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Abstract: Using techniques from optimization theory, we have
developed a computer program that approximates a desired prob-
ability distribution for amino acids by imposing a probability dis-
tribution on the four nucleotides in each of the three codon positions.
These base probabilities allow for the generation of biased codons
for use in mutational studies and in the design of biologically
encoded libraries. The dependencies between codons in the genetic
code often makes the exact generation of the desired probability
distribution for amino acids impossible. Compromises are often
necessary. The program, therefore, not only solves for the “opti-
mal” approximation to the desired distribution~where the defini-
tion of “optimal” is influenced by several types of parameters
entered by the user!, but also solves for a number of “sub-optimal”
solutions that are classified into families of similar solutions. A
representative of each family is presented to the program user, who
can then choose the type of approximation that is best for the
intended application. TheCombinatorial Codonsprogram is avail-
able for use over the web from http:00www.wi.mit.edu0kim0
computing.html.

Keywords: codon bias; combinatorial libraries; computational
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Combinatorial and mutational studies of protein structures and
functions often require an investigator to generate a nucleotide
sequence encoding an amino acid sequence that has a bias toward
specific properties. West and Hecht studied correlations between
protein structures and hydrophobic patterning in amino acid se-
quences created with a simplified alphabet of two codon types:
NAN ~polar! and NTN~nonpolar! ~West & Hecht, 1995!. Other ad
hoc methods for generating peptides with specific properties through
biased codon usage have been used in the construction of combi-

natorial libraries and to perform mutational studies~Reidhaar-
Olson & Sauer, 1988; Hu et al., 1993; Pu & Struhl, 1993!. LaBean
and Kauffman developed a spreadsheet-based method to partially
automate the generation of bias in amino acids. Their method
searches the space of potential distributions either by manually
changing the nucleotide mixture, or by exhaustively searching for
the best mixture in a specified subregion of the space of all mix-
tures~LaBean & Kauffman, 1993!.

This paper describes a fully automated computer program de-
signed to generate a probability distribution on amino acids by
biasing codon usage. The program imposes a probability distribu-
tion on the four nucleotides in each of the three codon positions to
either approximate a desired probability distribution defined for all
amino acids, or to approximate a probability distribution defined
for classes of amino acids. Such classes include size, hydropho-
bicity, charge, or other properties that the program user might care
to define. The probability within each of these classes of amino
acids can be arbitrarily distributed by the program among the
individual amino acids in the class or can be skewed by additional
user-imposed constraints. The base probabilities output by the pro-
gram allow for the generation of the biased codons by creating a
weighted mixture of the four nucleotides at each codon position.

Methods: Approach: The problem of approximating the desired
distribution of probabilities for amino acids was formulated as an
optimization problem. Eachpotentialsolution~corresponding to a
particular probability distribution for the bases! was assigned an
energy based upon thedifferencesbetween the desired amino acid
probabilities input by the user and the amino acid probabilities
generated by the program. This energy function was used to eval-
uate the quality of potential solutions.

Computing the probability distribution on amino acids from the
distribution on nucleotides:Let P1, P2, andP3 denote the three
probability functions defined by the program on the four nucleo-
tides in the first, second, and third codon positions, respectively.
The probability for codonN1N2N3 is P1~N1!{P2~N2!{P3~N3!. Com-
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bining these values over different codons for an amino acidaa
leads to a probability estimate~Pest! on the amino acid of

Pest~aa! 5 (
C5N1 N2 N3

P1~N1!•P2~N2!•P3~N3!, ~1!

where the sum is over all codonsC coding foraa. The probability
of a class of amino acids is the sum of the probabilities of the
amino acids in the class.

Computing the energy of an amino acid probability distribu-
tion: To find the “best” solution, an energy function measuring the
quality of the solutions is required. Each amino acid or class of
amino acids contributes to the energy based on the difference
between the estimated probability distribution~Pest! output by the
program and the desired probability distribution~Pdes! input by the
program user. The energy contribution from either a class of amino
acids or from a single amino acidc is

E~c! 5 12 cos~6Pdes~c! 2 Pest~c!6p!. ~2!

This energy function has a basin-like shape~Fig. 1! that changes
slowly near the desired probability, increases, and then tapers off
as the difference becomes large. In the calculation of the total
energy~which involves combining many of these individual en-
ergy contributions!, this shape allows a moderate difference be-
tween the desired and estimated probability for one amino acid or
class to have a greater effect than the combined contribution from
very small differences for a number of amino acids that are not
considered as detrimental to the quality of the solution.

The total energy of an estimated probability distribution is com-
puted as a weighted sum of the individual energy contributions for

c ranging over amino acids, stop codons, and classes of amino
acids chosen by the program user:

E 5 (
c

wt~c! * E~c!. ~3!

The program user enters the weightswt~c! to capture the relative
importance of correctly estimating the desired probability for the
cth class or amino acid. In addition, this weight can be set sepa-
rately for overestimating the probability and for underestimating it
~as it may be more detrimental to miss the probability in one
direction than the other!.

Solving for the “best” solution:The problem of finding a dis-
tribution on the four bases to approximate the desired probability
distribution on amino acids can now be formulated as a problem in
nonlinear optimization. The energy function in Equation 3 can be
computed from Equations 1 and 2 as a nonlinear combination of
the base probabilitiesPi~N!. Finding the “best” solution is then a
matter of minimizing this energy subject to the following linear
constraints:

• Each of the four base probabilitiesPi~N! in the three codon
positionsi 5 1,2,3 lies between 0 and 1:

0 # Pi ~N! # 1 for N 5 A,C,G,T andi 5 1,2,3.

• The probabilities sum to 1 for each codon position:

(
N5A,C,G,T

Pi ~N! 5 1 for i 5 1,2,3.

Additional nonlinear constraints can also be specified to bound
the computed probability of an amino acid~or stop codon or class!
above or below particular values:

• Pest~c! , upper bound andPest~c! . lower bound.

Similarly, the probability of generating a particular codon can
also have an upper bound enforced. This feature can be useful in
practice to steer the program solution away from rare codons,
which may cause problems with protein expression~Kane, 1995!.

Solving for locally minimal solutions:Often the probability dis-
tribution on amino acids desired by the user cannot be approxi-
mated exactly by a probability distribution on bases. For example,
no base probability distribution can generate amino acids Tyr~codons
TAT and TAC! and Trp ~codon TGG! with nonzero probability,
while also giving zero probability to stop codons~TAA, TAG, and
TGA!. There are several approximate solutions and the choice of
the “best” solution depends on the intended application for the
distribution. Thus, it is desirable to present the program user with
a number of different types of solutions from which to choose.

To this end, the base probability space was divided into 125
subspaces, wherein each subspace was specified by placing bounds
on the base probabilities in the three codon positions. For each
codon positioni, either one baseNi was bounded above 0.5 prob-
ability ~Pi~Ni! . 0.5! while the other three base probabilities were
bounded below 0.5, or all four bases were bounded below 0.5.
These five different types of bounds result in 53 5 125 regions
of the entire probability space over all three codon positions. Min-
imizing the energy on each subspace generates 125potential
solutions.

Fig. 1. The quality of an estimated probability distribution~Pest! for the
amino acids is determined by energy contributions from each amino acid.
The energy is based upon the difference between the estimated~Pest! and
desired probabilities~Pdes!. The shape of the energy contribution function
is plotted asPest varies on thex-axis for Pdes5 0.2.
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A number of the solutions obtained may be unsatisfactory due to
the lack of a good solution within a particular subspace. The pro-
gram eliminates these bad solutions by discarding a fractionf with
the largest energy. For the examples presented in this paper, 305 of
the solutions were discarded.

In addition, many of the remaining solutions are redundant,
generating the same or very similar probability distributions of
amino acids. The solutions were therefore classified inton families
of similar solutions, wheren is determined by the program user.
For the examples in the results section, five families were consid-
ered. Each family was represented by the member of the family
with the smallest energy~corresponding to the best solution!. To
determine the families, a measure was defined to quantify the
similarity between two probability distributions on amino acids.
The distance between two such potential solutionsPsol1 andPsol2

was defined to be the sum over all amino acids~including stop
codons, but excluding classes! of the absolute value of the differ-
ence between the two probability values:

d~Psol1,Psol2! 5 (
aa

6Psol1~aa! 2 Psol2~aa!6.

Solutions with similar distributions according to this distance mea-
sure were classified into the same family. A distancedn was chosen
~via a binary search of the possible distancesd between pairs of
solutions! to divide the solution space into the desired number of
familiesn. The following procedure incrementally creates families
of solutions by examining each solution in ascending order of
energy~thereby looking at the best solutions first! and adding the
solution to a currently existing family if it lies within distanced of
the lowest energy member of the family, and otherwise making the
solution the representative member of anew family.

• Compute the distances between all pairs of solutions. Order
these distances in ascending order.

• Start withd equal to the median distance in the ascending list
of all distances.

• Step through the solutionsS in ascending order of energy.
• Find the representative solutionR from the currently created

list of families such that the distance betweenSandR is less
thand. PlaceS in R’s family. If there are no such representa-
tives, then makeS the representative of a new family.

• If at any point the number of solutions in the current list of
representatives is greater thann, then start over withd chosen
to be the median in the upper half of the remaining possible
distances.

• If all solutions are classified by the distance into fewer thann
families, then start over withd chosen to be the median in the
lower half of the remaining possible distances.

Solving the nonlinear program:The CFSQP optimization rou-
tines available at

http:00www.isr.umd.edu0Labs0CACSE0FSQP0fsqp.html

were used to solve the nonlinear programs~Lawrence et al., 1997!.
A default probability of 0 and weight or relative importance of 1
was given to amino acids not explicitly specified by the program
user. For the examples in Results, the amino acids in the classes
and the entire class were given weight 10 with lower and upper
bounds on the probabilities of 0 and 1, respectively. Stop codons

were given weight 1, and the probability of generating a stop
codon was additionally constrained to lie between 0 and 0.1 by
imposing bounds.

Results: Defining the test problems for the program:To demon-
strate the applicability and limitations of the program, several nat-
ural classes of amino acids were defined based on common amino
acid properties. For purposes of illustration, we present results
from using the program to generate codon distributions based upon
some of the groupings of amino acids presented by Taylor~1986!.
The input parameters for the program were set to distribute the
probability approximately equally among the individual amino acids
within each class. The results from running the program to gener-
ate these distributions are available via the web at:

http:00www.wi.mit.edu0kim0computing.html.

The website also allows for program users to generate their own
distributions and define their own classes of amino acids to suit
their experimental needs.

The properties used as examples and available at the website
are:

1. Size:
• Tiny: Cys,1 Ser, Ala, Gly~Fig. 2!
• Small: Asn, Thr, Asp, Pro, Cys,1 Ser, Ala, Gly
• Medium: Met, Leu, Ile, His, Gln, Glu, Val
• Large: Trp, Arg, Tyr, Phe, Lys

The relative size classifications were based upon the van der
Waals volume of the amino acids~Richards, 1974!.

2. Hydrophobic residues: Phe, Ile, Val, Leu, Met, Trp, His, Tyr,
~Ala, Gly!. A hydrophobicity scale~Rose et al., 1985! was used
to determine the hydrophobic residues, using both Gly and Tyr
as cutoff amino acids for two different trials. Despite its hy-
drophobic nature, cysteine was not included due to its ability to
form disulfide bonds.

3. Polar: Arg, Lys, His, Glu, Asp, Gln, Asn, Thr, Ser~Figs. 3, 4!.

4. Positive: Arg, Lys,~His!. Histidine was considered in one trial
run as positively charged and in another as noncharged since
the pKa of the histidine side chain is near seven.

5. Negative: Glu, Asp.

6. Charged: Arg, Lys,~His!, Glu, Asp~Figs. 5, 6!. For the desired
probability in this example, half of the probability was distrib-
uted equally among the positively charged residues~Arg, Lys,
and His!, while the other half was distributed among the neg-
ative residues~Glu and Asp!. Again, histidine was considered
in one trial run as positively charged and in another as
noncharged.

7. Aliphatic: Leu, Ile, Val.

8. Aromatic: Phe, Tyr, Trp.

9. Beta branched: Val, Ile, Thr.

1Program results for “tiny” and “small” with and without cysteine were
computed, since experimental applications may often want to avoid cys-
teine residues due to potential disulfide bond formation.

682 E. Wolf and P.S. Kim



Note that when a stop codon received nonzero probability, the
rest of the probabilities were normalized by 12 P~STOP!. The
probability given in the examples for amino acidaa therefore rep-
resents the fraction of all generated nonstop codons coding foraa.

Analyzing the output for the test examples:For purposes of illus-
tration we present representatives of the types of solutions output
by the program for several of the classes defined in the previous
section. The optimal solution to the nonlinear program for the class
of tiny amino acids~including cysteine! yields an exact solution.
Figure 2A shows a comparison between the desired probabilities
input to the program as open bars and the generated probabilities
output by the program as filled bars. The stacked charts in Fig-
ure 2B show the nucleotide probability values that generate the
solution.

For other classes of amino acids, there was often no single
solution that matched all of the desired probabilities. Additional
amino acids that are outside the desired class are often generated
with nonzero probability due to unavoidable dependencies within
the genetic code. In these cases, the program was used to generate
multiple potential solutions, each with different advantages and
disadvantages in comparison to the ideal solution. These multiple
solutions were created by running the program in multiple solution
mode, which solves for the best solution on each of 125 subspaces
of the entire space of nucleotide distributions. The program ranks
these solutions based on their quality, and keeps the best 205
fraction of solutions that are then grouped into five families of
similar solutions based upon the distance measure and the algo-
rithm defined in the approach section. For the examples presented,
we only show the top four families in each figure, since the last
family is often of low quality~though not always!. All five families
are available for viewing at the website.

In the figures, the nucleotide variation among the solutions within
each family is plotted as open bars~representing a range of prob-
abilities! in the three stacked charts. This range shows the maxi-
mum and minimum probability values taken by each base within

that family of solutions. The variability of this range gives a rough
indication as to the accuracy required when experimentally gen-
erating the base probabilities. The range of tolerable accuracy can
prove useful to the experimentalist generating the nucleotide dis-
tribution, as experimental systems have limitations on their accu-
racy. For more information on the accuracy required, it is important
to consider the covariance between different nucleotide probabil-
ities by examining the individual solutions within each family. For
example, T and C nucleotides in the last position of a codon are
interchangeable in the genetic code, which means that, within a
family, covarying the probabilities of T and C while keeping their
sum constant results in identical probability distributions on amino
acids. Since the program only identifies one minimal energy so-
lution on each of the 125 subspaces, any variability within base
probabilities in a single subspace is not accessible to the program
user. For instance, the second solution in Figure 5 allows for more
variability among the T and C nucleotides than shown, as long as
the total probability allotted to T and C remains constant. The
accuracy required to generate the biased codons should be evalu-
ated on a case by case basis by the program user.

Figure 3 shows an example of the top four families generated for
the class of polar amino acids. While none of the solutions can
exactly match the desired amino acid probabilities, the solutions
each distribute the probability with different biases, giving the
program user the choice of which solution to use. The comparison
plot of the amino acid distributions for each family shows the
differences between the desired amino acid probabilities~open
bars! and the generated amino acid probabilities~filled bars! for
the lowest energy solution within the family. The energy of this
solution~in arbitrary units! is indicated in each case. The nucleo-
tide probabilities that generate this lowest energy solution are plot-
ted as narrow filled horizontal bars in the three stacked charts
~corresponding to the nucleotide probabilities for the first, second,
and third codon positions!. The open horizontal bars for the nu-
cleotide probabilities show the maximum and minimum values
taken by that base within the family.

Fig. 2. Probability distributions for the class of tiny amino acids.A: Comparison between the distribution of probabilitiesPdes to be
approximated~open bars! and the probabilitiesPest generated by the program~filled bars!. They-axis gives the probability for each
amino acid listed. The energy of the solution is given at the top in arbitrary units.B: The nucleotide probabilities generated by the
program in each of the three codon positions to generatePest. From top to bottom the panels plot the probabilities for the first, second,
and third positions of the codon.
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Figure 4 demonstrates the effect of placing an upper bound on
the probability of the rare codons AGG and AGA for arginine when
generating solutions for polar amino acids. The ability to constrain
the probability of generating a particular codon could prove useful,
as rare codons can often result in decreased levels of protein ex-
pression~Kane, 1995!. For the arginine example, the two codons
were upper bounded by the fraction at which they occur inEsch-
erichia coli ~0.00182 for AGG and 0.00287 for AGA! ~Dalphin
et al., 1998!. As in Figure 3, the top four families of solutions are
shown. Restricting the use of the two rare codons restricts the types
of solutions that can be generated: one can notice that two of the
examples in Figure 4 have very little probability of generating an
arginine due to the avoidance of the rare codons, while all of the
examples in Figure 3 have a significant probability of generating
arginine.

Figure 5 provides an example of the top four solution types
generated when there are competing factors in the desired proba-
bility distribution ~charged amino acids, for this figure! that cannot
by simultaneously optimized. The presence of pairs of amino acids
~such as Lys and His! that have only two codons with opposite
values for the last base~A and G for Lys, C and T for His! creates
a situation where an exact solution is not possible and tradeoffs
are required. Generating both His and Lys with nonzero probabil-
ities ensures the noncharged pair Gln and Asn~corresponding to
changing the last base in the His and Lys codons! will also be
generated with nonzero probability, contrary to the desired prob-
ability distribution.

Discussion: For many classes of amino acids~such as tiny, ali-
phatic, small, and polar!, the solutions generated by the program
do an excellent job of matching the goal probabilities. Other amino
acid classes~such as large, charged, and hydrophobic! demonstrate
that, equally often, there are competing factors that make it im-
possible to simultaneously match the goal probabilities for all of
the amino acids. In the examples, amino acids with only two
codons proved more likely to lead to problems than other amino
acids. The “optimal” solution and tradeoffs depend on the purpose
the program user intends for the generated codons.

Hence, in presenting the results from our sample runs we have
attempted to provide a diverse selection of potential solutions for
each class, which does not lend itself to an exact solution. The base
probabilities given in the figures for generating these distributions

are of potential use in designing mutational studies and combina-
torial libraries. These distributions were chosen for their general
applicability. For specific mutational studies where other distribu-
tions are required, the program allows for many adjustments of the
parameters to best match the user’s experimental needs.

Finally, on a practical experimental note, the user needs to de-
cide whether to use a pre-mixed combination of nucleotides, or to
have the nucleotide mixture generated by an automated oligonu-
cleotide synthesizer. This decision will be dictated by the specifics
of the application. Pre-mixing nucleotides can be expected to give
more accurate distributions, although pre-mixing will be less con-
venient, unless a particular mixture is to be used repeatedly in a
given application.
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