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Abstract 

Models of ligand binding are  often based on  four assumptions: (1) steric fit: that binding is determined mainly by shape 
complementarity; (2) native binding: that ligands mainly bind to native states; (3) locality: that ligands perturb protein 
structures mainly at the binding site;  and (4) continuity: that small changes in ligand or protein structure lead to small 
changes in binding affinity. Using a generalization of the 2D HP lattice model, we study ligand binding and explore these 
assumptions. We first validate the model by showing that it reproduces typical binding behaviors. We observe ligand- 
induced denaturation, ANS and heme-like binding, and “lock-and-key” and “induced-fit’’ specific binding behaviors 
characterized by Michaelis-Menten or more cooperative types of binding isotherms. We then explore cases where the 
model predicts violations of the standard assumptions. For example, very different binding modes can result from two 
ligands of identical shape. Ligands can sometimes bind highly denatured states more tightly than native states and yet 
have Michaelis-Menten isotherms. Even low-population binding to denatured states  can cause changes in global 
stability, hydrogen-exchange rates, and thermal B-factors, contrary to expectations, but in agreement with experiments. 
We conclude that ligand binding, similar to protein folding, may be better described in terms of energy landscapes than 
in terms of simpler mass-action models. 
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Standard  assumptions  in  binding  models 

Ligand binding is important for protein function. A quantitative 
understanding of many biological binding processes has been gained 
through binding polynomial models (Wyman & Gill, 1990; Ackers 
et al., 1992; Di Cera, 1995), empirical equations that relate the 
fractional occupation of binding sites to free ligand concentration. 
This approach underlies Michaelis-Menten kinetics, Hill and  Scat- 
chard plots, and cooperativity and allostery as embodied in the 
MWC (Monod  et al., 1965) and KNF (Koshland et al., 1966) 
models, for  example. Despite the great power and widespread 
usage of binding polynomial models in biochemistry, they are 
incomplete and phenomenological. For a given protein and ligand, 
binding polynomial models do not tell us where or how tightly the 
ligand will bind, whether or not binding will induce a conforma- 
tional change, or whether the ligand will denature the protein, for 
example. Binding polynomial models begin by assuming some 
mass-action scheme for the binding process, and the binding and 
cooperativity constants  are then determined by curve-fitting to 
experimental data. Finding the right binding model for a given 
ligand-protein system is a matter of trial and error. 

A more complete binding model would predicr the binding sites, 
the binding constants and cooperativity, and the perturbations of 
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the protein, based on knowledge of the ligand structure and the 
amino acid sequence of the protein. Such models are far beyond 
the current scope of computational biochemistry. Nevertheless, we 
take a step in that direction by using a simplified statistical me- 
chanical model of protein-ligand interactions, for which we can 
exactly enumerate all possible protein conformations and binding 
modes. Our aim here is to describe such a model and its predictions 
for binding. 

First, we show that the model leads to many of the familiar types 
of protein-ligand binding, including “lock and key” and “induced 
fit” specific binding, ANS binding to molten globules, and ligand- 
induced denaturation, among others. We then explore some inter- 
esting and unconventional behaviors predicted by the model, many 
of which are not interpreted readily using simpler mass-action 
models. In particular, we address four premises in which the cur- 
rent paradigm of ligand binding is heavily rooted: (1) Binding is 
largely shape-determined, as embodied in the terms “lock-and- 
key” and “induced fit.” (2) Ligands bind principally to the native 
states of proteins with little or no interaction with the unfolded 
states. Here is a typical description (Creighton, 1993): “A general 
consequence of ligand binding is that the protein is stabilized 
against unfolding and is  less flexible . . . [This is] a consequence of 
the ligand binding more tightly to the fully folded conformation 
(N)  than to the fully unfolded state (U) and any distorted or par- 
tially unfolded forms that result from flexibility of the structure.” 
(3) Binding is highly localized. The main perturbations of the 
protein structure are assumed to be near the binding site. (4) Small 
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changes in the structure of a ligand or protein lead to only small 
changes in the  bound complex. 

These premises are usually supported by X-ray and NMR struc- 
tures of unbound and complexed proteins, and by the successes of 
structure-based drug  design methods (Kuntz,  1992;  Shoichet et al., 
1993; Bohacek & McMartin,  1994;  Strynadka et al., 1996). Never- 
theless, a few recent experimental results, particularly from hydro- 
gen exchange, are puzzling when interpreted using these premises. 
Here we develop a model that, unlike binding polynomial models, 
aims to connect structure to thermodynamics. Although the phys- 
ical model is simple, the statistical mechanics are rigorous so we 
can test such premises, rather than assume them. For reasons that 
will become clear below, we call  ours the Binding Landscape 
Model, to contrast it to those based on the premises above, such as 
the Lock-and-Key and Induced Fit models. The groundwork for 
connecting ligand binding to energy landscapes has been described 
in theoretical and experimental work  on small molecule binding to 
globins by Frauenfelder, Wolynes, and others (Frauenfelder  et al., 
1991). 

Modeling proteins using  the HP lattice model 

We model proteins using the two-dimensional HP lattice model 
(Lau & Dill, 1989, 1990;  Chan & Dill, 1991; Dill et al., 1995). A 
protein is represented as a sequence of H (hydrophobic)  and P 
(other) monomers  on a two-dimensional lattice. Lattice sites may 
be either empty or filled by a single monomer, and empty lattice 
sites are assumed to contain a solvent molecule. Each HH contact, 
formed when two nonsequential H monomers occupy adjacent 
lattice sites, is favored by a free energy E ( E  < 0), which is meant 
to capture the importance of hydrophobic interactions in protein 
collapse  and global stability (Dill, 1990). Hence, the free energy 
of a conformation is he, where h  is the number of HH contacts. 
The magnitude of E determines  the stability imparted by external 
conditions: large and negative E reflects conditions that are more 
stabilizing, such as lower temperature or lower denaturant concen- 
trations. Conformational entropy, the driving force for unfolding, 
enters the model through the exhaustive enumeration of all the 
possible chain configurations (see below). 

The disadvantages of the model are clear: atomic resolution is 
lost; conformations are restricted to a lattice; it  is in two dimen- 
sions; the energy function is simplified; and chains are unrealisti- 
cally short. Yet, despite  these disadvantages, the model has been 
found useful for modeling protein properties (Chan & Dill, 1989, 
1990,  1994; Lau & Dill, 1989, 1990; Shortle  et al., 1991; Dill et al., 
1995; Miller & Dill, 1995) because it shows several protein-like 
features, including cooperative collapse, native structures having a 
nonpolar core  and definable secondary structures, multi-stage fold- 
ing kinetics, and molten globule states. Most importantly, we be- 
lieve the model captures the main physics of protein folding-the 
hydrophobic interactions, conformational freedom of the chain, 
and the steric restrictions imposed by excluded volume. 

We study HP sequences having 16 monomers. For any 16-mer 
chain,  there  are exactly 802,075 possible conformations that can be 
configured on a two-dimensional square lattice. These conforma- 
tions are generated by computer, and each is weighted by a Boltz- 
mann  factor  according to the  number of HH contacts made. 
Figure 1A shows an energy diagram  for a sample  HP sequence 
(called “sequence A”). The native structure (ground state) is the 
conformation with the largest possible number of HH contacts, and 
thus the lowest free energy at  low temperatures. We study only non- 

degenerate sequences, i.e., those having a single native conforma- 
tion, because we believe they best represent biological proteins, 
which fold to unique structures. All higher-energy conformations 
comprise the non-native, or “denatured” states, and  are grouped by 
energy into “first-excited” states, “second-excited” states, etc., cor- 
responding to successively fewer HH contacts. For any HP se- 
quence, there are  far  more open, high-energy conformations than 
compact, low-energy conformations (see Fig. 1B). 

Modeling the ligand  and its interactions with the protein 

We model ligands as single, monomer-sized beads (Fig. 1C). A 
protein-ligand contact occurs when the ligand occupies a lattice 
site adjacent to a chain monomer. Here we consider only nonpolar 
ligands: a contact between a ligand and an H monomer (LH con- 
tact) is favored by a free energy be, where E is the HH contact 
energy, and b  is a positive constant (0 < b < 1). In order to have 
the simplest possible model of binding, we assume the interaction 
energy is zero between a ligand and a P monomer, and zero be- 
tween ligands. The total contact energy, Es, for any protein-ligand 
configuration (“ligation state”), s, is therefore 

where m is the total number of LH contacts. The ligation state in 
Figure IC has three HH contacts and six LH contacts, so the total 
energy is 3~ + 6bc 

Below we show how average properties of protein-ligand com- 
plexes are derived through exact enumeration of all the possible 
protein-ligand configurations. First, we present the general statis- 
tical mechanical theory, which is independent of the lattice or any 
other specific model. Then, we introduce the HP lattice model to 
relate the binding thermodynamics to the corresponding structures. 
A more detailed derivation of the theory is given in the Appendix. 

Statistical mechanics of ligand  binding 

The probability, P.y, of any protein-ligand ligation state, s, is given 
by the grand canonical distribution function: 

where Tis absolute temperature, /I is  the ligand chemical potential, 
E, is the total energy of the ligation state (i.e., due to intrachain 
contacts plus ligand contacts), N, is the number of ligands bound, 
k is Boltzmann’s constant, and r is the total number of ligation 
states available to the protein-ligand complex. 

Equation 2 gives the probability of a specific ligation state as a 
function of temperature and ligand concentration (related to the 
ligand’s chemical potential; see Appendix). In broad terms, this 
equation predicts the following behaviors. At low temperature and 
low ligand concentration (large negative p), proteins are folded 
and have few ligands bound. Increasing the ligand concentration 
lowers the unfavorable translational entropy of binding, and more 
ligands bind. Increasing the temperature denatures the protein. It is 
the interplay of these behaviors, for different ligands and different 
proteins, that we explore more fully below. 

Equation 2 is general and model-independent. It permits the 
calculation of various average protein properties (see Appendix), 



2168 D.W Miller and K.A. Dill 

Energy/(& 1 

0 

4 

3 

4 

5 I 

A 

fifth-excitec 
state 

second-excited 
state 

first-excited 
state 

ground  state 

W 
W 

B 

67 1 
rn“” 

I I 1 1 I I 

0 1 2 3 4 5  
h 

C 

Fig. 1. A: Energy ladder diagram for 16-mer HP sequence A. Each hydrophobic (HH) contact is favored by a free energy E .  The native 
conformation, with five HH contacts, is at the bottom, and each step up the ladder represents the loss of one HH contact. B: Density 
of states, g ( h ) :  the numbers of conformations of sequence A having h HH contacts. C: A particular ligation state with three ligands 
bound (protein monomers are numbered). Ligands are highlighted “beads.” Contacts between a ligand and  H monomer (LH contacts) 
are favored by a  free energy br, where b is a constant. This ligation state makes six LH contacts and three HH contacts, so the energy 
is 3r + 6br  (Equation 1). 

provided that all possible ligation states can be enumerated. The 
HP model permits this, and thus provides a way to relate the 
binding thermodynamics to the structure and stability of the pro- 
tein. Using Equation 1 for the ligation-state energy, E,, of the HP 
model protein-ligand complex, Equation 2 becomes 

e - h r l k T   - m b r l k T e f l s l k T  e 
PS’ ( 3 )  x e -helkTe  -mbelkTef131kT 

s =  1 

Equation 3 can be computed exactly by exhaustive enumeration 
for any short HP sequence, thus providing average properties of 
model proteins as a function of temperature, ligand concentration, 
binding constants, and monomer sequence. 

Despite its simplicity, the HP model offers several advantages 
for studying principles of protein-ligand interactions. ( 1 )  We can 
consider all model protein conformations, so there is no approxi- 
mation or partial sampling of the protein conformational space, 
allowing a complete study of the effects of binding on protein 

structure. (2) We can  compute  all possible ligation states, for every 
possible chain conformation, so we are not limited to one or a few 
ligands bound at a time. We can explore a full range of ligand 
concentrations, from zero to denaturing. (3) The model has only 
two energy parameters, so we can explore the physics in a com- 
plete way.  We make no assumptions about the locations or num- 
bers of binding sites, about the mechanisms of ligand-induced 
conformational changes, or about how binding is affected by ex- 
ternal conditions. Rather, these properties are derived from the 
theory. 

Our aim is not to describe the biology of the various inter- 
actions, which may be quite complex, but rather to show how a 
diverse collection of binding phenomena can be understood through 
a simple unified picture that relies on only a few basic, physical 
concepts. 

Validation of the model: Protein-like  binding 
The model shows a range of behaviors that mimic real protein- 
ligand interactions. These can be divided into  two classes, which 
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we call specific and nonspecific binding. We refer to binding as 
specific when a ligand binds to high-affinity (two or more LH 
contact) sites on  the protein, and when binding follows a site- 
specific (Michaelis-Menten) isotherm as described below. We call 
binding nonspecific when many ligands bind, either to the native 
or denatured states of the protein, and when the binding isotherms 
do not show site-specific thermodynamics. 

Nonspecific binding behaviors of the  model 

Denaturation 
High-affinity ligands (roughly 0.5 < b < 1.0) at high concen- 

tration can induce unfolding in model proteins (see Fig. 2). As 
ligand concentration increases, the translational entropy of binding 
becomes more favorable, so LH contacts are favored at the ex- 
pense of HH contacts, driving the protein to unfold. This model 
result is similar to protein denaturation by urea and guanidinium 
chloride. Other simple models of denaturation have been explored 
previously (Alonso & Dill,  1991;  Thomas & Dill, 1993). 

Dyes and weak solvents 
Low-affinity ligands ( b  < 0.2) have little effect on model pro- 

tein structure, even at high ligand concentrations. For these li- 
gands, binding is sufficiently weak that breaking HH contacts to 
make LH contacts is  always unfavorable. Thus, at high ligand 
concentrations, all hydrophobic sites on the protein surface be- 
come saturated, but the native structure remains intact. This model 
mimics the behavior of certain dyes and organic solvents (Allen 
et al., 1996;  Mattos & Ringe, 1996) that bind, but do not perturb, 
the native structure. 

ANS-like ligands 
For an intermediate range of affinities in  our model (0.2 < b < 

O S ) ,  ligands are too weak to induce full denaturation, but are 
strong  enough to shift the native-denatured equilibrium. This  class 
of ligands binds preferentially to the compact denatured states of 
the model proteins. As a result, the average number of bound 
ligands follows a bell-shaped curve  (Fig. 3A) as external condi- 
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Fig. 2. Denaturation by ligand. The fractional population of native pro- 
teins, fN, versus ligand concentration. High-affinity ligands at high con- 
centrations denature model proteins. ( b  = 0.50, E = -10). Inset: Sample 
ligation state from the ensemble of denatured conformations. 
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tions are changed from native to denaturing. The maximum in the 
number of bound ligands occurs under the intermediate solvent 
conditions at which the compact denatured states  are most stable. 
This behavior resembles that of ANS, a hydrophobic dye that binds 
preferentially to the molten globule states of proteins (Semisotnov 
et al., 1987, 1991;  Shi  et al., 1994) (see Fig. 3B). 

Figure 3C explains this behavior. The number of ligands bound 
depends on a product of two factors: the number of accessible 
hydrophobic sites on the protein, and the strength of the binding 
interaction under the given conditions. Under native conditions 
(Le., large I E / K T I ) ,  binding is strong (see Equation l), but there are 
few available hydrophobic sites on  the predominantly native pro- 
tein, so there  is little binding. Under denaturing conditions, the 
protein is unfolded and there are many exposed H sites, but bind- 
ing is limited by the weak LH attraction. The number of bound 
ligands per protein is highest between these extremes, where the 
compact-denatured states are highly populated. 

Semisotnov et al. (1987,  1991) have interpreted ANS binding as 
requiring “hydrophobic clustering” in the protein. In our model, 
hydrophobic clustering happens too, but clustering is a conse- 
quence of the balance between binding strength and number of 
binding sites, not a special mechanism of binding. In our model, 
there is nothing different about binding to a cluster than to any 
other arrangement of the same number of hydrophobic monomers. 

Specific binding behaviors of the  model 

To define site-specific binding, we begin with the traditional mass- 
action description. Equation 4 illustrates the equilibrium between 
a native conformation, N ,  and its bound state, NL. 

N + L ~ N L ,  (4) 

where KbN is the binding equilibrium constant and L represents 
free ligand. 

The  fraction, f b ,  of bound N molecules is (see Appendix) 

KbN L 
f b  = 1 + K b N L ’  

(5 )  

which approaches unity as ligand concentration increases. We refer 
to behavior described by Equation 5 as site-specific, or “Michaelis- 
Menten” binding. 

Lock-and-key and induced-fit binding 
For some  HP model proteins,  and  for high-affinity ligands 

(0.5 < b < l.O), binding is localized to a single site on the protein 
and follows a Michaelis-Menten binding isotherm. Figure 4 shows 
a “lock and key” example of specific binding, in which the protein 
binds in its native conformation. The computed binding isotherm 
closely follows the Michaelis-Menten binding of Equation 5. 

Site-specific binding might be considered surprising in this model, 
for two reasons. First, the model allows large numbers of alternate 
sites among the non-native and native states, because each H mono- 
mer is a potential contact. Second, the model protein-ligand in- 
teractions are orientationally nonspec$c, lacking the geometric 
requirements of hydrogen bonding, for example. The specificity in 
our model arises instead from  the ability of the protein to configure 
in a specific way, namely with a compatible pocket: the protein and 
ligand cannot mutually find any lower-energy configuration. Al- 
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Fig. 3. Model of ANS binding. Ligands with intermediare affinities bind preferentially to compact-denatured states, much like ANS 
binds to molten globules. A: Average number of bound ligands versus external conditions e/kT (native stabilizing conditions to the left; 
denaturing conditions to the right) with L = 0.15 and b = 0.50. B: Corresponding experiment: Fluorescence-intensity changes from 
ANS binding to bovine carbonic anhydrase B versus Gu-HCI concentration (adapted from Semisotnov et  al., 1991). C: Energy-ladder 
histograms for the protein conformations, showing that, under conditions where binding is greatest ( t / k T  = 2.5 in A), the molecules 
have intermediate compactness ( h  2-4, middle of C). 

though real proteins often take advantage of chemically specific 
interactions such as hydrogen bonds or salt bridges, our minimal 
model shows that binding specificity does not require it. 

What is the basis for the specific binding in the model? There 
are two reasons the protein has relatively few binding options 
under native conditions. First, if a ligand is to bind a non-native 
conformation, the  system must pay an energetic price to “excite” 
the protein from the native state to the non-native state. Even 
though the numbers of protein conformations and potential binding 
sites grow dramatically with increasing steps up the energy ladder, 
Boltzmann’s law  dictates that the ligand prefers to choose from the 
relatively few ligation states low on  the energy ladder. Second, the 
binding of more than one ligand is disfavored by the high price in 
translational entropy at  low ligand concentrations. We observe 
lock-and-key binding for approximately 11% of unique-folding 
16-mer HP sequences. These are all sequences in which there are 
at least two H monomers exposed in the native state in the form of 
a model “binding pocket.” 

Our model also shows induced-fit binding, in which a ligand 
binds specifically a low-energy, but non-native, conformation of 
the protein. In these cases, the energy price in inducing the con- 

formational change  is more than compensated by the energy gain 
upon ligand binding. We observe induced fit in roughly 17% of HP 
sequences. 

Modeling  hemes  and cofactors 

For  some HP sequences that do not fold to unique structures by 
themselves, a ligand can induce the “selection” of a single con- 
formation (see Fig. 5). This  is a model for proteins that populate a 
small conformational ensemble in the absence of cofactor, sub- 
strate, or prosthetic group, but that become structured in the bound 
complex. The heme-induced shift from apomyoglobin to myoglo- 
bin is an example. 

Cooperative  binding 

Figure 6 shows an example of binding cooperativity between 
two identical ligands. Binding of the first ligand enhances the 
binding of the second, resulting in a cooperative binding isotherm. 
Depending on the HP sequence, binding can have different degrees 
of cooperativity and may or may not progress through a singly 
bound intermediate state. 
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Fig. 4. Lock-and-key binding. The average number of bound ligands, ( N )  
(diamonds), versus ligand concentration closely follows the theoretical 
curve (dashed line) expected for site-specific (Michaelis-Menten) binding 
(E = -10 and b = 0.6). Inset: The ligand binds at a single site on the native 
protein, without perturbing its structure. 

Unconventional  binding  behavior  in  the  model 

Identically shaped ligands can  bind in different modes 

Figure 7 shows  one of the most interesting results of the model. It 
bears on two standard premises: (1) the steric premise, that the 
binding mode  is predominantly determined by the shape of the 
ligand, and ( 2 )  the continuiry premise, that a  small change in the 
structure of a ligand should lead to a small change in the structure 
of the bound complex. Figure 7 shows  a  case in which both of 
these premises  are violated. Two identically shaped ligands bind in 
different locations depending on whether the binding is tight or 
weak. The tight binder ( b  = 1) binds to a second-excited state 
whereas the lower-affinity ligand ( b  = 0.6) binds to the native state 
in a lock-and-key fashion. 

Because the two ligands have identical shapes, the choice of 
binding mode in this case is not based on shape complementarity 
alone, but also  on the balance between the energy lost in inducing 
fit, and the energy gained in the binding. The tighter binder over- 

r 0;. 0 4  =.=A .=A 
Fig. 5. Model heme binding. An HP sequence having 14 lowest-energy 
conformations (only three are  shown) is locked into a single lowest-energy 
structure when the ligand binds. 
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Fig. 6. Binding cooperativity. Average number of bound ligands, ( N ) ,  ver- 
sus ligand concentration. Binding of one ligand facilitates binding of the 
second. Inset: Unbound native state and unique excited state with two 
ligands bound. 

comes an unfavorable distortion of the protein because the result- 
ing  binding  complex  has  a lower overall energy. This result 
resembles a recent experiment by Morton and Matthews (1995), 
which showed that ligands of very similar shape but different 
hydrophobicities can change the protein structure in different ways. 

Fig. 7. Binding modes depend on more than ligand shape. Identically shaped 
ligands with different binding constants, b, cause different structural changes 
upon binding. When b = 0.6, binding favors the native-state complex, NL 
(lock and key), whereas b = 1 favors an induced-fit complex, dL, where d 
is a second-excited state. The low-energy complex is determined not by 
shape complementarity alone, because the two ligands have identical shapes, 
but by a balance between free energy lost in induced-fit structural changes, 
and free energy gained through the protein-ligand interaction. 
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We believe there are  two implications for  drug design. First, 
even small structural differences between ligands could lead to 
large differences in the binding mode or binding site. This could 
make the prediction of relative binding affinities sometimes difi- 
cult. Second, it implies that one possibly underappreciated deter- 
minant of the binding  mode of a ligand  is not structural. In 
Figure 7, the change in binding mode can be driven by tempera- 
ture, or more generally by a change in solvent conditions, both of 
which regulate the binding strength. A ligand may choose its bind- 
ing mode based on external conditions rather than on the shapes of 
the ligand or receptor, and might hop from  one site to another when 
solvent conditions are changed. 

Ligands can bind tightly to non-native states 

Equation 4 describes Michaelis-Menten binding of a ligand to the 
native conformation, N. Now suppose a ligand may interact with 
either the native state or a particular non-native conformation, d .  
The corresponding mass-action equation becomes 

N + L % N L  

1K: 1. 
d +   L 2 d L  

where Kbd is the equilibrium binding constant for  the non-native 
conformation, and KL is the equilibrium constant for N unfolding 
to d .  We use  the symbols d and D to represent non-native states: d 
is one particular non-native conformation (a microscopic state), 
and D represents the full ensemble of all non-native conformations 
(the macroscopic denatured state). The native state, too, in reality 
is an ensemble of microstates, but in the lattice model, we approx- 
imate N as a single microscopic conformation. 

The fractional population of native conformations bound to li- 
gand, f b ,  is 

When a ligand can bind d ,  the native state can never be fully 
saturated, because some ligand molecules bind to non-native con- 
formations (NL and dL are assumed to be experimentally distin- 
guishable). However, Equation 7 also shows that, even if a ligand 
binds the non-native state more tightly than it binds the native state 
(i.e., Kbd > K ~ N ) ,  the effect on the binding curve, fb ,  can be van- 
ishingly small, provided that the non-native state has a very small 
population, KL << 1. Thus, tight binding doesn’t necessarily imply 
high populations. 

Two common objections to the notion of tight binding to non- 
native states  are readily addressed: ( 1 )  How could a non-native 
conformation form a tighter binding site than the active site?  The 
chain could “envelop” the ligand more completely than the native 
structure does, creating more LH contacts. (2) How could denatured- 
state binding overcome the unfavorable entropy required to restrict 
the presumably flexible unfolded conformation to a single, rigid 
structure in the bound complex? We distinguish between the mac- 
roscopic denatured state, D, and the large number of individual 
microscopic conformations, d ,  which comprise  it. Any given de- 
natured conformation d requires no  more or less conformational 
entropy of binding than the native state does, because each  is a 

single conformation. Hence, ligand binding to individual non- 
native conformations need not be intrinsically opposed by confor- 
mational entropy. 

Although Equation 7 gives the mass-action scheme for non- 
native state binding, it gives no insight into the structural basis for 
this behavior. Figure 8A illustrates the structural basis using the 
HP model. The figure shows  one  example of a non-native state, d,  
of sequence A that binds ligand more tightly than the native state 
does, forming three LH contacts as opposed to only two for the 
native structure. Yet, as shown in Figure 4, the calculated binding 
curve indicates binding to only the native conformation. Why? 

The reason is illustrated in Figure 8B, C, and D, which shows 
the corresponding free energy diagrams. Figure 8B shows the en- 

11 A 11 

Fig. 8. Denatured-state binding. A: Ligand binds more tightly to a dena- 
tured (second-excited) state, d, than to N ,  because there are three LH 
contacts in the dL complex versus only two in the NL complex. But NL 
remains the dominant complex, and binding is Michaelis-Menten, because 
the cost of unfolding to d is large compared to the binding energy (see 
Fig. 4). B: Protein energy ladder, no ligand. C :  Ligand binds only to the 
native state: the free energy of binding is AGbN. D: Ligand binds d more 
tightly than N > AGbN), as in A. Because the dL complex remains 
high in energy, it does not affect the binding isotherm. 
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ergy ladder of the protein conformations alone, in the  absence of 
ligand. Figure 8C shows conventional binding,  in which the ligand 
stabilizes the protein by binding the native state. Figure 8D shows 
the unconventional behavior represented in A: ligand stabilizes the 
native state, but it stabilizes a particular non-native conformation, 
d, even more. In this case, binding increases the population of d,  
but, because the dL conformation is so low  in population relative 
to NL, the binding isotherm is insensitive to this non-native bind- 
ing.  Under the Michaelis-Menten conditions of Figure  4, all of the 
possible dL complexes of sequence A have a combined population 
of only 1 X at saturating ligand concentration. 

Hydrogen exchange can detect non-native binding 

How  can tight binding to low-population conformations be de- 
tected? Hydrogen exchange (HX) is a technique capable of de- 
tecting events of extremely low probabilities in proteins (Woodward 
& Hilton, 1979; Englander & Kallenbach, 1984;  Miller & Dill, 
1995;  see Appendix for brief description). Although most experi- 
mental measurements of proteins give only ensemble averages, 
and are therefore overwhelmed by the native signal under native 
conditions,  HX sees no contribution from the native state for pro- 
tected hydrogens in the cores of proteins. In hydrogen exchange, 
the detection limit for low-population states is set by the longest 
exchange time that can be measured, which can be thousands of 
hours. Hence, HX routinely detects structures that are populated 
only sparsely and cannot be observed by other experimental methods. 

When a ligand binds a protein, there are  two ways it might affect 
the exchange rates of amide hydrogens from the hydrophobic core. 
(1) Exchange from the  unbound state. If the ligand binds to only 
the native state (Fig. 8C), or at most to only a small number of 
non-native states, then then there will exist other non-native con- 
formations that cannot be populated while the ligand is bound. For 
the  amide hydrogens whose exchange is predominantly from these 
conformations, the ligand must dissociate transiently from the pro- 
tein before exchange  can occur. The free energy cost for this dis- 
sociation is equal to the binding free energy, so the resulting increase 
in HX rate is AAG, = -AGb (see Appendix). For a typical pro- 
tein, this represents an increase of several kcal/mol. (2) Exchange 
from the  bound stute. If the ligand can bind non-native conforma- 
tions (Fig.  8D), there will be some  amide hydrogens in the protein 
core that can exchange from bound protein structures. Because 
ligand binding will affect the population of these non-native “ex- 
change” conformations, the corresponding HX rates will also change, 
by an amount equal to 

A A G ,  = -kT log - Kbd 

KbN (8) 

(see Appendix), where Kbd and K ~ N  are  the binding constants for 
the non-native and native states, respectively (note that KbN ap- 
proximates the experimentally measured binding constant, Kb,  if D 
is  low  in population). Equation 8 can therefore be used to calculate 
the non-native state binding free energy for a given change in the 
HX rate. 

Can HX detect strong interactions between a ligand and a highly 
non-native protein conformation? Our model predicts three exper- 
imental conditions that must be satisfied. (1) Exchange must be 
slow in the  absence of ligand, i.e., AGhr - AGu (see Appendix). 
This  suggests that the  exchange conformation is significantly non- 
native  in structure. (2) Exchange must occur from the bound state, 

not the unbound state. This occurs when the change in HX rate is 
less than the binding energy, that is, when AAGk < -AGb. (3) The 
interaction of ligand with the exchange conformation must be strong. 
This is evidenced, through Equation 8, by a change  in HX rate that 
is  either negative or near zero, the former suggesting even tighter 
binding to the non-native than to the native state. 

We use the HP model to simulate the effects of ligand binding 
on protein HX rates. In this model, the HX rate is proportional to 
the Boltzmann-averaged solvent accessibility of an amino acid 
over all possible protein conformations (Miller & Dill, 1995;  see 
Appendix). In any one particular protein structure, a monomer is 
considered to exchange fully with solvent if it is adjacent to a 
solvent site. It is considered fully protected if it  is surrounded on 
all four sides either by protein monomers or by ligand. Model HX 
rates are equal to the conformational ensemble average of this 
solvent accessibility quantity (either 0 or 1). For example, in Fig- 
ure 8A, monomers 5 and 10  are buried in the native structure, and 
thus have much slower  HX rates than the monomers exposed on 
the surface. But although monomer 5 is able to exchange from a 
first-excited state (see Fig. lA), monomer 10 is buried in all of the 
first-excited states (not shown), and so can exchange only from a 
second- or higher-excited state. Hence, it exchanges much more 
slowly than monomer 5. 

Figure 9A shows how ligand binding affects HX rates in the 
model. For monomer 5, the  HX rate is decreased when the ligand 
binds, and the curve of HX rate versus ligand concentration indi- 
cates that exchange  occurs predominantly from unbound confor- 
mations. This  is because the first-excited states, the most important 
exchange conformations for monomer 5,  do not bind the ligand as 
tightly as the native state does. First-excited states make only one 
LH contact, on average, versus two for the native state. Hence, for 
this monomer, the fastest route to exchange is by dissociation of 
the ligand, followed by unfolding of the protein. In contrast, the 
HX rate of monomer 10 increases upon ligand binding. As indi- 
cated in Figure 8A, this is due  to tight binding to non-native states, 
particularly a small group of second-excited states. Using Equa- 
tion 8, we find that the average binding constant, Kbd, for these 
second-excited state conformations is roughly 40 times that of the 
native state. Hence, binding constants can be predicted for ex- 
tremely low-population d states using the measured change in HX 
rate (see further discussion in the Appendix). 

Experimental  results from hydrogen  exchange 

There is experimental evidence from hydrogen exchange that li- 
gands can bind tightly to highly non-native conformations. The 
HX technique has been used to study the effects of ligand binding 
on the structure and dynamics of cytochrome c (Paterson et al., 
1990), lysozyme (Benjamin et al., 1992), serine-protease inhibitor 
(Werner & Wemmer, 1992), staph nuclease (Loh  et al., 1993), 
barnase (Meiering  et al., 1993), protein G (Orban et al., 1994), and 
acyl coenzyme A binding protein (ACBP) (Kragelund et al., 1995). 
In all of these proteins, the general effect of ligand binding is to 
decrease the HX rates of the majority of amide hydrogens. For 
many of these hydrogens, binding decreases the  HX rate by the 
maximum amount, indicating that exchange occurs from the un- 
bound states. Monomer 5 in Figure 9A  shows this behavior. 

However, the HX rates of many hydrogens either increase in the 
bound conformation, with a typical range in AAGh of roughly 
- 0.5 to -2.0 kcal/mol, or else they decrease by significantly less 
than the maximum amount. Either of these observations indicates 
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that exchange takes place from bound conformations. Among such 
hydrogens, many are  among the slowest exchanging in the protein 
(AGh = AGJ, suggesting that exchange may take place from very 
non-native conformations. We believe these hydrogens are analo- 
gous to monomer 10 in Figures 8 and 9, and may be examples in 
which the ligand binds a largely unfolded protein conformation 
with at  least as high an affinity as it binds to the native state. 

Are there  other explanations for this data? Several possible ex- 
planations have been ruled out. First, it  is generally found that the 
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increases in HX rate are not due  to large structural changes upon 
binding. In all the examples cited above, there are only very small 
differences between the bound and unbound structures (from NMR 
or X-ray crystallography) near the relevant hydrogens. Second, 
there is no evidence that exchange  is increased by bound water 
molecules trapped at the protein-ligand interface. Third, Benjamin 
et al. (1992) have argued on the basis of electrostatic calculations 
that ligand binding does not significantly affect the intrinsic chem- 
ical rate, kx, of the exchange process (see Appendix). Finally, 
although it has been argued that HX might occur by “solvent 
penetration,” rather than by structural unfolding (e.g., Woodward 
& Rosenberg, 1971; Lumry & Rosenberg, 1975; Richards, 1979). 
and thus that slow exchange might not imply highly unfolded 
exchange structures, HX experiments in urea (e.g., Hilton et al., 
1981 ; Bai  et al., 1994) suggest that, for the slowest-exchanging 
hydrogens in the protein core, exchange involves considerable 
unfolding of the protein. 

Other explanations for increased HX rates upon ligand binding 
can be found in the hydrogen exchange literature. These involve 
either: (1) changes in protein structure too subtle to be detected 
with the measurement techniques used (NMR and X-ray crystal- 
lography); (2) a ligand-induced decrease in the “regional stability” 
of the protein (Kragelund et  al., 1995); or (3) an increase in protein 
dynamics (Benjamin et al., 1992; Kragelund et al., 1995). But 
there are problems with each of these explanations. For (l), rate 
increases may be due to subtle changes in structure (Equation 7), 
but they cannot be due to subtle changes in the binding energetics. 
Our model predicts that in order for hydrogens to undergo even a 
small increase in HX rate, the ligand must bind the non-native 
exchange conformation at least as tightly as it binds the native 
state. The problem with explanation (2) is only that “regional 
stability” is not very clearly defined. Moreover, global stability has 
been observed to increase even when the HX rates of some hy- 
drogens also increase (Loh  et al., 1993; Kragelund et al., 1995). 
Similar behavior arises from our model, as shown below. Expla- 
nation (3) appears inconsistent with the poor correlation between 
changes in HX rates and changes  in protein flexibility (Kragelund 
et al., 1995, using T I  times). As shown below, our model too, 
predicts a poor correlation. 

Our model results are fundamentally different from the previous 
proposals listed above. Our explanation puts less emphasis on the 
native state alone, and more emphasis on ligand binding to non- 
native conformations. Non-native state binding can account for 
affects on HX rates even when there is little or no detectable 
change in the protein’s native structure. 

Fig. 9. Effects of binding on HX rates, stability, and flexibility. A: Binding 
increases the HX rate of monomer 10 by stabilizing second-excited states 
(one  shown), which are the fastest-exchanging states for this monomer. 
Binding decreases the HX rate of monomer 5 by stabilizing the native state 
relative to  the weak-bindingfirst-excited states (one shown), which are the 
fastest-exchanging states for monomer 5 .  The HX rate of monomer 5 is 
close to the theoretical rate (dashed line) corresponding to HX from only 
the unbound states. B: Binding stabilizes the native state (increases AGu) 
because binding is weaker to the full denatured ensemble than to the native 
state, Dashed line is the expected stability change when only the native 
state is bound. The actual stabilization is smaller because of binding to 
denatured states. C :  Average thermal factors, ( B ) ,  decrease with ligand 
binding for both monomers 5 and 10. The thermal motions depend mainly 
on first-excited states, which bind ligand weakly, whereas the HX of mono- 
mer 10 depends on second-excited states. For A-C, the model parameters 
are identical to Figure 4. 
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How can ligand binding stabilize the native state 
while  increasing  the HX rate? 

Figure  9B  shows that a bound ligand stabilizes the native state of 
sequence A, while at the same time increasing the HX rate of 
monomer 10  (Fig. 9A). This surprising result has a simple expla- 
nation: the ligand affects some few non-native conformations, d l ,  
d2,  d,, . . . , differently than it affects the overall denatured ensem- 
ble, D. In particular, the non-native conformations contributing 
most to the D ensemble, and thus to protein stability, are the 
first-excited states, which for this HP sequence bind the ligand less 
favorably than the native state does. On the other hand, the most 
important conformations for  the  HX of monomer 10 are  second- 
excited states, many of which bind ligand more tightly than the 
native state does  (Fig.  8A).  These results are in agreement with 
experiments from ACBP (Kragelund et al., 1995), which show that 
both global stability and HX rates can be increased simultaneously 
by ligand binding, and from early experiments by Woodward (Hil- 
ton et al., 1981) showing that HX rates and global stability can be 
poorly correlated. 

Michaelis-Menten binding can sometimes be destabilizing 

Figure  10 illustrates another unexpected result: that favorable li- 
gand binding can be globally destabilizing. Figure 10A shows the 
binding curve of a particular HP sequence that appears to bind a 
ligand in a lock-and-key fashion to only the native conformation. 
Figure  10B  shows that the same binding event decreases the global 
stability. The reason is that ligand interacts strongly with confor- 
mations of the denatured ensemble, thereby increasing the denatured- 
state population relative to the native. The difference between this 
and the previous example, where binding increased stability, is that 
here the individual dL conformations are highly representative of 
the full D ensemble, because they are  among the first-excited 
states. Nevertheless, their population relative to the native state 
remains very small. Thus, although the fraction of molecules that 
are denatured changes several fold upon binding, causing a sig- 
nificant decrease in global stability, the fraction itself remains too 
small to affect the binding isotherm (i.e., KA in Equation 7). This 
result suggests that observing Michaelis-Menten binding does not 
necessarily rule out the possibility of highly non-native protein 
configurations in the bound complex. A possible example of this 
behavior is the protein ACBP (Kragelund et al., 1995), which 
shows an increase in stability much smaller than expected given 
the strength of the interaction with its inhibitor (see Appendix). 

HX rates do not always correlate with protein flexibility 

Figure  9C  shows that ligand binding can restrict the thermal mo- 
tions of two residues, even though one residue has an increased 
HX rate and the other has a decreased HX rate. We calculate the 
thermal motion in the model as the Boltzmann-average of the 
fluctuations over all the intra-monomer distances, resembling a B 
factor in X-ray crystallography (see Appendix). B factors are often 
taken as a measure of the flexibility of the protein, and our model, 
like experiments, shows a general correlation between thermal 
motions and  HX rates. However, this is not true of the changes that 
occur in  these measurements as result of ligand binding. Figure 9C 
shows that, although binding increases the HX rate of monomer 
10,  it decreases the B factor. This result has the same explanation 
as  above: B factors reflect ensemble averages over the first-excited 
states, whereas the HX of monomer 10 reflects binding to the small 
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Fig. 10. Michaelis-Menten binding can be globally destabilizing. A: Sam- 
ple HP sequence shows lock-and-key, Michaelis-Menten binding (same as 
Fig. 4). B: Ligand binding decreases the free energy of unfolding, AG,,, by 
stabilizing first-excited states (not shown), and thus increasing the D pop- 
ulation relative to N .  However, because the overall D population remains 
small (less than 1% in this example), binding to d states has only a small 
effect on the binding curve (b  = 0.35 and E = -10). 

subpopulation of second-excited states. Although there is often at 
least some correlation observed between absolute HX rates and 
protein dynamics, such as in  BPTI (Levitt, 1981), ribonuclease A 
(Wlodawer & Sjolin, 1982), and trypsin (Kossiakoff, 1982), there 
is at least one observation in which ligand binding increases the 
HX rate while simultaneously decreasing flexibility (Kragelund 
et  al., 1995, with ACBP using TI times), consistent with the model 
result shown  in Figure 9C. 

We conclude that HX rates and thermal B factors may not al- 
ways reflect the  same property of a protein. For the slowest- 
exchanging hydrogens in particular, the structures that determine 
HX rates are higher up the energy ladder, whereas the structures 
that determine the flexibility are on the first rung. If the ligand can 
interact differently with the two classes of conformations, then our 
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model suggests that changes in HX rates will not correlate well 
with changes in flexibility. 

Discussion 

Proteins are flexible  and only marginally stable. But current mod- 
els of ligand-protein interactions often assume that proteins are 
rigid and unperturbable, and that there is a single dominant mode 
of binding to the native structure. To test the validity of these ideas 
requires models that go beyond binding polynomials, so that struc- 
tural consequences of binding are derived from principles and 
structures, rather than assumed. Here we present a first step in this 
direction. Using the two-dimensional HP lattice model, we search 
exhaustively through all of protein conformational space, and ex- 
haustively through all possible ligation states of each conforma- 
tion, to find the global free-energy minimum. In this way, we 
compute the structures and thermodynamics of binding from the 
protein sequence and the ligand structure, rather than postulating 
them. 

Despite the simplicity of this model, it shows a wide range of 
protein-ligand binding behaviors. Very hydrophobic ligands at high 
concentrations denature model proteins, much like urea and gua- 
nidine hydrochloride. Weaker ligands bind to compact denatured 
states, modeling the behavior of ANS. Even weaker ligands bind 
native states, as  dyes  and probes do, without perturbing the protein 
structure. Model ligands can also bind specifically, that is,  at single 
specific sites, and with Michaelis-Menten (Langmuir) isotherms. 
Such binding specificity does not require chemical specificity of 
the underlying interactions, such as hydrogen bonding or ion pair- 
ing.  The model shows that such binding can be lock-and-key, to a 
preformed site on the native structure, or induced fit, to an excited- 
state conformation having a higher energy than the native state. We 
also find examples of a ligand stabilizing a disordered ensemble, 
much like heme stabilizes apomyoglobin, as well as examples of 
binding cooperativity between two ligands. 

The model is useful for explaining nontraditional binding be- 
haviors, many of which have been observed experimentally. Two 
ligands of identical shape can bind in very different binding modes. 
Ligands can bind denatured states more tightly than the native state 
and still show Michaelis-Menten binding isotherms. Binding that 
appears to be “lock and key” may actually destabilize the native 
structure. Binding may cause model HX rates to increase, while at 
the same time increasing global stability and decreasing thermal B 
factors. The model suggests that many of these nontraditional be- 
haviors may have the same physical origin, namely that a ligand 
can interact differently with a few non-native states than it does 
with the vast sea of other denatured conformations in general. 
Experimental evidence of denatured-state binding is found in HX 
data from barnase, lysozyme, and ACBP. 

There  are  two broader implications for understanding protein- 
ligand interactions. First, this model suggests that the premise of 
structure-based drug design-that knowledge of the native struc- 
ture of a protein is sufficient to rationalize a binding interaction- 
may not always be true. Knowledge of non-native structures may 
sometimes be necessary. It suggests that certain information about 
ligand binding may be hidden and unavailable for structural inter- 
pretation by  X-ray crystallography and NMR spectroscopy. Sec- 
ond, in the same way that the modeling of protein folding has 
moved from simple macroscopic mass-action models to more mi- 
croscopic models that are rooted in the language of ensembles, 
energy ladders, and energy landscapes (Dill & Chan, 1997), ligand 

binding too can benefit from more microscopic models and from 
the language of energy landscapes. Most importantly, proteins are 
not single conformations. Even under native conditions, proteins 
populate a broad ensemble of structures. Some of these fluctua- 
tions may be important for binding, and may not be well repre- 
sented by the average properties of the denatured ensemble. 
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Appendix 

Derivation of the partition function 
Here we calculate the total  partition  function  for our model of ligand 
binding,  given by the  denominator  of  Equation 3. This  requires  summing 
the individual  Boltzmann  factors  for  all  possible  combinations  of  ligand 
and  model  protein. We use  “ligation  state”  to  denote  a  particular  combi- 
nation of ligand  and  model  protein,  and  “conformation”  to  denote  the HP 
chain  structure  alone.  Each  chain confortnution has  many ligation  states. A 
“binding  site”  is  any  vacant  site  adjacent  to  an H monomer.  For  a  given HP 
sequence  in  a  given  conformation,  the  total  number  of  ligation  states  is 
found by counting  the  number  of  ways  that  indistinguishable  ligands  can be 

distributed  among  the  binding  sites,  beginning with zero  ligands  and  end- 
ing  with  the  number  that  fills  all of the  sites  of  the  particular  conformation. 

First,  we  calculate  the  number of ways  that  ligands  can bind to  one par- 
ticular  conformation, c. We define  four  numbers, M, = 1, 2, 3, 4, equal to 
the  numbers  of  binding  sites  that  contact i monomers  of  type  H.  The  chain 
conformation  in  Figure IC, for  example,  has M I  = 2, M2 = 1, M3 = 1, and 
M4 = 0. Now, for  a  particular ligation  state, s, the  number  of  ligands  bound 
to  each  of  the  four  types  of  sites  is  denoted by n,,  and  can vary from 0 to 
M,. The  particular  ligation  state  in  Figure IC has n, = 1, n2 = I ,  n3 = 1, 
and n4 = 0. The total number  of  bound  ligands, N , ,  in the  ligation  state is 
obtained by adding the four n, values: 

4 

N ,  = x n , .  
/=I 

There  is  more  than  one way that n, ligands  can be distributed  among the 
M, sites. The  total  number  of  combinations, g,, is  given by the expression 

Similarly, the  number of ways that all N ,  ligands  can be arranged  such that 
n ,  of  them  bind  among  the MI single-contact  sites, n2 of them bind  among 
the M2 two-contact  sites,  and so on, is given by the product of four  terms: 

The  partial  partition  function, Zc, for the given HP conformation, c ,  is 
obtained  by  summing the Boltzmann  factors  for  each  possible ligation state 
over all values of n; 

where h is the number of HH contacts  for the conformation; N ,  is the total 
number  of  ligands  bound  in  ligation  state s (Equation  9); and m is the total 
number of ligand  contacts in the ligation  state: 

The total partition  function, E ,  is found by adding up the partial partition 
functions  for all R possible HP chain  conformations: 

~ 

c= I 

where R = 802,075 in the case  of  a 16-mer. 

Comparison with the binding polynomial 

Our microscopic  binding  partition  function  (Equation  14)  can be related 
directly  to  the  thermodynamic  binding  polynomial, Q. The  binding poly- 
nomial is related  to  the  free  energy of binding, AGb, by (Schellman,  1975) 

To compare  the  partition  function with the binding  polynomial, it is useful 
to  express  Equation 14 in  a  different  form.  Written  as  a  product  of  four 
sums,  Equation 14 becomes 
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The analogous binding polynomial, Q ,  for macromolecular binding has 
been derived by Schellman (1975) and is given by 

where is the number of molecular conformations, c;  Kc are the equilib- 
rium constants with respect to the c = 1 conformation ( K ,  = 1); are the 
binding constants describing the four types, i, of binding site; M ,  are the 
number of each type of site; ni are the number of ligands bound to each 
type, and L is free ligand concentration. 

Comparison of Equations 16 and 17 show the relationships between the 
microscopic Boltzmann factors and the corresponding thermodynamic quan- 
tities: 

Hydrogen exchange 

We assume that HX  of amide hydrogens from the protein interior is gov- 
erned by the equilibrium unfolding of the native structure (Englander & 
Kallenbach, 1984): 

where N ( H )  is the native structure; d ( H )  and d(D)  describe  an individual 
denatured conformation prior to and after the exchange of a hydrogen for 
a deuterium; k, and kJ are the rate constants for partial unfolding and 
folding of the native structure; and k, is the exchange rate for  a nonbonded, 
solvent-exposed hydrogen. The observed rate constant, kobs, for this pro- 
cess is (Hvidt & Nielsen, 1966; Segal & Harrington, 1967; Roder et al., 
1985) 

where K = k,/kJis the equilibrium constant for the unfolding process. The 
observed rate is the product of the “maximum” rate, k,, with K ,  the fraction 
of time the protein is in the exchanging conformation, d .  Equation 22 can 
also be expressed as AGh, the free energy required for the protein to 
undergo the transition from the native to the exchanging conformation: 

This free energy is close to zero  for surface hydrogens exchanging near the 
theoretical limit, kx, and reaches a maximum roughly equal to the free 
energy of global unfolding, PC,, for those hydrogens in the hydrophobic 
core that require complete unfolding for exchange. 

In the HP lattice model, HX rates are calculated from Boltzmann- 
averaged solvent accessibilities, A. A = 0 if a monomer is fully protected, 
i.e., completely surrounded by other monomers or ligands, and A = 1 if the 
monomer is solvent accessible, i.e., is adjacent to an empty lattice site. The 
HX rate from the monomer is 

which is identical to Equation 22, except that the two-state equilibrium 
constant is replaced by the ensemble-averaged accessibility, (A) .  

Binding to non-native states 

The effects of non-native state binding on global stability, hydrogen ex- 
change, and the binding isotherm can be considered using the simple 
thermodynamic binding equilibrium: 

N + L % N L  

LK: 1 ,  
d +   L 2 d L  

where N and d represent the native state and a particular denatured con- 
formation, respectively; K ~ N  and !& are the binding constants for N and d; 
and K: is the equilibrium constant for N unfolding to d .  

If the ligand can bind to the native state, N ,  but not to d ( i t . ,  if Kh,, = 0), 
it follows that 

1. The fractional population of bound native-state molecules, fb, as a func- 
tion of ligand concentration is 

where we have assumed K: << 1 in the last step. This is the equation 
for Michaelis-Menten binding, and the denominator is equal to the 
Michaelis-Menten binding polynomial, Q. 

2.  The corresponding change in global stability upon ligand binding, is . ,  
the change in the free energy, AAG,, is 

d 
A A G ,  = - kT log - 

N +  N L  
+ kTlog - = -kTlog ~ 

d 1 
N 1 + KbNL’  

which is simply the free energy of binding, -AGb,  from Equation 15, 
because Q = 1 + KbNL is the binding polynomial for Michaelis-Menten 
binding. Thus, if ligand binds to only the native state, all of the binding 
energy contributes toward stabilizing the native relative to the unfolded 
states. 

3. The change in HX rate, AAGh,, of a hydrogen whose fastest route to HX 
is through conformation d is given by  an expression identical to Equa- 
tion 27: 

Hence, if ligand binds only the native state, the HX rate is expected to 
decrease by  an amount equal to the binding energy, -AGb,  which is typ- 
ically several kcal/mol. This is true for all hydrogens, regardless of the 
particular fluctuation d required for exchange. 

Conversely, if the ligand can bind to the unfolded state, d ,  with a binding 
constant Kbd, it follows that 

1. The fractional population of bound native molecules, fb, becomes 

NL - - KhN 
f b =  N +  d + N L  + d L  1 i K: + K b N L  + K:KbdL‘  (29) 

Although fb in Equation 29 is less than for the Michaelis-Menten 
case, it reduces to normal Michaelis-Menten binding when the unfolded- 
state population is very small (KA << I ) ,  even when binding is srronger 
to d than to N (Kbd > KbN). 
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2. The  change in global stability will deviate from the Michaelis-Menten second-excited states binds ligand with the 3-LH contact affinity shown in 
case  above only if the single bound conformation d represents a signif- Figure 8A, so the estimated affinity represents an average that is less than 
icant population of the full denatured ensemble, D. In this case, the this maximum 3-contact affinity. 
change in stability is 

d + dL d HP model of protein jlexibiliv 
AAG, = - kT log - + NL + kTlog - 

N Here we describe our measure of thermal motion, E in the model proteins. 
1 + KbdL For any monomer, i, of  an HP sequence, we can derive a flexibility pa- 
1 + KhNL’ (30) rameter, E,,  by taking all possible conformations and calculating the aver- = -kTlog ~ 

age deviation of the monomer from its position in the native state, N .  To 
Equation 3o implies the well-known result that ligands that prefer to illustrate, consider a single non-native conformation, X .  The “position” of 

bind the native State will stabilize the protein, whereas ligands that monomer i in this conformation is given by its distance matrix, d,(X),  is . ,  

prefer to bind D will destabilize the protein. 

HX rate is given by d , ( X )  = Z r i C X ) ,  (33) 

the sum of its intra-monomer distances: 

3. If hydrogens can exchange from the bound state, dL, then the change in 

I f1  

d + dL d 
AAGh = - kT log - + NL + k T h 2  E where j is the monomer index and r , (X)  is the distance between monomers 

1 + KbdL The difference in position of monomer i in conformation X and in the 
1 + &NL‘ 

i and j ,  in arbitrary lattice units. 

= -kTlog ~ (31) native state, N ,  is calculated from a relative distance matrix, E , ( X ) :  

This is equal  to the stability change of Equation 30, but Equation 3 1 is valid 
for any denatured conformation, d,  no matter how low in population. At 
saturating ligand concentration, Equation 31 becomes 

(34) 

where the denominator of Equation 34 is a normalization factor. The flex- 

AAGh = -kTlog -, Kbd (32) ibility, E,, of monomer i is then calculated from the Boltzmann average of 
K ~ N  & ( X )  over all possible conformations, X .  

The quantity B, represents an equilibrium measure of flexibility rather 
which is the result given in Equation 8. If AAGk is known, Equation 32 can than a dynamic one, i t . ,  flexibility is determined by the populations of 
be used to estimate Kbd. the binding affinity of the ligand for the particular low-energy non-native states, not  by the heights of kinetic barriers that 
denatured state, d .  This  estimate will be less than the maximum dL affinity separate them, which we do not treat here. However, because HX is shown 
because Equation 32 assumes that every exchanging d state binds ligand to be an equilibrium process for many proteins, E ,  captures the component 
equally. For monomer 10 of sequence A, only 3% of the exchanging of flexibility most relevant to HX measurements. 


