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Abstract 

We describe a computer algorithm for predicting the three-dimensional structures of proteins using  only their amino 
acid sequences. The  method  differs from others in two ways:  (1)  it  uses  very  few energy parameters, representing 
hydrophobic and polar  interactions, and (2) it  uses a new “constraint-based exhaustive” searching method, which 
appears to be among the fastest and most complete search methods yet available for realistic protein models. It 
finds a relatively small number of  low-energy conformations, among which are native-like conformations, for cram- 
bin (lCRN), avian  pancreatic  polypeptide (lPPT), melittin (2MLT), and  apamin.  Thus,  the lowest-energy states 
of very simple energy functions may predict the native structures of globular  proteins. 
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During  the past 20 years, there have been several important ad- 
vances in computer algorithms intended to predict native three- 
dimensional structures of globular  proteins  from their amino 
acid sequences (Levitt & Warshel, 1975; Kuntz et al., 1976;  Wil- 
son & Doniach, 1989; Skolnick & Kolinski, 1990; Covell, 1992; 
Sippl et al., 1992; Vajda et al., 1993; Covell, 1994; Hinds & 
Levitt, 1994; Kolinski & Skolnick, 1994; Monge et al., 1994; 
Wallqvist & Ullner, 1994;  Boczko & Brooks, 1995). These meth- 
ods assume that a  native  protein  structure is a balance of many 
different  interactions, usually characterized using hundreds to 
several thousands of “knowledge-based” energy parameters de- 
rived from databases of known protein structures. Based on the 
thermodynamic hypothesis (Anfinsen, 1973) that  the native 
three-dimensional structure of a protein is the state of  lowest free 
energy, these algorithms explore many different protein confor- 
mations by sampling methods, such as Monte Carlo, molecu- 
lar mechanics, or molecular dynamics, to find the most  stable 
conformations. Each such method correctly predicts a few pro- 
tein structures but misses many others. 

A much simpler approach has recently emerged, based on 
using far fewer energy parameters that represent simple physi- 
cal quantities and are  not derived from knowledge  bases of pro- 
tein structures (see Srinivasan & Rose, 1995; Sun et al., 1995). 
This approach is attractive because it  should be much easier to 
learn how to improve few-parameter models than highly param- 
eterized ones, and  the number of  successful or partially success- 
ful predictions from these  simple models is arguably comparable 
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to those from the more complex  models. However, it  is not clear 
whether either the method of Srinivasan and Rose  (1995) or  that 
of Sun et al. (1995)  is consistent with the thermodynamic hy- 
pothesis, because Sun et al. use artificial native structure re- 
straints and Srinivasan and Rose use a hierarchical method to 
overcome computer conformational searching limitations. Here 
we develop an  algorithm called Geocore that uses an equally 
simple energy function combined with a new and powerful 
constraint-based exhaustive searching method. We show that: 
(1) native-like protein  structures  can be found  as  the thermo- 
dynamically stable states of such simple physical energy func- 
tions, and (2) exhaustive methods, normally dismissed as being 
computationally impractical for proteins, appear  to be viable al- 
ternatives to sparse sampling methods such as Monte Carlo and 
molecular dynamics. 

Description of Geocore 

As all computer folding methods,  Geocore has three  aspects. 

Chain representation 

Amino acids are represented at the united-atom level,  except po- 
lar hydrogens, which are explicit. Each atom  or united atom is 
a  hard sphere with its appropriate van der Waals (vdW) radius, 
RudW. Because van der Waals radii are larger than those im- 
plied by the minimum contact distances observed in proteins 
(Cantor & Schimmel, 19801,  we soften the potential using a 
steric allowance, & ( A ,  B )  for  atoms A and B, chosen partly 
by how much we  wish to restrict the  computer  search;  it is typ- 
ically 0.2-0.3 A per instance, and summed together adds  up to 
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a maximum of 5 A total allowance for the whole protein. Thus, 
the  minimum  contact  distance between atoms A and B is 
R,, , (A)  + R,,,(B) - & ( A ,  B ) .  Backbone conformations 
are represented using a discrete set of dihedral angles (6, $), as 
in the  rotational isomeric state (RIS) model of polymers (Flory, 
1969). The  peptide bond is assumed to be strictly planar. The 
4, $ angle preferences of the different  amino acids are taken 
from our survey of 25 small proteins in the Protein Data Bank 

2ACT, 2CCY, 2CYP, 2LZM, 2MHR, 2MLT, ZPTN, 2SNS, 
2WRP, 3B5C, 3DFR, 3INS, 4CPV, 4FXN, 4GCR, SCYT, 6PT1, 
7RSA - and are given in Table 1. Table 1 shows that  the maxi- 
mum number of +, $ choices depends on the amino acid: for ex- 
ample, glycine has six, proline has three,  others have four  or 
five. 

We search all of these rotational isomers uniformly, provided 
they are consistent with steric constraints (see below), and  thus 
we give no preference to any  particular isomer. The use of dis- 
crete rotamers trades off the flexibility observed in real proteins 
with the computational need to limit the conformational search- 
ing.  A premise of Geocore is that  the +, $ angles observed in 
proteins are determined more by nonlocal hydrophobic and hy- 
drogen  bonding  interactions and steric restraints than by +, 1c. 
angle energetic preferences. Because there are  no dihedral an- 
gle preferences in Geocore, local interactions  can be regarded 
as providing a set of options  for  the  conformational search 
rather than giving direction to  the search. 

(PDB)-ICRN,  IECA,  lMBD,  lNXB,  IREI,  lRNS, 1SN3, 

Potential  function: (a) Hydrophobic interactions 

Geocore assumes that hydrophobic  interactions are  an impor- 
tant sequence-specific structure-causing force (reviewed in Dill, 

1990;  Dill  et al., 1995). It has been found in lattice models that 
maximizing the number of contacts between nonpolar  groups 
is a very strong pruning constraint in the conformational search 
to find protein-like native states (Yue & Dill, 1995;  Yue et al., 
1995). Here we generate conformations with  maximal and near- 
maximal pairwise shared  nonpolar surface among  nonpolar at- 
oms, which is a  good  approximation to global minimization of 
exposed nonpolar surface area. 

We define polar and nonpolar united atoms by their heavy at- 
oms: carbon  and sulfur are  nonpolar; nitrogen and oxygen are 
polar. Native structures of proteins have  minimal  solvent- 
exposed nonpolar  surface areas (Eisenberg et al., 1984). As 
lowest-energy states, our algorithm seeks conformations with 
minimal exposed nonpolar surface area by maximizing the pair- 
wise shared  nonpolar surface area.  A  nonpolar atom is defined 
as exposed if it  contacts solvent or polar  groups (Yue & Dill, 
1995). When two  nonpolar atoms i and j share a  surface  area 
u, the  interaction energy is E (  i ,  j )  = -cu, where c is a positive 
constant such that  at  the closest separation, E (  i, j )  = -1. This 
defines an  HH  contact. Following Lee and Richards (1971), 
E (  i ,  j )  = 0 when the distance between the  atoms is greater than 
or equal to the diameter of a water molecule. In the spirit of De 
la Cruz et al. (1992), we define the shared  surface  area as  the 
solid angle from which sphere  A “sees” sphere B. As shown in 
Figure 1, the  shared  surface area is defined by the cone formed 
by  lines from the center of sphere A to become tangent to sphere B. 
If the solid angle of the cone is fl and  the radius of atom  A is r, 
then the shared  surface is 47rr2 x (W47r) = Or2,  where fl = 
27r [ 1 - -1, d is the distance between the atom cen- 
ters, and r’ is the radius of atom B. Based roughly on oil/water 
partition experiments, we set the energy per HH contact to be 
-0.7 kcal/mol. When two nonpolar  amino acids are  adjacent, 
they can have multiple HH contacts. 

Table 1. The +, $ angle options used by Geocorea 

6,$ Fr 6, $ Fr 6, $ Fr 6,$ Fr 6,$ Fr 6, $ Fr 

C 247, 144 63 287, 324 37 63, 21 I 189, 90 1 
M 296, 322 31 244, 140 23 63, 32 1 211, 62 1 
F 297, 317 71 264, 132 28 217, 158 12 251, 348 9 67, 31 4 131, 164 2 
I 292, 319 83 247, 132 75 259, 33 3 2, 127 1 80, 283 1 216, 186 1 
L 293, 323 147 264, 136 84 123, 303 2 46, 85 1 64, 18 1 217, 85 1 
V 296, 318 88 250, 132 83 243, 342 8 198, 164 5 68, 1 1 
W 296, 322 25 248, 149 22 249, 22 7 
Y 249, 138 74 289, 325 45 241, 65 8 72, 27 5 39, 120 2 186, 332 1 
A 295, 324 199 283, 143 42 209, 154 23 248, 25  18 61, 310 1 
G 292, 325 62 75, 198 35 152, 179 34 271, 173 33 96, 349 29 270, 25 9 
T 254, 142 95 286, 325 84 207, 188 2 232, 348 2 168, 55 1 228, 90 1 
S 246, 144 100 287, 331 89 47, 55 8 48, 287 1 157, 347 1 244, 236 1 
E 293, 322 145 263, 140 48 58, 43 4 242, 193 2 314, 64 1 316, 263 I 
N 293, 322 55 246, 134 55 66, 31 15 43, 229 2 288, 225 1 
Q 292, 327 80 251, 143 48 64, 247 2 244, 350 2 262, 226 2 8, 87 1 
D 290, 327 90 273, 134 45 205, 176 7 210, 87 7 62, 34 6 19, 280 1 
H 291, 324 33 256, 129 28 239, 35 7 234, 346 3 52, 44 2 260, 247 1 
R 294, 322 71 250, 144 39 232, 72 2 61, 39 1 148, 186 1 
K 294, 324 146 257, 137 84 69, 58 9 246, 18 5 275, 69 4 
P 294, 150 69 297, 330 60 357, 95 1 

123, 242 2 

a The “Fr” columns give the frequencies of  the 6, $ angles observed in the set of test proteins. 
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Fig. 1. Definition of shared surface area. 

Potential function: (b) Hydrogen  bonding 
and  unsatisfied polar burials 

Two  observations suggest that a consequence  of  the  tendency 
of  nonpolar  atoms  to  cluster is that  many  backbone  polar  at- 
oms  must  also  be  buried,  and  buried  polar  atoms in the  core will 
tend t o  cluster  together. (1) About 66% of  backbone  polar 
groups  (amides  and  carbonyl oxygens) are  buried  in  the  hydro- 
phobic  interiors  of  proteins,  but  they  are  almost  always  hydro- 
gen  bonded t o  a partner  (McDonald & Thornton, 1994). (2) 
Model compound studies and calculations show  that burying  po- 
lar  groups  without  hydrogen  bonding in nonpolar  media is en- 
ergetically  costly (Dill, 1990; Sharp  et al., 1991) (see Fig. 2). 
Based on these observations, we assign an energy penalty to  the 
burial  of  carbonyl or amide  groups in the  core  that  are  not hy- 
drogen  bonded. 

To determine  when  amides  and  carbonyls  are  hydrogen 
bonded, we use  the  following  criteria  from  crystal  data  (Baker 
& Hubbard, 1984; Taylor & Kennard, 1984; Legon & Millen, 
1987; McDonald & Thornton, 1994) and  ab  initio  calculations 
(Del Bene, 1975): (1) linearity:  the  donor-H-acceptor  angle is 

Fig. 2. United-atom model, indicating (top right) donor/donor conflict, 
(bottom left) acceptor/acceptor conflict, and (bottom right) a hydro- 
gen bonded pair. 

290'; (2) maximum length: the  distance between H and accep- 
tor is 52.5 A; (3) lone  pair  plane:  the  hydrogen  must lie within 
a dihedral  angle  of k60' of  the  lone  pair  plane. As an indirect 
consequence  of  nonpolar  collapse,  polar  groups  can  be  pushed 
to  protein  surfaces  where  they  can  form  hydrogen  bonds with 
water. Because those  interactions  are implicit  in the  nonpolar 
energy  term, we include in the  polar  energy  term  only  unfavor- 
able  polar  interactions in the  protein interior. This  term  has  two 
parts.  First, we count  the  number  of  "stand-alone"  buried  po- 
lar  groups  and give each  an  energy  penalty  of 1.5 kcal/mol, 
based on assuming that a  hydrogen bond  contributes  around -3 
kcal/mol.  Second,  "conflicting"  buried  polar  pairs, i.e., do- 
nor/donor or acceptor/acceptor pairings in otherwise  hydrogen 
bonding geometries, must be energetically costly. We assign con- 
flicts  an energy penalty  of 1.5 kcal/mol.  For k stand-alone in- 
terior polar  groups  and p pairs of  polar conflicts, the energy cost 
is ( k  + 2p) x 1.5 kcal/mol. 

Thus,  Geocore uses a very simple  energy  function, given ex- 
plicitly  in the  footnote  of  Table 3. Even  though we use only a 
single  parameter  for  the  hydrophobic  interaction,  that  inter- 
action applies to  each  nonpolar united atom  rather  than  to each 
amino  acid, so the  present  treatment  allows  for  the  individual- 
ity of  the 20 different  amino  acids. 

Constraint-based exhaustive searching 

Monte  Carlo or molecular  dynamics methods sample conforma- 
tional  space  sparsely.  Exhaustive  enumeration  of  conforma- 
tional  space  has  normally been considered  computationally 
prohibitive  for  protein  folding,  but it offers  the deepest  test of 
potential  energy  functions.  Here we describe a new method: 
"constraint-based  exhaustive searching." Found in lattice mod- 
els to  be  up  to 37 orders  of  magnitude  faster  than  brute  force 
searching (Yue & Dill, 1995),  constraint-based  exhaustive search- 
ing is a branch-and-bound  method  that  guarantees  that all glob- 
ally and near-globally optimal  conformations will be  found, 
while  neglecting less important  conformations. 

Constraint-based  exhaustive  searching  constructs  conforma- 
tions by sequential addition  of residues in depth-first order  (Ah0 
et al., 1974). On  the  search  tree,  the  nodes represent each  added 
amino  acid,  and  the  different  branches  are  the 6, rl. choices. 
When  all  the  monomers  are  added or a dead  end is reached, it 
backtracks. A complete  traversal  of  such a tree will be an ex- 
haustive  search  of  the  discrete set of  rotational isomers. Geo- 
core  performs a complete  search,  subject to  the  two  constraints 
that (1) no steric  overlap is permitted  and (2) the  chain  must  be 
compact  enough  to lead t o  a near-maximal  number  of  nonpo- 
lar  contacts.  Part  of  the basis for  the  search speed of  the present 
method,  compared  to  brute  force exhaustive  searching, is a rect- 
angular  solid  boundary  that  tightly encloses the  growing  con- 
formation.  An earlier  lattice  implementation of  the method (Yue 
& Dill, 1993,  1995) can  find a boundary  that is tight enough to  
be useful for  pruning  the search tree but is loose enough  to guar- 
antee retaining the globally optimal  solution. In our  current  off- 
lattice  implementation, which is presently somewhat  cruder  than 
the  earlier lattice  version, the  bounded region has a volume typ- 
ically about 60% higher  than  the  native  structure. 

We treat side chain  rotamers  as follows. Each  side  chain  di- 
hedral  angle  starts in its  most  common  rotameric  position,  ac- 
cording  to its PDB distribution. If the value of  the dihedral angle 
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causes a steric conflict, then the second most likely value for  the 
dihedral angle will  be tried. In this way, rotamer freedom is not 
neglected in the backbone  search,  but the computer cost is not 
prohibitive. 

The following simple estimate shows that  the drive to  form 
hydrogen bonds among buried polar groups can be a strong con- 
straint for pruning the  conformational search tree. A conse- 
quence of the clustering of nonpolar  atoms is that buried polar 
atoms will also  cluster, and this  pruning  can be treated in a 
search strategy (Yue & Dill, 1995).  Now we consider the  further 
pruning involved in the  formation of hydrogen bonds. Neglect- 
ing chain connectivity, if there are n main chain donors  and 
n acceptors,  then  there are n l  = n !  possible donor/acceptor 
pairings. But if any two polar  groups could pair, then the num- 
ber of combinations would be 

n 2 = C ( 2 n , 2 ) C ( 2 n - 2 , 2 ) - . . C ( 2 ( n - k ) , 2 )  

x C(2(n - k - l ) ,  2).  . . C(2,2) 

n 
= (2k - 1).  

k= I 

Because ( n 2 / n l )  > 2“”, only  a very small fraction of confor- 
mations having good hydrophobic cores will also have proper 
donor/acceptor pairings. This may contribute to the uniqueness 
of protein  structures. 

Results 

We ran  Geocore to seek the low-energy conformations of four 
short proteins:  crambin (lCRN), avian pancreatic polypeptide 
(IPPT), melittin (2MLT), and apamin (sequence: CNCKAPET 
ALCARRCQQH). This set of proteins was chosen simply be- 
cause it represents, as far as we know, all the proteins of known 
structure  that  are within the chain length that can currently be 
explored by our method.  Geocore  does  not  produce a single 
lowest-energy conformation that resembIes the  true native pro- 
tein at high resolution. Rather, Geocore produces a relatively 
small  ensemble  of conformations, among which some bear good 
resemblance to  the  true native structure. Our larger objective 
here is not to find an optimal energy function that can select a 
single “right  answer” for this small set of proteins,  but  rather 
to find  a  “simplest” energy function  “filter” that may  be useful 
ultimately on a wider set of proteins. 

Table 2 shows a typical run  for  IPPT, in which 1.9 billion 
nodes are visited and 0.19  billion conformations are constructed. 
The  runtime is proportional to  the number of nodes visited. On 
the average, 22,000 residue nodes can be searched in a  minute 
on a  Sparc 10 workstation. For the  run shown for  lPPT,  ap- 
proximately 8,217 conformations have  low energy, defined here 
as being no more  than 16 kcal/mol above  the global optimum. 
The  conformations are  found  to be reasonable by two criteria: 
(1) solvent-accessible nonpolar  surface  areas of representative 
conformations calculated with the ACCESS program (Hubbard, 
1991) are generally consistent with our counts of HH contacts; 

Table 2.  Test  run for IPPT with elongated conformation  boundarya 

Branch ~ H H  H B D Clusters C N RMSDrnm 

00 0.0 0 - 0 0 6 
010 294 17 4 130  39 18,284,976 178,572,575 4.49 
01 1 0.0 0 - 0 0 6 
012  290.9 33  0 954 239 7,269,757  82,036,747  4.52 
013 299.1 16 1 159 55 18,121,269 172,003,296 6.0 
02 279.6  20  2  2,311  1,150 15,613,685 167,665,002  4.3 

4.5 
4.79 
5.6 

- 

- 

03 297 24 4 105  32 37,356,998  398,636,852 

I1010 294.1  28 0 480 190 7,800,000  80,000,000 
1101 1 

1100 294.5 36 0 1,314 391 8,108,538  75,166,230 

0.0 0 - 0 0 6 
11012  291 .O 32 0 41 1 81 2,359,839 22,278,363 

298.7 27 0 355 200 3,989,473 36,125,063 
0.0 0 0 - 0 0 4 

112 292.4 7 0 685  130 18,378,400 170,745,454 
113 297.6 17 2 554 56 16,414,787 156,053,531 
12 283.4 19 2 527  142 9,770,495 
13 293 4 232 25,047,606  283,863,310  4.33 

115,898,918 

- 

11013 
1 1 1  

5.3 
5.2 
- 

4.77 
5.16 
4.43 

21 
2 0.0 0 - 0 0 6 - 

a Data  for lPPT were obtained with steric conflict allowance of 0.2 A and a conformational  boundary  of 33.5 x 16.5 x 14.5 A. Because a full 
search was not possible for  four 4, $ choices for every amino acid, we chose  arbitrarily to allow four 6, $ choices for the first 12 residues and three 
for the  remainder, because this choice introduces no more bias than any  other and still allows more flexibility than 3 choices uniformly along the 
chain. In this case, the $, $ angles that comprise the choice set are  the most frequent four (or three) in the PDB. “Branch” indicates the position 
on the search tree, in our numbering system; tHH is the maximum number of HH contacts; D is degeneracy, i.e., the number of conformations 
with energies that are  the same as or close to  the minimum. Cis  the  total number of constructed  conformations, and Nis the  total  number of (resi- 
due) nodes visited. The optimal  number of stand-alone polar groups and polar  groups in conflict is E ,  and the  optimal number of main chain hy- 
drogen  bonded  groups is H .  “Clusters” indicates the number of clusters for a given branch. RMSDrnin is the minimum Cor RMSD (in A) for  the 
low-energy conformations found in the branch relative to the native IPPT  conformation. 
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(2) the  nonbond  and  hydrogen  bonding  energies  of low-energy 
conformations  are  comparable  with  the  native  structures when 
calculated  using default  AMBER forcefield  parameters. We have 
not used subsequent energy minimizations or other refinements. 

To compare  the  computed  structures with the native proteins, 
we compute  RMS  deviations  (RMSD)  of  the Ca coordinates. 
To avoid  storing  too  many  conformations,  particularly  those 
that  differ by only a few bonds, we keep all the energies but  not 
all the  conformations. We record  the  coordinates  for a maxi- 
mum  of 400 low-energy conformations per branch. Beyond 400, 
we use a method designed t o  uniformly  record  the  conforma- 
tions.  For  example,  the  method  avoids  recording  two  confor- 
mations differing by only a single residue when the  total  number 
of low-energy conformations exceeds 400. 

Figures 3 and 4 show  the  distribution  of  energies  versus 
RMSDs  for lPPT  and  ICRN. Because many  conformations  are 
geometrically  similar, we define a set of  conformations  as be- 
ing  in the  same  “cluster” if their  pairwise  RMSDs  are less or 
equal  to 3.5 A. Compared  with  the  number of low-energy con- 
formations,  the  number  of  “clusters” is significantly  reduced, 
as shown  in  Table 2. On  this  basis,  the  most native-like com- 
puted  conformation  of l P P T  (as  determined  by  RMSD) is 
within the 1 0 0  lowest-energy clusters and  for  lCRN is within the 
200  lowest-energy clusters. 

In  our  model,  neither  energy  term  alone is sufficient t o  give 
native-like structures.  Table 3 shows  that  structures with too 
many HH contacts  are  too  compact  and restrict  hydrogen bond- 
ing, whereas  structures  that  only  have  good  polar  energies  are 
too  open (see Figs. 5 and 6). With  this  simple  energy  function, 
the  true  native  structure is always  better  than  any  enumerated 
conformation  by  at least 3-10%. This is evidence  that  the dis- 
crepancies between our best model  conformations  and  the  true 
native  structures  of  these  four  proteins  are  due to  our restricted 
conformational  choices,  not  to  flaws in the  energy  function. 

Native-like  low-energy conformations  are  shown in Figure 7 
compared  with  the  known  native  structures.  The  computed 
structures  shown  are  not  those having a global  minimum  of  free 
energy.  Rather,  among  the 100 or so lowest-energy conforma- 

12 t 0 0 . 

Fig. 3. Energy  versus RMSD for the low-energy conformations of 
IPPT. Each  point is a cluster  of conformations. The  native state, which 
has an energy  of -196.6 (Table 3). is not  shown  here. 
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Fig. 4. Energy  versus RMSD for the low-energy conformations of 
ICRN. The native state, which has an energy  of  -233.7 (Table 3), is 
not  shown here. 

Fig. 5. Energy distribution of  lowest-energy states for IPPT. Because 
Geocore uses only two energy quantities (the number of HH contacts 
[ t H H ]  and the number of unsatisfied polar burials  [see footnote of 
Table 31). the set of “best” conformations can be described without re- 
sorting to any particular choice of energy parameters, as was done in 
Table 3.  We show the best and  near-best  values for the two energy  pa- 
rameters, given as the x,  y coordinates here.  Heights  indicate the num- 
ber  of conformations found, on a log scale.  The  small  peak at ( x , y )  = 
(283, 1) is the native conformation.  The point labeled “NN”corresponds 
to IPPT #2 in Table 3. The valley separating the native  from  predicted 
structures implies that the 4, J. angle choices are too few in the present 
search to represent the native structure more  accurately. 

Fig. 6. Energy distribution of  lowest-energy states for ICRN. 
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C 

- Y  

B 

D 

H 
Fig. 7. Structure  comparisons of the  native  state with the  most  similar  structures  from  the  low-energy  ensemble.  Side  chain  at- 
oms  are  shown for 2MLT  and  apamin.  Crarnbin:  (A)  native, (B) predicted  (1CRN #2 in  Table 3).  1PPT: (C) native, (D) pre- 
dicted (1PPT #2 in Table 3) .  2MLT: (E) aative, (F) predicted,  RMSD = 2.85 A.  Apamin: (G)  native  (only C a  coordinates  are 
available), (H) predicted,  RMSD = 2.6 A .  
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Table 3. Energies of selected conformations  of ICRN and IPPT” 

L ~ H H  NHBMC BNH Bco C ,  E RMSD 

ICRN  Native 46 336 56 0 1 0 -233.7 0 
ICRN # I  46 330 16 7 5  4 -201.0 9.0 
ICRN #2 46 278 25 5 3  1 - 179.6 4.6 

IPPT Native 36  283 36 I 0 0 -196.6 0 
IPPT #1 36 290 3 4 3 1 -189.5 9 
1 PPT #2 36 274 31 2 1 0 -187.3 4.4 

a L is the  chain  length, tHH is the  number  of HH contacts, N H B M c  is the  number of hydrogen  bonded  main  chain  polar  groups, B N H  and Be- 
are  the  numbers  of  buried  stand-alone  donors  and  acceptors,  and C,  is the  number  of  main  chain  polar  conflicts.  The  total  energy E is 

E =  - 0 . 7 t ~ ~  + ~ . ~ ( B N H  4- Bco + 2c,). 

The  term  in  parentheses  is  the  penalty  in  Figure  5  for  donors  and  acceptors  that  avoid  hydrogen  bonding.  The  two  energy  quantities -0.7 and 1.5 
have  not  been  optimized.  The  disulfide  bond  energy is not  included  in  the  above  expression.  Instead,  the  requirement  that  sulfur  atoms  should  form 
disulfide  bonds is used  as  a  loose  constraint  in  the  conformational  search  for  ICRN.  It is loose  in  that  it  only  requires  that  a  sulfur  atom  partici- 
pates  in  a  disulfide  bond,  but  no  a  priori (e.g., native)  pairing is given. ICRN #2 is the  most  native-like  structure  in a complete  search (lowest RMSD 
relative to  native). l P P T  #2 is the  most  native-like  structure  in  a  complete  search  when  an  average  of 3.2 4, J. isomers  are  explored  per  residue. 

tions, we show here the single conformation  that has the best 
RMSD relative to  the native  structure. We show these figures 
only to indicate the degree to which Geocore  retains  a native- 
like structure in a small ensemble. We do not feel a more detailed 
analysis is currently  warranted. Many of the 100 low-energy 
structures have native-like features in common. The main result 
here is that despite the extreme simplicity  of the energy function 
(see also Srinivasan & Rose, 1995; Sun et al., 1995), it is ade- 
quate  for discriminating native from non-native  structures in a 
much more extensive conformational search than has been pos- 
sible before. 

Conclusions 

We propose  a very simple energy function, based on  the burial 
of  polar and  nonpolar  amino acids, that can recognize native 
structures of proteins. The  conformational search explores low- 
energy states  more extensively than previous methods. Native- 
like structures of four small proteins are found as a compromise 
between the tendency to form very good hydrophobic cores and 
to avoid burying unsatisfied or conflicting carbonyl and amide 
groups. We believe the main novelty of the present work for 
computational protein folding is  in its greater simplicity- fewer 
parameters and they are physical,  based on hydrophobic and hy- 
drogen bond interactions. This work suggests that there may be 
practical strategies for extensive conformational searching that 
find  stable  states of proteins  through use of very simple energy 
functions. As a practical matter,  the two main limitations at the 
moment are  the restricted flexibility dictated by the discrete set 
of 4, angles, which limits the accuracy with which the native 
protein can be represented by the computable  conformations 
and  the search speed for reaching longer chain lengths. 
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