSS 
PSTISAFEGTCVSIPCRFD 
WPPEVVAGTEVEVSCMVP 
NSSVEAIEGSHVSLLCGAD 
NGTWAVEGETVSILCSTQ 
LESHCAAARDTVQCLCWK 
PAREQLNLRESATITCLVT 
DREIYGAVGSQVTLHCSFW 
TQDERKLLHTTASLRCSLK 
PAWLTVSEGANATFTCSLS 
LPDWTVQNGKNLTLQCFAD 
LDKKEAIQGGIVRVNCSVP 
SSFTHLDQGERLNLSCSIP 
DAQFEVIKGQTIEVRCESI 

LSSKVVESGEDIVLQCAVN 
PAVFKDNPTEDVEYCCVAD 

TKWTVDLGRTVTINCPFK 
PEEVNSVEGNSVSITCYYP 

PELWEDLRGSVTFHCALG 

VKQEWAEIGKNVSLECASE 
PGNVTAVLGETLKVPCHFP 

KNNKNSGCRSPLTVHCSLG 
NHTHEVEIGKPASIACSAC 
PDGIVTSIGSNLTIACRVS 
DPKINVTIGEPANITCTAV 
PPLASSSLGATIRLSCTLS 
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PRPELTWKKDGAEI 
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PQPKIEWTIDGAIV 
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PLVKVTFFQNGKSK 

QGVKYSWKKDGKSY 
NLMNVTWKKDDEPL 

PKPLITWKKRLSGA 
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PPPLLTwMumNL 
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Fig. 1. Three  motifs detected in the  immunoglobulin family. Using three 
12-column models, each with an expectation  of 90 sites, the  sampler  con- 
verged on  the  three  alignments  shown.  These  sequences  contain  many 
low  complexity  regions  that  were  masked  prior to analysis  using  the 
method  of  Wootton  and  Federhen (1993). The predictive  probabilities 
with  which  the sites match  the  motif  are  indicated.  Asterisks (e) below 
the  alignments  denote  columns  selected by the  column  sampler  (see 
Methods).  Proteins  are  designated by their  SwissProt  identifiers. (Con- 
finues on facing page.)  

to  classify motifs in this  way by choosing  the  appropriate  pa- number of sites for  each  motif.  The stringency of the  search de- 
rameter  specifications. pends  on  the values chosen  for these parameters.  The  construc- 

As described  in the  Methods,  the  motif  sampler uses the  fol- tion  of  more  general  models  (tending  toward  superfamilies) is 
lowing search  parameters: k ,  the  number  of  motif  models; favored by specifying a small  number of models  each  with rel- 
Ci=, , , , k r  the  number  of  columns  (i.e.,  the  minimum  motif atively few columns  and a high number  of expected  sites  (say 
width)  for  each  of  the k models;  and ei,, , . . k ,  the expected k = 1, C, = 12, and el = 2 or more  per sequence). Conversely, 
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motif C site prob.  protein 
FHLNAVALGDGGHYTCRY 0.9985 AlBG-HUMAN 
FELHNISVADSANYSCVY 
LELIFVGPQHAGNYRCRY 
LTIQNIQYEDNGIYFCKQ 
LIILGLVLSDRGTYSCW 
YTIEGKVEDHSGVYECIY 
RILKLNIEQDMGDYSCNG 
LYISKVQKEDNSTYIHRV 
LFIFNVSQQYGGFYLCQP 
LLLPRATAQDAGKYYCHR 

LVIKDLEVADSGIYFCDT 
SLKEFSELEQSGYYVCYP 

LSLSWPELQDGGTWTCII 
ITMHRLQLSDTGTYTCQA 
LTLNKFSKENEGYYFCSV 
LSIMNVKPEDSDFYFCAT 
MQIIKAKDNFAGNYRCEV 
LNIDNCQMTDDSEYYVTA 
LIIEGATKADAADYSWT 
LVIDHALTEDEGDYVFAP 
LVIDIAEPDDSGVYHINL 
IFIRKAERSHSGKYDLQV 
LEIGKPSPYDGGTYCCKA 
LTIQGLRAVDTGLYLCKV 
VSIERVKASNNGQVKCSL 
SYRFKANNNDSGEYTCQT 
FSIPQANHSHSGDYHCTG 
MVILKMTETQAGEYLLFI 
AFVSSVARNDTGYYTCSS 
LKIKHLLEEDGGSYWCRA 
LKIRNTTSCNSGTYRCTL 
ITIKSLTARDAGTWCAF 
LVFLRPQASDEGHYQCFA 
YEIKGWKDNSGYKGEPV 
LLFKTTLPEDEGVYTCEV 
LVIKGVKNGDKGYYGCRA 
LTIQVKEFGDAGQYTCHK 
LVLRAVQVNDTGHYLCFL 
LLLSTLSPELGGKYYFRG 
LDLEEVTPGEDGVYACLA 
LELPAVTPEDDGEYWCVA 
IVIHNLDYSDNGTFTCDV 

YNILDTRRNDSGIYLCGA 
ITFWNTTLDDEGCYHCLF 

VYSVMAMVEHSGNYTCXX 
YFIPEVRIYDSGTYKCTV 

DFTKIASKSDSGTYICTA 
WKQKASKEQEGEYYCTA 
VNIAQLSQDDSGRYKCGL 
WINQLRLSDAGQYLCQA 
WITGLRKEDAGRYKGA 
VILNQLTSPDAGFYWCLT 
LTLNLWRADEGWYWCGV 
LTLLDVNINDSGNYTCTA 
LEFTEVYKKENGTYKCTV 
LKFLPARVEDSGIYACVI 
LFIDNVTHDDEGDYTCQF 
LTLANFTTKDEGDYFCEL 
YLILNPTQSDSGIYICIT 
ITIEDVRKNDAGYYTCVL 
LNINPVKEEDATTFTCYA 
LIIHNPELEDSGRYDCW 
LSISELQPEDEAWYCAV 
tt t  * *  **** * * 
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VB16-VACCV 

VBl9-VACCC 
VPRl-MOUSE 

Fig. 1. Continued. 

more  specific  models  (tending  toward  subfamilies)  are  favored 
when  the  number  of  motif  models  and  the  number  of  columns 
are  increased  and  the  expected  number  of sites is decreased.  It 
is important  to  stress,  however,  that  (due  to  its  Bayesian  statis- 
tical  basis) the  sampler will only  subclassify a motif when war- 
ranted by the  data  (despite  the  parameter  settings selected). 
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Motif  classification is illustrated using the  hth  motif  (Bren- 
nan & Matthews, 1989; Pabo & Sauer, 1992; Treisman et al., 
1992), which is present  in  many  DNA-binding  proteins  includ- 
ing the  XylS/AraC (Gallegos et  al., 1993), GalR/LacI  (Weick- 
ert & Adhya, 1992), LuxR  (Stout et al., 1991), and LysR  (Viale 
et  al., 1991) families. A diverse set of 90  known  and  putative 
hth  proteins  was selected from  the  SwissProt (version  30), PIR 
(release 42) (Barker et al., 1993), and  GenBank (release 85) (Ben- 
son et al., 1993) databases.  When  the  motif  sampler was run  on 
this set using low stringency parameter settings ( k  = 1, CI = 12, 
and e ,  = 150), 100 sites in 84 of  the 90  sequences were detected 
(Fig. 3). On the  other  hand, when the  parameters were set to  
more  stringent settings ( k  = 3, C,,,.. = 18, and e i , , , .  . 3  = 20) 
three distinct hth  submotifs were detected: 17 sites in 17 proteins 
from  the luxR family, 18 sites in 18 proteins  from  the lysR fam- 
ily, and 47 sites in 44 sequences  from several other  hth  protein 
families  (Fig. 3 ) .  Notably,  the Bacillus subtilis CitR  protein 
(BSCITRA-1)  (Jin & Sonenshein, 1994) appears t o  contain 
two  distinct  types of motifs: a LysR-family  motif  near  the 
N-terminus  and a "multiple family"  motif  near the  C-terminus. 

A repetitive  motif in bacterial iomps 

Thirty-two  bacterial  iomps, which are or might be involved in 
substrate  uptake, were  selected from  the  SwissProt,  PIR,  and 
GenBank  databases for analysis. These  particular  proteins were 
chosen because they  constitute  an extremely  diverse set sharing 
no significant  pairwise  similarity; BLAST (Altschul et al., 1990) 
using  a blosum62  scoring  matrix  (Henikoff & Henikoff, 1992) 
is unable  to detect  significant  similarity ( P  c 0.01) between any 
of  these sequences.  Using an 1 1-column  model  (about 11 resi- 
dues  are needed to  span  the  outer  membrane),  the  sampler  con- 
sistently  converges on  an  alignment  of  about 130 segments 
(Fig. 4), with  the  number  of  repeats  detected  in  individual  pro- 
teins varying from  one  to  nine.  Note  that  the  column  sampler 
did  not select a longer motif width,  but  maintained a contigu- 
ous motif model of 11 residues  consistent  with the length  of the 
membrane-spanning  &strands. 

By the  Wilcoxon  statistical test (see Methods),  the  repeats 
present in these sequences  (designated  as  the  iomp  motif)  are 
clearly significant ( P <  0.oOOol); nevertheless, due  to their sub- 
tle nature, it is difficult to decide  whether or not certain sites ac- 
tually match  the  motif.  For this reason, it is helpful to  consider 
the predictive probability of matching  the motif returned by the 
sampler  for  each site (see Fig. 4 and  Methods).  Although by de- 
fault  only  those sites  with matching  probabilities 20.5 are in- 
cluded in the  alignment, it is sometimes  informative  to  also 
examine sites  with probabilities  somewhat less than 0.5 (as is il- 
lustrated in  Fig. 6) by using a program  option. 

The  model  obtained by the  sampler suggests  possible struc- 
tural features  of the corresponding  protein regions. The alternat- 
ing pattern  of  hydrophobic  and hydrophilic residues (Table 1A) 
is characteristic  of  amphipathic  @-strands.  Consistent with this, 
the  three repeats  detected in the  POR-RHOCA  protein (Fig.  4), 
whose  structure is known,  correspond  to  membrane-spanning 
&strands. This relationship  is  explored further  through analysis 
of several porins of known  structure  and related  sequences (see 
below). The  predominance of aromatic residues near one  end  of 
the motif is also characteristic  of  membrane-spanning  @-strands; 
aromatic  residues  have been observed  to  flank  membrane- 
spanning  segments  in a number  of  proteins  (including several 
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. .   . .  . . . .  . . . . . . .  
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Fig. 2.  Detection  of  putative  Ig-like  domains. A: Ig-like  regions  detected by SCAN in two  viral  proteins. B: Alignment of the 
rat  sodium  channel 01 subunit  (CINB-RAT)  with  the  rat myelin PO protein  (MYPOLRAT).  A  potential  CINB-RAT  Ig-like 
domain (detected  by SCAN  as  the  motifs  in  bold; see Results) was confirmed  by  the  following  analysis.  A  BLASTP  search of 
the NCBI  nonredundant  database  with  CINB-RAT  as  the  query  yielded  a  significant  match ( P  = 0.0024) to  but  one  protein, 
myelin PO from  horn  shark  (MYPO-HETFR);  the  rat  homolog was used for  the  Smith  and  Waterman (1981) alignment  shown. 
The  alignment  score of 161 was 16 standard  deviations  above  the  mean  score for 10,000 alignments  of  shuffled  sequences  using 
the  rdf2  program  (Pearson & Lipman, 1988). 

of the bacterial porins) where they are postulated to position the 
protein with respect to  the lipid bilayer (Cowan, 1993). 

The  iomp repeats are similar to a conserved C-terminal outer 
membrane protein pattern described by Struyve et al. (1991). In 
fact, 14 such C-terminal patterns were included in the alignment 
detected by the sampler (Fig. 4). Thus, it appears that a  pattern 
like that of Struyve et al. (1991) is also present at many inter- 
nal locations in outer membrane proteins. These bacterial iomp 
repeats also show significant similarity to regions in several mi- 
tochondrial  porins (to be described elsewhere; Mannella et al., 
1 996). 

P 5 0.02 level (Table 2). Assuming that these matches are bio- 
logically  significant,  what function might  they  imply?  IgA-specific 
serine protease from Neisseria gonorrhoeae has a  C-terminal 
helper domain  that associates with the outer membrane to form 
a pore for excretion of the protease  domain (Pohlner et al., 
1987). By analogy,  perhaps the repeat regions correspond to 
pore-forming  0-strands involved in excretion of these proteins 
across the  outer membrane. Notably, the  OmpP repeats are lo- 
cated in the C-terminal half of the  protein, which  is protected 
from proteinase K digestion in intact cells (Kaufmann et al., 
1994) (implying that i t  is  in the membrane). 

romp repeats in other bacterial membrane proteins  Repeats in bacterial p o r k  of known structure 

A SCAN search was performed on a set of 65 bacterial iomps 
from  the SwissProt database having functions  apparently un- 
related to substrate  uptake  (and that were consequently not in- 
cluded  in our initial set) in order to detect any additional proteins 
with the  iomp motif. Two secreted proteases (OMPT-ECOLI, 
and  OMPP-ECOLI)  and a protein involved in the export and 
assembly of  fimbrial  subunits  across  the  outer  membrane 
(FAND-ECOLI) yielded matches that  are significant at  the 

The motif model obtained from the extremely diverse initial set 
of bacterial outer membrane  proteins is likely to be  highly gen- 
eralized, and, conversely, repeats present in specific subfami- 
lies  of the outer membrane proteins are likely to share additional 
discriminating features. Therefore, in order to better character- 
ize the repeats present in bacterial proteins that  are related to 
the  porins  of known structure,  a subset of the iomps was ob- 
tained and analyzed as follows. 
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Table 1. Outer membrane protein motif models" 
~- - 

Residue frequency 
- 

C o l u m n C  G S T N D  E Q K R H  

A. Motif  model for the  outer membrane protein alignment in Figure 4 
1 . .  . 13 22 . . 15 9 
2 . .  . 10 14 . . 8 .  
3 . .  
4 . .  . 11 . 
5 . .  
6 . 30 19 . . 15 
7 . .  
8 . 38 . . 15 . 
9 

10 . .  . 13 . . 10 17 
11  . .  

B. Motif model for the porin-like protein alignment in Figure 5 
1 . . 18 . 10  15 . . 13 7 

(2) 
3 . .  . 20 12 21 8  7 . 
4 . . I 1  . . 12 . 
5 . .  

(6) 
7 . .  
8 . 64 . 
9 . .  

10 . . 1 1  10  10 . . 10 . 16 
11 . .  
12 . .  . 22 . 12  13 8 
13 . .  

W Y F  

16 
16 

28 

42 

11 

58 

11  

13 

7 

27 

13 

52 

- 

V 
- 

15 

21 

21 

23 

21 

34 

13 

I L  

22 

30 

I1 

16 

32 

22 

1 1  

M 
- 

5 

6 

A P  
- " 

14 

14 

19 

18 

31 

Information 
(bits) 

0.7 
0.3 
0.9 
0.4 
0.8 
0.7 
0.9 
0.8 
1 .o 
0.4 
1.6 

0.5 

0.7 
0.4 
1 .o 

- 

1.2 
1.2 
0.9 
0.5 
1.9 
0.6 
1.6 

- 

a Model target frequencies are shown (as percentages) for residues with elevated frequencies. Columns 2 and 6 in Table 1B were deselected by 
the  column  sampler (see Methods). 

A set of bacterial iomps, consisting  of the 32 proteins analyzed 
above and related proteins, was searched for sequences having 
at least marginally significant BLASTP matches ( P  5 0.05) with 
one or more of the porins  of known structure.  This yielded a 
set of 25 proteins from which  closely related sequences were  re- 
moved using PURGE with a  cutoff of 200 (because the E. coli 
porins with known structure [OmpF  and  PhoE]  are closely re- 

Table 2. Repeats detected in the Escherichia coli 
Omp7;  OmpP, and FanD proteinsa 

Segment Site Protein  (P-value) 
"_ .~ 

PNYRLGLMAGY 144 OMPT-ECOLI (0.013) 
EDFELGGTFKY 210 
NYYSVAVNAGY 249 
YNFITTAGLKY 305 

DNSVTGANVSY 488 FAND-ECOLI (0.015) 
RQFYSNSGVTY 538 
DNESVSLSTNY 579 

DNFEFGGAFKY 210 OMPP-ECOLI (0.020) 
NYYSVAVNAGY 241 
YNFITTAGLKY 303 

a SCAN  program  parameters used were R,,, = 3, and R,,, = 6. 

lated, only OmpF was retained). When the motif sampler was 
applied to the remaining set of 19 sequences, an optimum align- 
ment consisting of 70 segments with a motif width of  13 was 
found (Fig. 5 ) .  

For each of the  three porins with known structure, four re- 
peats were detected having several notable characteristics. They 
correspond to alternating membrane-spanning &strands, which 
are oriented with their N-terminal ends  outside of the bacterial 
cell and their C-terminal  ends on the periplasmic side of the 
membrane (Fig. 6). These strands occur on the membrane inter- 
face (as opposed to the trimeric interface) of the porin  &barrel 
(Fig. 6B). Comparison of the iomp motif model with this po- 
rin motif model (Table l)  reveals several similarities (e.g., al- 
ternating  amphipathicity,  and a  predominance of aromatic 
residues near one end);  the differences presumably reflect un- 
derlying functional distinctions. 

Although these porin repeats may only function in pore for- 
mation and retention of the protein within the outer membrane, 
it  is tempting to consider whether they might be involved in 
membrane  insertion.  This is suggested by the fact that deletion 
of the C-terminal segment of E. coli PhoE (which contains  this 
motif) completely prevents incorporation of the protein into  the 
outer membrane (Bosch et al., 1989; Struyve et al., 1991). In- 
sertion of a P-barrel structure into  a membrane may  be more dif- 
ficult than  insertion of a protein  containing  one or more 
hydrophobic  membrane-spanning  a-helices.  In  an  a-helix, the 
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A 
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Fig. 3. Classification of hth DNA-binding proteins. Putative hth regions were classified by  the motif sampler using high  strin- 
gency parameters. A: LysR family proteins. B: LuxR family proteins. C: Regions from other hth families that  were classified 
as a single group by  the sampler. D: Regions detected with low but not with  high  stringency  parameters. Regions detected un- 
der  low stringency that  were also detected under  high  stringency  are  red  in A, B, and C. (Continues on facing page.) 

polarity of the peptide backbone is neutralized by hydrogen 
bonds internal to the helix,  whereas for @-strands, the backbone 
dipolar moments are not neutralized until the strands become 
hydrogen bonded to adjacent strands. Therefore, if porin inser- 
tion requires specific facilitating factors, then perhaps these re- 
peats serve as recognition  signals for processive insertion of pairs 
of @-strands (one for each  conserved repeat) into the membrane. 

Conclusion 

The selection of a particular sequence analysis method depends 
on the nature of the similarities one is attempting to detect and 
on the availability of relevant  sequence data. The motif sampler 
addresses the problem of detecting subtle similarities in a rela- 
tively large, diverse set of related sequences. How does it dif- 
fer from other  methods (including the site sampler) and under 
what circumstances is  it to be preferred? 

Lawrence et al. (1993) have compared Gibbs sampling with 
several other motif methods and this need not be reiterated here. 
More recently, however, some closely related methods that uti- 
lize HMM for multiple sequence alignment have been  described 
(Baldi et al., 1994; Krogh et al., 1994). Like Gibbs sampling, 
the HMM methods utilize one-to-many sequence comparisons 
in conjunction with an iterative procedure that eventually con- 
verges on  an optimum alignment. Unlike the Gibbs methods, 
which are stochastically based, the HMM methods are EM based 
and consequently are more likely to get trapped in local optima. 
And,  as currently implemented, their main application has been 
for gap-based global alignment of relatively closely related se- 
quences. Because the Gibbs methods have been applied to de- 
tecting subtle block-based motifs, a more extensive comparison 
is not appropriate  at this time. Nevertheless, as  both  the Gibbs 
and HMM methods are developed further,  there is great poten- 
tial for cross fertilization of ideas between the two approaches. 
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site 
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12 
23 
250 
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66 
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Fig. 3. Continued. 

Neuwald and Green (1994) describe an efficient method to 
search exhaustively for statistically significant patterns and  to 
assemble the corresponding alignments. When no prior  infor- 
mation concerning the input sequences  is available, this method 
is often preferable over the Gibbs methods because it does not 
require specification of the number of types of motifs, their min- 
imum  lengths, or estimates of the number of occurrences of each 
motif. Because  it does not use a probabilistic motif model, how- 
ever, it may have difficulty detecting weakly conserved regions 
that lack sufficient exact matches to specific patterns. When 
prior  information concerning the input sequences is available, 
or when searching for specific types of motifs, the Gibbs meth- 
ods  are preferable because they can use this information to con- 
strain the search and increase sensitivity. 

The choice between the  site and motif samplers depends on 
the amount of prior  information available. When the number 
and distribution of the motif sites is uncertain (as was the case 
for the iomps), the motif sampler is preferable because it only 
requires a prior rough estimate of the  number of occurrences 
of each motif in the entire sequence set. When there is reason 
to suspect a specific number of occurrences for each motif in 
each sequence, however, this greater flexibility will result in a 
loss of sensitivity for two reasons: (1) because many ways of dis- 
tributing the motif sites among  the sequences must be consid- 
ered; and (2) because groups of closely related (i.e.,  highly 
correlated) motif sites are more likely to bias the model against 
distantly related sites. Therefore, in this case, the site sampler 
is preferable because it can take  advantage of this prior infor- 
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segment site prob.  protein 
GNYTVGLGYEK 159 0.9005 PORI-RHOCA 

DVTYYGLGASY 259  0.6200 
KAYGLSVDSTF 230  0.8795 

NRIDLYTGYTY 107  0.7655 NOOOPC I ~~ ~~ ~ - 
LNFRVGAGLGF 125  0.7870 
SEVKFOLNSRY 178  0.7570 
NGWGFGLGANI 206  0.8395 
REYGLRVGIKF' 262 0.9290 
DVYYAGLNYKN 211  0.8315  NMPORAPIS-I 
DQIIAGVDYDF 340 0.8865 
NAASVGLRHKF' 376 0.8685 
SQWALRVKYNF 205  0.9455  S42207 
DWLTVRPNLOY 420  0.8875 
INNGIOVGAKY 199  0.5285 OMpzLHAEP4 - 
KIAYGRTNYKY 217  0.6775 
NGVLATLGYRF 238  0.%55 
KRYFVSPGFOY 273 0.7610 ~~ 

KSVGVGLRWF' 351  0.9240 
NDYGTSVNLGY 460 0.8455 IUU13%lLI 
DGVSLGGNVFF 478  0.8180 
NSYYVGLGHTY 521  0.9955 
KYYKLSADVOG 599  0.6320 

WNGSVRGRVGY 113  0.7775  RLROPB-I 
SRIRASTGVGF 751  0.5380 

FGYTVGAGVEA 155 0.6960 
NNITTRLEYRY 169  0.9825 
NSVKLGIGVKF' 201  0.9345 

VNPYVGFEMGY 66 0.6485 
NTWYTGAKLGW 26  0.7430  OMPA-ECQU 

DNGEaSLGVSY 179  0.8835 
DWWHOSYNWG 33 0.6080 TSX-ECOU 
KEWYFANNYIY 122  0.5995 

DWWHYSWARY 247  0.7980 
STWYMGLGTDI 143  0.8175 

WGGYLWGYNF' 284  0.8190 
DRPTFSAGAVY 68  0.8715 FADI-ECOLI 
NAWSWLGFNA 165  0.5855 
DAYRIALGTTY 350 0.6010 
DNWTFRTGIAF 364  0.9855 
KDASVDVGVSY 406 0.8600 
KAWLFGTNFNY 436  0.9330 
DTTYARLGFKG 55  0.6250 NMPC-ECOU 
DGFGFSATYEY 193 0,9540 
FDFGLRPSVAY 287  0.6820 
KYVDVGATYYF 315 0,6570 
DIVAVGLWOF' 355  0.6715 

segment site  prob.  protein 
ROYYLNSNYTI 234 0.8055 PORD PSEAE 
K H H E T N L M Y  389  0.8655 
DQNEFRLIVDY 428  0.8950 
NVVHLGLOYAY 226  0.9820 POW-PSEAE 
DGLVMRLOYVF' 430  0.5525 . 
KSFYFDTNVAY 81 0.9680 LAMB_ECoLI 

~ 

PGGTLELGVDY 208  0.7545 
KGLSOGSGVAF 269  0.5505 
WTVGIRPMYKW 331  0.5785 
DEWTFGAOMEI 434  0.8525 
AAYPLRLRYKF 25  0.6315 TPSO TREF'A 
RRKLASLGYOF 369  0.7925  FECA-ECQU 

GNWTITPGMRF 491  0.9505 
SAHEVGVGYRY 433  0.9980 

RTWELGTRYDD 571  0.6565 
DNVSIYASYAY 635  0.9335 
PKHKGTLGVDY 665  0.6080 
GNWTFNLNSDF 678 0.9705 
KEFHIEPLLRY 347  0.5355 VnrqVIBcH 
WNYEFYTRHRF 496  0.9475 
SYWVANAOLAY 629 0.6005 

NRVTLNLGVRY 623  0,9980 
KKVLVDANLGW 434 0.5600 OAR-MYXXA 

DNVTVYLNRTF 827  0.8680 
DGWLAOANYTW 839 0.8980 
NALSASVGVSY 908 0 . W  
ROVRFGIRYTF. I051 0.9285 
RSWLFRPGFRF 310  0.9835 TBPlLNElOo 

. .~ ."~.  ~ 

~ 

WADYARLSYDR 422  0.5340 

DYYYOSANRAY 514  0.6735 
IRHNLSVNLGY 493  0.5235 

RWADVGAGLRY 594  0.5680 
SRYWGSGYDO 789  0.5440 
KHFTLRAGWN 858  0.7925 
RNYTFSLEMKF' 905  0.9885 
KNPMSGTGLRW 815  0.6240 NFR.-ECOU 
WPHKVSLGVEY 955  0.9365 
LYPYVGVGVGR 141 0.6080 ALKL-PSEOL 
WAPAFOVGLRY 171  0.7985 
NSWMLNSDVRY 185  0.9545 
DPFILSLGASY 218  0.7485 
DTNAFSVGYAR 24  0.7875  PAK-SALTY 
FAWGAGVOKNP 147  0.5105 
NGFNVGVGYRF' 178  0.9595 
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segment site prob. protein 
KSYGALLNFGY 54 0.6055 OW-WBCH 
NADLSGLNYRF 70 0.7610 
GTYLTGSGVAY 91 0.8245 
KGYKTGVNYFH 147  0.6135 
KAYHAGGDFSY I% 0.6785 
NOWLVGATVAY 245  0.9880 
DVAGFPAGLFY 127  0.8220  OM3A RHILV - 
GTWAGLSVDE 168  0.5140 
DAWKVGLTVDY 304  0.9780 
ENFYAKASVOY 318 0.6490 
DG-VDAGY 485  0.7450  RIRTSS56A 1 - 
NAFVASAGIRY 509 0.8270 
KNVSASVLFDF 1 6 4  0.7740 FNOMPI I 
EKWLRPOYKY 187  0.7730 
NOYHLGFESDF 208  0.8325 

GGARVEYEYGY 126 05295 AhWo7862-1 
LNFALNLEYDF 222  0.9015 

FAYRVKAGLSY 335  0.7120 
FGGELGVRFAF' 399 05060 
DTPLTRVTVDY 220 0.9080 YEFCUA-I 
DOFGVRVNVLH 250  0.6345 
RTTAVSTGLDY 273 0.6405 
DRARTSLDVGY 286  0.8140 
WTWGSVGASR 352  0.5290 
ITHKVNLGYM 410  0.6300 
DKVSLMLGVRR 481 0.6145 
PWTRLDLGVRY 698  0.8955 
RALKLSVSWF' 748  0.7975 
GTWGIRAGOPF 61  0.7145 P S E O P R H - I  
KNASIEGGYRY I54 0,9055 
SOFYLGANYKF' I 9 0  0,9945 
GOWYLGVDANG 74 0.7965 F q A  
RNVOASVDYRY 170  0.9700 
ODVTVYLOTKF 272  0.5460 
DAISIRAGYYG 56 0.6060 OMPI-CHLPS 
WOVGLALSYRL 278  0.6210 
RAAHMNAOFRF' 392 0.6060 
SPYWOADLAY 31  0.7340  OPRI-NEIME 

SSLGLSAIYDF 136  0.6805 
IHPRVSVGYDF 76 0.9570 

FKPYIGARVAY 152  0.8815 
PKLTLDTGYRY 226  0.8990 
KTHEASLGMRY 248  0.9930 

Fig. 4. Motif  detected  among  bacterial  iornps.  Thirty-two  distantly  related  bacterial  iomps (see text)  were  searched for  a  single 
motif ( 1  1-column  model)  with  a  prior  expectation of 130  repeats.  C-termini  are  indicated  with  asterisks.  The  alignment is the 
optimal of 300 independent  runs.  Proteins  are  designated  by  their  SwissProt,  PIR, or GenBank  identifiers,  except  for  FopA, 
which is taken  from  Leslie  et  al.  (1993). 

mation  to decrease the uncertainty about  the alignment and  con- 
sequently yield greater sensitivity. 

The  original site sampler used an  information per parameter 
(ipp) (Lawrence et al., 1993) criterion  for  determining  optimum 
motif  width. For statistical  reasons, it could  not  be used for  the 
motif  sampler.  Even  for  the site sampler,  however, it does  not 
necessarily yield optimum  results.  For  example,  the  ipp values 
for the  optimum  pattern  widths  of 18-21 residues  reported by 
Lawrence  et al. (1993) for a set of 30 hth  proteins  can  be ex- 
ceeded by using  a (biologically  unrealistic)  pattern width of  3. 
Width  optimization by column  sampling (which has  also been 
added  to  the  site  sampler)  avoids these problems  and  the need 
to  perform  multiple  runs using different  model  widths. 

Different  methods  often have complementary  strengths,  and 
the choice  of  which method  to  use  depends  on  the  nature  of  the 
search  being  conducted. A useful  strategy  for  detecting  motifs 
in uncharacterized  protein  families  (where  prior  information is 
minimal) is to  first  perform a very broad  search  using,  for ex- 
ample,  the  method  of  Neuwald  and  Green (1994) to  get  an  ini- 
tial  idea  about  the  numbers  and  types  of  motifs  present.  Then 
a more specific search  can  be  performed  that,  depending  on  the 
nature of these motifs, uses one  of  the  Gibbs  samplers.  Finally, 

the  SCAN  program  can  be used to  search  for  other  proteins 
matching the motifs found. Application of the  appropriate  tools 
in this way is useful  for  probing  the  relationships between dis- 
tantly  related  sequences,  which,  in  turn, helps to highlight key 
structural  and  mechanistic  features  important  to  protein 
function. 

Methods 

The  statistical basis for  the  motif  and  column  sampling  algo- 
rithms  and  the  Wilcoxon test is given in Liu et al. (1995). 

Motif sampling 

The motif  sampler  partitions the  input sequence into regions cor- 
responding  to a specified number  of  motif  models,  including a 
"null" model  representing  those regions that  contain  no  motifs. 
To accomplish this, it  maintains two evolving data  structures  for 
each  of  the  (non-null)  motifs: (1) an  alignment of sequence seg- 
ments;  and (2) a corresponding  residue  frequency  model  con- 
sisting  of  target  probabilities  obtained  from  the  observed 
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KTQDVLLVAQYQF 275 0.9955 
LVNYFEVGATYYF 313 0.5910 
SDDTVAVGIWQF 350 0.9980 
DNDIAFVGMYKF 1 9 0  0.9980 PORIJUiOBL 
AGWVTLYGNYAF zu) 0.7770 
ADTAYGIGADYQF 249 0.9635 
NETVADVGVRFDF 277 0.96H) 

LGDAWKVGLTVDY 302 0.9850 
SSAEWAVAAEYAI 266 0.8215 OhBA-RHILV 

SYSGMFGIGYSF 174 0.7225 SI6480 
TPRSYGLGGSYDF 244 0.8195 
KANSYMVGLSAPI 3133 05860 
KMNVFSLGYTYDL 338 0.9880 
KSTAVGVGIRHRP 373 0.9995 
SNTTWSLAAAYTL 273 0.9840 POW-F'SEAE 
DQNEFRLIVDYPL 428 05100 
LVEGLNFAIx)YQG 162 0.7(120 S34263 
NGDGPGMSTSYDF 199 0.7555 
TAEAWTIGMYDA 250 0.9065 
RTQNFEVVAQYQF 294 0.9840 
LVKYVDVGMTYYF 3 4 1  0.9660 
TDDIVGVGLWQF 382 0.9980 
GLDGLYII;AWYLL 164 0.8310 HIhlOMPZE-1 
ISNGVQVGMYDA 200 0.9305 
REQAVLFGMEKL 334 0.8370 

RTTAVSTGLDYRG 273 0,7340 
PWTRLDLGVRYTU 698 0.9000 
DPRALKLSVSWF 746 0.6545 
t tt. ..ttttt 

SQAVLRVGLRHKF 372 0.9985 
KEFSFKLGGRLQA 54 05030 PORF-F'SEAE 

residues  at  each  position in the  alignment  with a small  number 
of residue  pseudocounts." The  target  probabilities  are given by 

where c ~ , ~  is the  number  of  residues of type r at  alignment  po- 
sition i (from l to  the  motif  width w), b, is the  number of 
pseudocounts of type r, cis  the  number of segments  in the align- 
ment,  and b is the  total  number  of  residue  pseudocounts.  The 
pseudocounts  are  distributed  among  the br proportional  to  the 
background  probabilities (q,), which are  just  the  amino  acid 
frequencies in the  input sequence set.  The  goal is to  identify  the 
most probable motif  models by locating  those  alignments (called 
optimum  alignments)  that  maximize  the  ratios  of  the  corre- 
sponding  target  probabilities  to  the  background  probabilities 
(i.e.,  the  likelihood  ratios). 

More specifically, consider k different  motifs  of  lengths w I ,  
w z ,  . . . , wk in a set of S sequences  with  lengths P I ,  Pz,  . . . , P,, 
so that  there  are  at  most 

possible sites for  the  ith  motif.  This  situation is represented by 
k + 1 motif  models Mo, M I ,  M,,  . . . , Mkr where Mo is the null 
model having target probabilities equal  to  the  background  prob- 

4Pseudocounts arise naturally in the Bayesian approach we have 
taken and avoid zero probabilities for unobserved residues. 

Fig. 5. Motif detected in  bacterial porins of 
known structure and related  outer  membrane 
proteins. Nineteen bacterial proteins were 
searched  for a single motif (1 lcolumn model) 
with  a  prior expectation of 100 repeats. The 
structures of PORI-RHOCA (R.  capsula- 
f u s  porin), OMPF-ECOLI (E. coli OmpF), 
and PORILRHOCA (R.  blasficu porin) are 
known (see Fig. 6). The alignment is the op- 
timal out of 1 , o o O  independent  runs.  Proteins 
are designated by  their SwissProt, PIR, or 
GenBank identifiers. 

abilities.  Let ni represent the  number  of sites that  match  the  ith 
motif.  Although  the ni are initially unknown, given what is 
known  about  the biology of the  sequences  being  analyzed  and 
depending on the  desired level of  stringency  (i.e.,  the  amount 
of  similarity  shared by the  segments in the  alignment), a prior 
expectation e; for  each ni can  be  made.  (In Bayesian statistics 
e, t N, corresponds  to  the  prior  probability  that  the  ith  motif 
will occur at  an  arbitrary site in the sequences.) As described be- 
low and in the  Appendix,  the  algorithm  updates  these  prior ex- 
pectations to posterior  expectations  as it adaptively  learns  from 
the  data  the  number  of  segments  corresponding  to  each  motif. 

The  sampler is initialized by randomly selecting e; nonover- 
lapping  segments  for  each  motif kt,=, , . , k to  create  the  initial 
alignments. Then it iteratively performs  the following two steps. 
(1) Select a site (in succeeding iterations,  this  step is applied to  
succeeding sites  in the  sequences); if this site  is in  one  of  the 
alignments, remove it and recalculate the  target probabilities for 
the  corresponding  model. (2) Sample  one of the  models  (possi- 
bly the null model)  proportional  to  the  likelihood  that  the se- 
lected site was derived  from  that  model.  In  doing  this,  each 
model is weighted by the  posterior  probability p j  that  an  arbi- 
trary site belongs  in  that  model (see Appendix) so that  the j t h  
model is sampled  proportional  to 

-JJ- Pj q, i s 

1 - ~ j  i = l  q s ,  
(3) 

where si is the  residue  observed  at  the  ith  position  of  the seg- 
ment  at  the site, qj,i,r is the target  frequency for residue r a t  po- 
sition  i of  the j t h  model,  and q, is the  background frequency  of 
residue r. 
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Fig. 6. Locations of conserved  repeats 
within  bacterial porins. Tracing of ct- 
carbons  are  shown as ribbons or strands. 
Aligned segments from Figure 5 are 
highlighted in red. A: R .  capsulatus 
porin (3POR). The segment  at site 228 
in PORI-RHOCA  (“DHKAYGLSVD 
STF”), although not detected by the 
sampler, is highlighted  in orange be- 
cause of its location and  relatively  high 
probability of matching  the motif ( P  = 
0.258) (by default P 2 0.50 is required 
for  detection). B Trimeric R. capsulatus 
porin  viewed from above, showing  that 
the conserved  repeats  occur  at  the  mem- 
brane  interface. C. E. coli OmpF  porin 
(IOMF). D: R. blastica porin (IPRN). 

Intuitively, the reason this simple iterative procedure works tiguous  columns w,,, L C, are used (“turned-on”)  in the 
is that  the more  accurate  the models constructed  in  step 1, the residue frequency model. Then, using a column sampling pro- 
more  accurate are  the sites selected for those models in  step 2 cedure, an initially contiguous C-column model is fragmented 
and vice versa. Consequently, once a few of the correct segments by iteratively applying the following two steps. (1) Select an on- 
have been selected by chance the model favors the selection of column either at random or proportional to how information 
additional correct segments in further iterations, ultimately con- poor it is and  turn it off. (2) Sample  one of the wmax - C + 1 
verging on  the optimum alignment(s). off-columns proportional to how information rich it is and  turn 

it on. Specifically, the probability of sampling the  ith column 

Column sampling 
“ 

Positions  in a polypeptide chain that  are  important  for protein 
structure or function  often  tolerate few substitutions. We de- 
scribe these positions as being information rich because they 
contribute the most information about  the locations of motifs. 
Well-conserved positions in locally aligned protein sequences, 
however, are often  separated by  less conserved (or information 
poor) positions. For example, the  three most informative posi- 
tions in an alignment of hth regions from DNA-binding proteins 
are separated by positions containing substantially less informa- 
tion (Fig. 7). Consequently, because the sampler detects subtle 
patterns by optimizing the information  content of the evolving 
motif model@), a more nearly optimum motif width may be ob- 
tained by using only the most  informative positions. 

This is accomplished by introducing  the  notion of fragmen- 
tation where only C columns, out of a specified number of con- 

into  the model is proportional to 
- - 

r ( C i , r  + b r )  

7 1 797‘ J 
where I’( ) is the gamma  function  (the  theoretical basis for 
Equation 4 is  given in Liu et al. [199S]). Thus, after each itera- 
tion, unless the same column happens to be chosen in both steps, 
a column of the evolving model will have moved. In order to 
avoid biasing the model toward longer widths, however, these 
column move operations need to be weighted, as is described in 
the Appendix. Alternating between column sampling and mo- 
tif sampling can increase the likelihood of converging on the op- 
timum alignment because as the motif sampler improves the 
evolving alignment this increases the column sampler’s ability 
to locate the most  informative columns and vice versa. 
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Fig. 7. Position  dependence of information content within the hth mo- 
tif. Estimated  information  (in bits) corresponding  to  alignment  positions 
for the 30 hth  regions  described by Lawrence  et al. (1993). The  expected 
information content under the null model is 0.785 bits  (solid  line) with 
an SD of 0.191 (dashed  lines  correspond  to +2 SD); expected  values were 
estimated using the  average of 10 optimal  alignments of  randomly shuf- 
fled  sequences.  Note that three high information sites (positions 6, IO, 
and 16) are separated by low information sites (positions 8 and 13). 

Near-optimum sampling 

For subtle  motifs,  there  are  often  many closely related  align- 
ments  that  are  near  the  optimum.  Consequently, a motif site 
may  not  be  present in the single  best alignment  found, even 
though it is present in many  of  the  near-optimum  alignments. 
In  order  to best identify  those sites that  are  most likely to  con- 
tain  the  motif,  the  following  procedure (called near-optimum 
sampling) is used. After  one or more  independent  runs (as spec- 
ified by the  user),  the  sampler is reinitialized with  the sites ob- 
tained  from  the  best  alignment  found  (called  the  starting 
alignment).  Then  sampling  continues  from  among  the  near- 
optimum  alignments  for a sufficient  number  of cycles (e.g., 
1,000-2,000). The  fraction of times  that a particular site is in- 
cluded in  a  motif model is the predictive probability  that  the site 
matches  that  motif. By default,  those sites that  are  sampled  at 
least 50% of  the  time  are selected for  the  final  alignment (50% 
is selected as a cutoff  because  these sites are  more likely than 
not  to  contain  the  motif). 

During  near-optimum  sampling,  the model's column  config- 
uration is fixed in the  starting alignment state,  the model's prior 
expectation (e,) is set equal to  the observed number of  segments 
in  the  starting  alignment,  and  only  those sites having a  signifi- 
cant  chance  of  matching  the  starting  alignment  model  are  con- 
sidered.  These  modifications keep the  sampler  from  wandering 
away  from  the  ensemble  of  alignments  that  are closely related 
to  the  starting  alignment.  In  instances  where  the  sampler  fails 
to  find  an  optimum  starting alignment,  empirical analysis reveals 
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that  applying  near-optimum sampling  consistently  improves the 
(final)  alignment  as  measured by its likelihood  ratio. 

Wilcoxon signed rank test of significance 

Because the  sampler will find  the best alignment  present in the 
input  sequences,  even  chance  "motifs"  can  look  convincing. 
Therefore, a statistical test is crucial to  evaluating  such  align- 
ments especially when the  detected  patterns  are  subtle. Because 
many  parameters  are  optimized  during  the  sampling  procedure 
(i.e.,  the  target  probabilities  and  column  configurations  of  the 
motif  models,  and  the  number  of  segments in the  alignments), 
it is difficult to  determine  statistical significance analytically. 
Consequently, we have  developed a nonparametric test (Liu 
et  al., 1995) that  does  not  require a knowledge of  the  underly- 
ing probability  distribution; it is based  on  the Wilcoxon (1945) 
signed rank  test.  This test requires a  single control set of  shuf- 
fled sequences  having the  same lengths and overall composition 
as  the  input sequences. Under  the null hypothesis, sites  in the 
final  alignment  are  just  as likely to  be  drawn  from  the test set 
as  from  the  control set. The  statistical significance of  motifs is 
measured by determining  whether an excess of the best sites was 
drawn  from  the test set as  follows. 

The motif  sampler is applied to  an  input set consisting of both 
the  test  and  the  control sequences. Then  the m segments in the 
final  alignment  are  ranked by decreasing  near-optimum  sam- 
pling  frequency  (for  example,  the  segments  sampled least and 
most  frequently  have  rank 1 and m, respectively) and  control 
set ranks  are given  a  negative  sign. Under  the  null  hypothesis, 
the  mean  rank is expected to  be  near  zero,  but if the test se- 
quences  contain a statistically  significant  motif,  then a  signifi- 
cantly  large positive mean  rank will be found (as determined 
using a normal  approximation or an exact table derived by Wil- 
coxon [1945]). This test can  also be used with the Gibbs site sam- 
pler by pairing  each test sequence with  a control  sequence  and 
sampling  from  among  the  available sites  in both  sequences. 

Searching a database for matches to  motifs 

Once a  motif or a group  of  motifs is found, it is often  informa- 
tive to  search  through a database  for  additional  matching se- 
quences. Given an  alignment  corresponding  to a  specific motif, 
a profile  can  be  constructed by the  method of Gribskov et al. 
(1987, 1990), using linear weighting and a  blosum62  scoring ma- 
trix  (Henikoff & Henikoff, 1992). To  determine  the  probabil- 
ity ps of  obtaining  an  (ungapped)  profile  score  of  at least s for 
a specific sequence segment, we use the method of Staden (1989), 
which sums  the  probabilities associated with every possible seg- 
ment  having a score  greater  than or equal  to s. That  is, 

ps = c . . . c (s 5 2 si..,) ii q r ,  ( 5 )  
r I  r w  i=  I i= I 

where ri is the  residue  at  position i in the  segment, w is the 
length  of  the  segment, qr is the  frequency of residue r in  the 
database, Si,r is the  score  corresponding  to  position i and resi- 
due r in  the  profile,  and (s 5 C,Yl Si,r i )  is a boolean  statement 
having  value 1  if true  and value 0 if false.  (The  Staden  method 
computes ps using an efficient recursive algorithm  that requires 
integer profile scores.) Because ps is determined using the high- 
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est  scoring  segment  in a given sequence,  however,  a  simple  Bon- 
ferroni  adjustment  for multiple hypotheses  (Weisberg, 1985) is 
applied by multiplying p s  by the  number  of segments examined 
(i.e., by P - w + 1, where P is the  sequence  length). 

If the motif is internally repeated, a more general form  of this 
method  can be used to estimate the probability  of  finding at least 
R repeats with scores of at least s. This is done by modeling  each 
hit as a Poisson  random  event  with  an  expectation of 

h = ( P - w + l ) x p , .  (6) 

The  probability  of  finding  at least R such  repeats in  a sequence 
is then given by 

In  order  to  better  determine  the  optimum  number  of  repeats, 
Equation 7 is applied to  all R over some prespecified range  from 
Rmin to R,,, (for  example,  from 2 to 10 repeats). To adjust  for 
multiple R ,  this  probability is multiplied by 

or 2R-Rm1n if R = R,,, (8) 

according to  the weighting  scheme  of  Neuwald  and  Green 
(1994). Note,  however,  that in this case, some  caution is needed 
in interpreting  significant  hits  involving highly  similar repeats 
because  the  probability is based  not  only  on  the  distinguishing 
features  of  the  motif  but  also  on  the  number  of  repeats. 

For searches involving  multiple motifs  occurring in a specific 
order,  the individual motifs  are linked into a single profile,  and, 
for  each  sequence in the  database, a  linear arrangement of non- 
overlapping  segments with a maximum  score s is found.  Calcu- 
lation  of ps is then  similar  to  the single motif  case, except that 
psis  adjusted  for  the  number  of ways that  the  segments  can  be 
selected,  that  is, by multiplying by 

where k is the  number  of  motifs. 
For each of these cases, a second  Bonferroni  adjustment is 

made  for  the  number  of  sequences in the  database.  (Note  that 
all of  the  probability  adjustments  are  conservative.) 

Implementation 

The  motif  sampling  and  database  motif  search  methods  de- 
scribed  above were implemented  as  the C language  programs 
GIBBS  and  SCAN, respectively. (The  original  Gibbs  site  sam- 
pler is retained  as a GIBBS  program  option.)  The  default  set- 
ting  for w,,, in  the  GIBBS  program is 5 times  the  number of 
columns C in  the  motif  model;  final  alignments  are  based  on 
2,000 near-optimum samples. The  method of Claverie and States 
(1993) has been incorporated  into  the  GIBBS  program in order 
to allow optional  masking of low  complexity regions (Wootton 

& Federhen, 1993). A C  language program  PURGE implements 
a method  to  reduce  sequence  redundancy in protein  sets. 
PURGE  first  computes  the  maximal  segment  pair  score  for ev- 
ery pair  of  sequences in the  input set using  a blosum62  scoring 
matrix  (MSP scores are  defined by Altschul et al. [1990]). Then 
it  iteratively removes  the  sequence in the set having the  most 
MSP scores at or above a specified cutoff  scores, until  only se- 
quences  having pairwise MSP  scores less than s remain.  The 
source  code  for  these  programs is available via anonymous  ftp 
a t  ncbi.nlm.nih.gov. 
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Appendix 

Prior and posterior motif sampling probabilities 
The prior  probability of sampling  motif  model M, for  an  arbitrary  site 
is given by 

and  the  corresponding  posterior  probability is given by: 

where m, and a, are  the  number of sites  and  pseudosites,  respectively, 
that  are  associated  with  the  model, N, is the  total  number  of  sites,  and 
Ai is the  total  number of pseudosites.  As  the  sampler cycles through  the 
data,  the  probability  of  sampling  the  model  for  an  arbitrary site gets  up- 
dated  continually  based  on  the  observed  number  of  sites in the  model 
as  formulated by Equation A2.’ The  parameters a, and A, determine 
how  much  influence  the  data  have o n p , ;  when A, is greater  than N , ,  
the  pseudosites a, will carry  more  weight  than  the  observed  sites, m,, 
and when A ,  is less than Ni,  the  converse is true. ( In  Bayesian statistics 
the  number of pseudosites  specifies  the  degree of belief in the  prior  ex- 
pectation.) For convenience, we use a  fractional  weight W to specify 
the A, such  that 

W 
A ,  = N, - and a, =ei-  I - w  I - W  

W 
where 0 < W < I. (A3) 

The  default  setting  for W is 0.8. 

Weighted coiumn moves 
The  number of possible  column  configurations for a  C-column  model 
of  width w is given by 

where w 2 C 2 2. Note  that,  given  a  fixed  number of columns,  the 
wider  models  have  a  greater  number  of  possible  column  configura- 
tions  than  do  the  narrower  models; if C = 10, for  example,  then  there 

I f  the  prior  expectation ej is small,  then  early  updating  of  the  prob- 
abilities  using  Equation A2 may  cause  the  evolving  alignment  to  drop 
rapidly to  only  one or two  sites.  This  can  happen  when  the  model  tar- 
get  probabilities,  which  are  computed  using  the  small  number of ran- 
domly selected segments in  the initial alignment,  differ significantly from 
the  background  probabilities.  In  this  case,  unless  at  least  one of the 
aligned sites contains  a  motif,  candidate sites rarely get sampled, which 
causes  the  posterior  probability  to  drop,  which  then  causes  even  fewer 
sites to  be  sampled,  and so on.  In  order  to  minimize  this  effect  proba- 
bilities are updated  only  after several initial passes through  the sequences. 
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is only one configuration for w = 10, but 1,287 configurations  for 
w = 15. Thus, using principles similar to those encoyntered in statisti- 
cal thermodynamics, it is more likely that  the sampler will choose a col- weight = 
umn configuration  corresponding to a wider model simply because the 
possible configurations (or states) are  more  numerous. However, all ( c - 2  
widths can be sampled with equal probability (on average-assuming 
a  random statistical model) if the likelihood of a specific column move Note that this weight is greater than  one  for negative Aw and less than 
(producing a change in width Aw) is multiplied by one for positive Aw. 

( ~ - 2 ) ! ( w + A w - C ) !  
w + A w - 2   ( W - c ) ! ( W + A W - 2 ) !  

- 

1 -  
. ( A 9  


