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Abstract

We describe an extensive test of Geocore, an ab initio peptide folding algorithm. We studied 18 short molecules for
which there are structures in the Protein Data Bank; chains are up to 31 monomers long. Except for the very shortest
peptides, an extremely simple energy function is sufficient to discriminate the true native state from more®than 10
lowest energy conformations that are searched explicitly for each peptide. A high incidence of native-like structures is
found within the best few hundred conformations generated by Geocore for each amino acid sequence. Predictions
improve when the number of discregys choices is increased.
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We describe an extensive test of a simple computer algorithmis a poor energy function or an incomplete search of it. In Geocore,
called Geocore, for predicting the three-dimensional structures obecause the wide coverage of the conformational space, failures
peptides from their amino acid sequencésie & Dill, 1996). can be attributed unambiguously to the energy model. The large
Geocore differs from other ab initio protein folding algorithms ensemble of conformations generated by Geocore, often number-
(Levitt & Warshel, 1975; Kuntz et al., 1976; Wilson & Doniach, ing over billions, provides the data to evaluate what is wrong with
1989; Skolnick & Kolinski, 1990; Covell, 1992; Sippl et al., 1992; the potential function. We believe this is an essential step toward
Vajda et al., 1993; Covell, 1994; Hinds & Levitt, 1994; Kolinski & building folding algorithms that can be refined and improved.
Skolnick, 1994; Monge et al., 1994; Wallgvist & Ullner, 1994;  Third, among folding algorithms, Geocore has arguably one of
Boczko & Brooks, 1995; Srinivasan & Rose, 1998 several the simplest energy functions, with relatively few parameters. We
respects. First, Geocore is intended ditering algorithm, rather  find here that when we addl/¢ choices, taken from the study of
than afolding algorithm. It aims to find a small ensemble of PA Karplus(Karplus, 1998, the predictions of Geocore are im-
conformations, within which are native-like structures, rather thanproved. This implies that the energy function is not limiting, even
to find the single best conformation. While a folding algorithm is in this simple model.
obviously more desirable in the long run than a filtering algorithm,
we believe that simplified models, at least in their present state Oﬁ'he Geocore alaorithm
development, may not be sufficiently good to discriminate subtle g
differencegq Dill, 1997). If the ultimate aim is to be predictive for Here we summarize the method; details are given in Yue and Dill
the broadest possible range of protein structures, then overmodegl1996. Each amino acid is represented at the united-atom level,
ing to force a few sequences to fold to their single native confor-with polar hydrogens included explicitly, for the purpose of hy-
mations may be counterproductive for ultimately predicting thedrogen bonding. United atoms include methylene groups, amide
folded structures of other proteins. Hence, in recognition of thegroups, hydroxyl groups, etc. Eaéhnited atom is a hard sphere
limitations of simple models, our more modest goal here is just towith its appropriate van der Waa{sdW) radius, but with a tol-
develop a filtering algorithm. erance that allows two atoms to overlap by 0.2 to 0.5 A. Backbone

Second, Geocore is unique in its extensive conformational searatonformations are represented by discrete sets of torsion angles
strategy. While this limits the method to short chains, i.e., peptides¢/y). Standard values are used for bond lengths and bond angles.
shorter than about 30 amino acids at the present time, it has thEhe user has the option to specify the value of steric tolerance and
advantage of providing a deep test of the energy function. Whethe values ok/¢ angles. The default numbers and values of the
other folding methods fail, it is often unclear whether the problemd/ys angle preferences for each amino acid are extracted from the

Protein Data BankPDB) (Yue & Dill, 1996).
Reprint requests to: Ken A. Dill, Department of Pharmaceutical Chem- The Geocore energy function has two terms, hydrophobic inter-

istry, University of California at San Francisco, Box 1204, San Franciscoaction and hydrc_)gen-bgnd Qn.erg)’ue & Dill, 1996). Geocore
California 94143; e-mail: dill@zimm.ucsf.edu. seeks conformations with minimal nonpolar exposure to the sol-
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Fig. 1. Distributions of conformations by RMSDs for 1VII. Fig. 2. Distributions of conformations by RMSDs for 2MLT.

vent. This is implemented by finding maximal pairwise sharedfound, while neglecting less important conformations. The search
nonpolar surface areas among nonpolar atoms, called “HH conis done in depth-first ordgiAho et al., 1974 On the search tree,
tacts.” When two carbon united atoms contact, the energy ishe nodes represent added amino acids and the different branches
—0.7 kcafmol. Since the drive for polar groups to hydrogen-bond are the¢/¢ choices. When the full chain length or a dead end is
can be satisfied by either bonding with water or with polar groupsreached, the search backtracks. Geocore performs a complete search,
in the protein, Geocore assigns an energy penalty to the burial afubject to the two constraints that steric overlap is not permiited
carbonyl or amide groups in the core that are not hydrogen bonde@xcess of the tolerance criteripmnd that the chain must be com-
Each buried polar group that is not H-bonded has an energy perpact enough to lead to a near maximal number of nonpolar con-
alty of 1.5 kcafmol. tacts. Geocore gives the user the option to specify possible bounds
Geocore constructs conformations by adding one residue at an the shape of allowed conformations. Geocore is written in C
time to a growing chain. By adding residues with differeni/ and runs on most hardware platforms. The work described here
angles defined by the chain representation, Geocore exhaustivelyas performed mainly on a Pentium-Pro-based personal computer.
considers all the conformations, even without explicitly evaluating For each amino acid sequence, for each run of Geocore, we
them. A branch and bound method is used that guarantees that a#itain only approximately 400 “best” conformations, as defined by
globally optimal and near-globally optimal conformations will be either of two criteria.(1) We keep 400 conformations that are

Table 1. Proteins tested

Protein Sequence Description

1WBR QAERMSQIKRLLSEKKT Human CD4 receptor peptide
1PAO ACKSTQDPMFTPKGCDN PAO Pilin Trans peptide

1EDP CSCSSLMDKECVYFCHL Endothelin |

1FGE CEAPEGYILDDGFICTDIDE Thrombomodulin

1TER ALCNCNRIIPHMCWKKCGKK Tertiapin

10MG CKGKGAKCSRLMYDCCTGSCRSGKC Omega-conotoxin

1ANS RSCCPCYWGGCPWGQNCYPEGCSGPKV Neurontoxin 11I

2ETI GCPRILMRCKQDSDCLAGCVCGPNGFCG Trypsin inhibitor

1KAL SWPVCTRNGLPVCGETCVGGTCNTPGCTC Kalata B1

1MMC VGECVRGRCPSGMCCSQFGYCGKGPKYCGR AC-AMP2

1scy AFCNLRMCQLSCRSLGLLGKCIGDKCECVKH Scyllatoxin

1DEP RSPDFRKAFKRLLCF Beta-adrenoreceptor peptide
1ALE ALDKLKEFGNTLEDKARE Apolipoprotein C-l, residues 7-24
10DR YSDELRQRLAARLEALKENG Human APOA-I peptide

1BTR VLAAVIFIYFAALSPAITFG Human manc 3, synthetic peptide
1SOL KHVVPNEVVVQRLFQVKGRR PIP2 and F-a. of gelsolin

1FAC TRYLRIHPQSWVHQIALRMEV Coagulation factor VIl

1PEI VEEKSIDLIQKWEEKSREFIGS CTP phisphichholic peptide

@Proteins starting from 1DEP are not water-soluble.
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Table 2. Disulfide bonds in water-soluble proteins

Protein Sequence Disulfide bonds
1WBR QAERMSQIKRLLSEKKT

1PAO ACKSTQDPMFTPKGCDN 2-15

1EDP CSCSSLMDKECVYFCHL 3-11, 1-15

1FGE CEAPEGYILDDGFICTDIDE 1-15

1TER ALCNCNRIIPHMCWKKCGKK 3-14, 5-18

10MG CKGKGAKCSRLMYDCCTGSCRSGKC 1-16, 8-20, 15-25
1ANS RSCCPCYWGGCPWGQNCYPEGCSGPKV 4-11, 3-17, 6-22, llI
2ETI GCPRILMRCKQDSDCLAGCVCGPNGFCG 2-19, 9-21, 15-27
1KAL SWPVCTRNGLPVCGETCVGGTCNTPGCTC 5-22, 13-27, 17-29
1MMC VGECVRGRCPSGMCCSQFGYCGKGPKYCGR 4-15, 9-21, 14-28
1Scy AFCNLRMCQLSCRSLGLLGKCIGDKCECVKH 3-21, 8-26, 12-28

among the lowest in enerdgnergy-based criterign(2) We keep ~ from poorer conformationgBy “recognize”(Maiorov & Crippen,

the 400 conformations that are among the lowest in root-meani992, we mean that the energy function reports the native struc-

square deviatiofRMSD) relative to the true native structure, as ture to have lower energy than the alternativée three excep-

defined by the PDB coordinatégeometry-based criterignThe  tions, IWBR, 1PAO, and 10MG, are relatively small and have too

latter is just to test the adequacy of the chain representation. Fdittle hydrophobic core for hydrophobicity to dominate the energy.

the purpose of deciding which 400 to keep, we use a samplind\ccording to these results, native structures, even in peptides, are

algorithm that skips geometrically similar conformation to ensuresubstantially driven by hydrophobic interactions.

a representative ensemble in the program output. Atest of how well the energy function can discriminate the true
The Geocore program can make use of disulfide bond informanative structure from the most nearly native structures the model

tion. The user can specify which cysteine residues form disulfide

bridges, or can specify only that some form, and let the program

find them. Specifying the disulfide bonds biases the search and

speeds it up. To test this bias, we have compared the RMSDs ofable 3. Energies (kcaimol) of native structures, energy-based

conformations generated with and without assumptions of disulimost native-like conformations, and geometry-based most

fide bonds for endotheliflEDN), a 21mer peptide. In the runs native-like conformatior?

without the disulfide bond assumption, we found a minimum RMSD

from the native structure of 3.8 A and an average RMSD of 5.94 A, Energy Energy of Energy of
. L . . . of native conformations of conformations of
with a standard deviation of 0.95 A. With the disulfide bonds structure  energy-based search geometry-based search
assumed as a constraint, we found a minimum deviation of 3.0 Arotein (kcal/mol) (kcal/mol) (kcal/mol)
and an average RMSD of 4.6 A, with standard deviation of 0.65 A.
We note that for a conformational space in which each residue haWVBR 722 —101.5 —61.0
four ¢/ choices, the total number of Geocore generated compactPAQ —62.6 —84.3 —66.8
conformations for 1EDN is approximately 51 million. The num- 1EDP —69.2 —68.4 —596
bers of conformations with RMSDs of 6.0 or less, 4.6 A or less, - CF ~1209 ~1076 ~91.2
- . . 1TER —-152.2 -97.9 —-75.9
and 3.3 A or I_ess are 28 million, 5.6 million, and 0.8 mllllop, 10MG _106.4 _108.3 878
respectively. Figures 1 and 2 show the numbers of conformationg s _158.4 1200 —106.2
sampled by Geocore as a function of RMSD from the native strucogT —122.8 ~103.3 ~103.3
ture for 1VII (villin head piece and 2MLT (melittin). This shows  1kAL —161.2 -109.3 —99.4
that most conformations deviate by 7-8 A, and very few are native1MMC —-157.3 —103.5 -87.1
like. It indicates that native-like structures that are being found1SCY —166.7 —137.30 —121.9
by Geocore are not due to some property of the constraints or thgyep -83.0 858 645
search, but are due to the energy function, 18 peptides are testedin| g —94.3 -804 —76.2
our study. Tables 1 and 2 show the proteins tested and disulfideobr —86.2 —935 -82.9
bonds in water-soluble proteins, respectively. 1BTR —94.9 —91.2 —76.3
1SOL -71.3 —95.0 —94.0
1FAC —89.6 —114.6 —88.9
Results 1PEI —-105.5 —-108.0 —99.3

Comparing the first two columns of Table 3 shows that for 8 of the
11 water-soluble proteins, the true native structure has a lower °Here, a conformation is judged “most native-like” if its RMSD from
value of the Geocore energy function than the lowest energy strudhe native structure is minimal among all possible conformations. Energy-

. sed most native-like conformations are chosen from the pool of low
ture computed by Geocore. This means that the Geocore ener ergy conformations. Geometry-based native-like conformations are found

function is perfectly adequate for the job it is supposed to performirom the entire conformational space. Proteins starting from 1DEP are not
It can recognize real native structures, and can distinguish themwater-soluble.
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Table 4. RMSD values of @ atoms between a native structure itation is not a poor energy function, but the inability of the chain
and an energygeometry-based most native-like conformation  to reach a better conformation, duedgy limitations. One of the
two failures is 1SOL, which is not water-soluble. The other is

Conﬁgﬂrigﬁofs o Corﬁxigﬁo‘;fs o  LPAO, which also failed the test described above, and is small.
geometry-based search energy-based search Hence, Wlth these few expeptlons, the energy function is an ade-
Protein A A) quate discriminator of native from nonnative structures.

Column one of Table 4 shows the geometric limitations of the
1WBR 1.749 3.010 model. Shown are the RMSD values between the true native struc-
1PAC 1.847 2.900 ture and the best structures the model can produce. Remarkably,
1EDP 2.183 2.461 the water-insoluble proteins are more accurately captured by the
1FGE 2.480 2.992 canonicalg/y values in the model chain representation than the
ﬁ/i; ;:2352; g:ggj v_vater—soluble _proteins. Errors are generally larger in larger pep-
1ANS 4921 4.880 tides. Comparison of column two to column one shows that Geo-
SETI 4.586 4586 core’s lowest energy conformations are usually not much worse
1KAL 4.552 4.835 than Geocore’s best geometric structures. Said differently, the present
1MMC 4.680 5.508 main limitation of Geocore is the chain representation and the
1Scy 4.028 5.090 discreteness of the/is options.
1DEP 1.000 2113 To test this, we performed a Iimited test on the few pe_ptides that
1ALE 0.913 2769 were short enough that we could increase the computational search
10DR 1.500 3.233 from four ¢/ options to five. Table 5 shows that when the number
1BTR 2.098 4.000 of options is five, the Karplus values for the most probabfé’s
1SOL 1.360 3.138 are generally an improvement over our original default values.
1FAC 1.826 3.039 Table 6 shows the result of using fogify options. Comparison of
1PEI 0.953 3.133 the two tables shows, not surprisingly, that using & options

rather than four, improves the performance of the model with
aproteins starting from 1DEP are not water-soluble. respect to the true native structures. This is a further indication that

computer time is a greater limitation at present for this algorithm
than any weakness in the physical model.

The limitations of the Geocore model can be seen in Figure 3.
can produce is given by comparing columns one and three oHydrophobic interactions compete with the tendencies toward he-
Table 3. In 16 of the 18 molecules, the energy function correctlylical structures and the helices of water-insoluble proteins are not
distinguishes the true native structure from the most native-likewell predicted. On the other hand, Geocore was not intended for
structure that the model can produce. This means the current limwater-insoluble proteins; we included them here because we were

Table 5. Comparison of RMSD values between default and Kargls values, fiveg/iy choices

Default ¢/ Default ¢/ Karplus ¢/¢ Karplus ¢ /¢
Chain geometry-based search  energy-based search  geometry-based search  energy-based search

Protein length A) A) A) A)

1PAO 17 1.85 2.62 1.31 2.03
1EDP 17 2.16 2.44 1.46 2.10
1TER 21 2.92 3.44 2.30 2.98
1ANS 27 4.03 5.00 331 6.25
1DEP 15 0.86 2.67 0.97 2.30

Table 6. Comparison of RMSD values between default and Kargls values, fours/iy choices

Default ¢/ Default /i Karplus ¢/¢ Karplus ¢ /¢
Chain geometry-based search  energy-based search  geometry-based search  energy-based search
Protein length A) A) A) A)
1PAO 17 1.85 2.90 1.61 2.41
1EDP 17 2.18 2.46 1.80 2.65
1TER 21 291 3.32 2.93 3.55
1ANS 27 4.25 4.92 4.08 4.93

1DEP 15 1.00 2.11 1.27 3.01
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Fig. 3. Ribbon diagrams of the native structuiid) from the PDB and Geocore-generated low energy stru¢t@ydor each of the
water-soluble proteins studied and 1FAC, one of the water-insoluble proteins. The figure l&@Bgledeach pair of structures
represents not the very lowest energy conformation but the most similar structurally from the set of around 400 recorded lowest energy
conformations.

interested to see what the algorithm would do with them. Forusing moreg/4s options per amino acid, or by using the Karplus
water-soluble proteins, the most native-like energy-based confore/iy propensities.

mation is not considerably different from the most native-like

geometry-based conformation, but these are not always nativeviaterials and methods

like. This is probably due to the limited number &fys choices in

the conformational search. Choosing the test proteins

We chose 18 peptides to study, based on the following criteria:
structures were known and available in the PDB; chain lengths
were restricted to 22 amino acids when we applied no disulfide
We have tested an algorithm called Geocore on the prediction ofonstraints or 31 when they were included; we eliminated mol-
the structures of 18 peptides from their amino acid sequence®cules that crystallize as dimers or that involve prosthetic groups.
Geocore uses a very simple energy function and a very complet€ avoid bias, we otherwise took all peptides that meet those
conformational search method. The energy function has essentiallgriteria. In all cases, structures were determined by NMR. Eleven
two parameters, one for hydrophobic interactions and the other foof the 18 protein structures were determined in aqueous solution,
the burial of polar groups, in addition to a few steric tolerancewhile the other 7 were determined in the presence of detergent or
parameters and PDB-deriveb)/ys propensities. Despite its sim- organic solvents, because they are otherwise insoluble or adopt
plicity, the energy function is sufficient to distinguish native from multiple conformations.

a very extensive list of non-native conformations. The main lim- In the conformational search each residue has dgrchoices,
itation at the present time is the discreteness offfhioptions and  except glycines and the residues around glycifte® residues

the computational limitations to chain lengths less than about 30—4before and two aftey which have one additional/s choices. The
monomers. Compared to our earlier report on this algoritkfoe numbers of generated conformations and the run time are listed in
& Dill, 1996), we find that the algorithm is improved either by Table 7.

Summary
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Table 7. Number of conformations and run time For residues other than Gly, Pro, Val, and lle, our approach
toward systematic improvement was to use fiyg) values to
) Number of ) cover the Ramachandran plot, rather than the iy choices
Protein conformations Runtime  sed previously in Geocore. With our current search strategy, this

test can only be performed on the short proteins, so we used 1PAO,

1WBR 281317903 40h 1m

1PAO 382342 3h38m 1EDP, 1TER, 1ANS, and 1DEP.
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