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Abstract

In the past few years, a new generation of fold recognition methods has been developed, in which the classical sequence
information is combined with information obtained from secondary structure and, sometimes, accessibility predictions.
The results are promising, indicating that this approach may compete with potential-based rietsedset al., 1997,

J Mol Biol 270471-480. Here we present a systematic study of the different factors contributing to the performance

of these methods, in particular when applied to the problem of fold recognition of remote homologues.

Our results indicate that secondary structure and accessibility prediction methods have reached an accuracy level
where they are not the major factor limiting the accuracy of fold recognition. The pattern degeneracy problem is
confirmed as the major source of error of these methods. On the basis of these results, we study three different options
to overcome these limitations: normalization schemes, mapping of the coil state into the different zones of the Ram-
achandran plot, and post-threading graphical analysis.

Keywords: fold recognition; protein function identification; protein structure prediction; remote homologues;
secondary structure and accessibility predictions; sequence annotation; threading

In light of the vast amount of information generated by the differ- Smith & Waterman, 1981 When tested in different caséRost

ent genome projects, improvement in the performance of foldetal., 1997; Rice et al., 199,these methods have given promising
recognition methods has become an important challenge for thosesults, comparable to the more complex distance-based methods
researchers working in the genomics fié¢ldander, 1996 These (DBM) (Rost et al., 199 Furthermore, matching in one dimen-
methods, also known as threading methods, provide a very pronsion is about 10 times fastéRost, 1998, which is important for

ising approach to the problem of protein structure prediction andhe vast sequence searches related to genome projects. Despite
function identification, as can be seen by the results of the lasthese promising results, there is no clear understanding of the
CASP2 prediction experimeriMarchler-Bauer & Bryant, 1997  factors affectinglimiting the recognition ability of the PBM. In

The first fold recognition methods generally used either distancethe case of the DBM, researchers from several laboratories have
basedJones et al., 1992; Sippl & Weitckus, 1992; Bryant & Law- studied different aspects of their performance. In a thorough study,
rence, 1998or profile-basedBowie et al., 1991; Ouzounis et al., Kocher et al.(1994 analyzed the ability of different potential
1993 scoring functions. However, since the original work by Sheri-terms and side-chain models to recognize the native-fold of the
dan et al.(1985, different researcher@-ischel-Ghodsian et al., query sequence within a set of candidates. Later, researchers from
1990; Fischer & Eisenberg, 1996; Russell et al., 1996, 1998; Ric¢he same groupLemer et al., 1995 studying the results from the

& Eisenberg, 1997; Rost et al., 1997; Aurora & Rose, 19%8/e first CASP prediction experiment, suggested that fold recognition
developed a series of related methods that combine sequence imay be achieved, despite poor alignment quality, by a generally
formation with secondary structu§S and accessibility(AC) unspecific maximization of the hydrophobic interactions, and a
predictions. In these prediction-based methdBM), all the struc-  reasonably good prediction of the local secondary structure. West-
tural information is encoded into a one-dimensiofid)) string of head et al(1995 compared the behavior of two different threading
symbols, thus allowing matching in 1D and the use of classicaklgorithms when used together with the distance-based potentials.
dynamic programming algorithmdNeedleman & Wunsch, 1970; Bryant(1996), using his DBM(Bryant & Lawrence, 1998 shows

that there is a clear relationship between the percentage of residues
of the query sequence aligned with its remote homologue and the
Reprint requests to: Janet M. Thornton, Department of Biochemistry,recogni»[ion specificity of the method. This result has been sup-

g_%‘ﬁ{siayo%?gﬁgbgg%% ﬁge:é,uLkondon WCIE 68T, United Kingdom; ported by the analysis of the results of the CASP2 prediction

AbbreviationsAC, accessibility; DBM, distance-based methods; PBM, €Xperiment(Marchler-Bauer et al., 1997For the PBM the dif-
prediction-based methods; SS, secondary structure. ferent authors have provided serious descriptions on the behavior
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of their respective methods. However, to the best of our knowledgdetween many of the sequences in their database. A simple se-
no systematic studies have yet been published similar to the onegience search using the PAM250 matrix gives a success rate on
described for the DBM. their dataset of 51%, while on ours the same search identifies only
In this paper we utilize a scoring function that shares the mair@% of the targets.
characteristics of those used in the PBM and a representative dy- The quality of the alignments obtained here is comparable to
namic programming algorithm to study different effects contrib- previous PBM methods. Comparing our predicted alignments against
uting to the performance of these methods. In particular, wethe structure-based alignments derived using the SSAP program
concentrated in the study of their limitations when applied to the(Taylor & Orengo, 1988 we find that 62% of correct hits show
fold recognition of remote homologues. Remote homolog&es-  more than half of their residues correctly aligned. This 62% is
sell et al., 1997 are proteins, which, despite their low sequenceclose to the value derived by Rost et é1997). If we use the
homology, are evolutionarily related and generally have a similalSTAMP program(Russell & Barton, 199Pstructural alignments,
function. The interest in this problem lies in the identification of this value drops to 38%. This illustrates one of the problems when
function by recognition of a relationship between the query sedrying to assess the accuracy of the threading alignments: different
guence and a protein of known functiORussell et al., 1998 Our structure comparison methods provide different alignmgatsizik,
results indicate that inaccuracies in the predictions are not the maih996; Zu-Kang & Sippl, 1996
limiting factor preventing improved specificity. Secondary struc- Thus the method used here shows a success rate comparable to
ture and sequence pattern degeneracies have a more importgevious methods. As it is based on essentially the same principles
effect. We explore how the use of functional annotations may hel@s these other PBMs, we can reasonably assume that the results
to improve discrimination. obtained from the performance analysis of our method will be
generally applicable.

Results and discussion

Effect of the number of fold representatives
Performance in the fold recognition of remote homologues in the searched database

To test the performance of the threading method, we used a set q‘b compute the performance of our method for each query se-
73 pairs of proteins that are remote homolog(®se Methods  quence, all its remote homologues present in the original database
The sequence of the first protein in each gtlie query sequente  (Rost, 1996 were included in the target databasee Methods

was used to search the structural database for the second proteinfRe average number of target structures per query sequence in-
the pair(the target structupeUsing the optimized parameteisee  creased from 1 to 3.8, on average, giving a much improved per-
Methods, the fold recognition program ranked the target structureformance, with an average success rate of 67.4%. This result
in the first position in 29 queries, while in the remaining 44 ex- generalizes the initial observation by Lemer et @995, and

amples a nonhomologous structure was ranked first. Therefore, théhows that searched databases should include the maximum avail-
success rat€29/73) was 39.7% higher than the 29% success rategple number of fold representatives.

reported by Rost et al1997). (Note: This calculation increases

dramatically when homologues for the query sequence are not )

specifically excluded from the database; see bol@everal fac- COmparison between the structural
tors may account for this difference in performance: and the threading alignments

(1) The parameter optimization was done on the same set of pro(_)ne of the goals of the threading methods is to provide an align-

teins used to evaluate the performance of the method. ment of the query sequence against the target sequence to allow an
accurate model to be built by using homology modeling techniques

(2) The test sets are not the same. In our case we were onlyRost et al., 1997 However, the outcome of the modeling criti-
interested in the fold recognition of remote homologues, whilecally depends on the accuracy of the alignment, as shown by the
Rost et al(1997) include analogous proteins and consider theresults of the CASP prediction experiméBali et al., 1995; Sam-
general threading problem. udrala et al., 1995; Martin et al., 1997When comparing the

observed and the predicted alignments, we found that there was no

case for which the threading alignment coincided entirely with the
structural alignment. To explore the reasons for the nonrecognition
of the structural alignments, we compared the score decomposition

(4) Our probabilities are dependent on the reliability indexes, andsee Methods for the predicted and the observed alignments
this may improve the performance of our meth@dlscher &  (Table 1. To take into account the structural alignment ambigu-
Eisenberg, 1996 ities (Godzik, 1996; Zu-Kang & Sippl, 1996two sets of structural

.alignments were used, derived from SSARaylor & Orengo,

®) These resu_lts may al_so indicate that, on the average, it I‘T[989 and STAMP(Russell & Barton, 1992 The results for both
slightly easier to identify remote homologues than analogues ots were similar

due to their higher conservation of sequence and structura? .
9 q For the observed structural alignments, we see that both the

properties. This accords with the results of Russell 1898, . .
. : . sequence and the gap terms make unfavorable negative contribu-
who achieved higher accuracies for homolog(®$% than . ) .
) : . . tions to the alignment scords-0.100 and—0.258, respectively,
analogueg56%), using a smaller test set including multiple . I
targets for the SSAP alignmensOnly the structure term has a positive
gets. contribution(0.049, derived solely from the SS prediction term.
Fischer and Eisenbef@996 present higher success rat@4% This reflects the fact that SS is both better predicted and more
on their WWW server, but this reflects the sequence similarityconserved between homologues than AC. The very negative con-

(3) We are using a smaller database of structu6®y proteing
than Rost et al1997) (701 proteing who have shown that the
smaller the database, the better the performance.
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Table 1. Average values for the different scoring terms in the observed structural
and predicted threading alignments

Observed alignments Predicted alignments
SSAP STAMP® Threading

Sequence —0.100(0.059 —0.090(0.063 0.083(0.073
Structuré (SS+ AC) 0.049(0.058 0.057(0.050 0.188(0.045
Gap —0.258(0.229 —0.349(0.159 —0.103(0.045
Structural decompositidh

S§ 0.049(0.047 0.053(0.040 0.121(0.029

ACf 0.000(0.022 0.004(0.020 0.067(0.026

aStructure contribution obtained for the SSAP alignméfiylor & Orengo, 1989
bStructure contribution obtained for the STAMP alignmeffsissell & Barton, 1992
®Total contribution of the structure ter(8S+ AC).

dDecomposition of the structural term.

€Contribution due to the SS term.

fContribution due to the AC term.

tributions of the gap penalties can be attributed to the high number For the failures of the method, all the terms—sequence, struc-

of gaps observed in the structural alignments of remote homoture, and gap—contribute to recognizing the wrong partner

logues(Russell et al., 1997 (Table 2, although in this case the more important contributions
In the predicted threading alignments, both the structure andome from the structure and the gap tera).019 and—0.024,

sequence terms have positive values of 0.188 and 0.083, respemspectively. On average the structure term difference is more

tively. In addition, decomposition of the structure term shows thatthan twice as large as the sequence term differdiieble 2,

both the secondary structure and the accessibility terms make poghich arises from the large contribution of the SS prediction

itive contributions to the alignment scores. It is not surprising thatscore (—0.020. This probably reflects the highly nonrandom

the predicted alignments show better scores, since they were de-

rived to optimize these values. However, this highlights the inad-

equacies of the scoring functio@an incorrect alignment scores

better than the correct observed alignment 06
This conclusion is essentially independent of the ambiguities in b

the structural alignmeni&odzik, 1996; Zu-Kang & Sippl, 1996 i 1

as similar results are reached when using the STAR#&ssell &

Barton, 1992 structural alignmentg§Table 1. 0.5

u
B

Factors affecting the fold recognition specificity 0.4
of remote homologues

—— T

Above we used a simple score decomposition corresponding to the
three terms of the scoring function: structure, sequence, and gap.
Unless otherwise stated, we will use score differences to describe [
the contribution of the different terms to the successes or failures }
of the methodsee Methods 0.2 L
When looking at the successes of the method, we see that on »
average the sequence, structure, and gap terms of the scoring func-
tion (0.051, 0.041, and 0.013ll favor the recognition of the
correct fold. In particular, the sequence and the structure terms are
the most discriminating. If we plot the sequence identity distribu-
tion for both the successes and failures of the mefifagl. 1), we f .
observe that sequence identity is in general higher for the success- 0 |——,
ful than for the failed queries, emphasizing that homologues shar- 5 10 15 20
ing higher sequence similarities are easier to recognize. However, % SEQUENCE IDENTITY
there is a substantial overlap between both distributions, and for
60% of the successes, the contribution of the structure term i§ig. 1. Distribution of sequence identities from structural alignments for

. ) e successefblack and failures(grey) of the method. The sequence
higher than that of the sequence term. These results confirm that entities for the 73 test cases were derived from the SSAP structural

this level of sequence identity the structure term is needed for @jignments(Taylor & Orengo, 1989 Similar results were obtained using
fruitful fold recognition. the STAMP alignment$Russell & Barton, 199P(results not shown

FREQUENCY
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Table 2. Summary of the score decompositions for the successesee Fischer & Eisenberg, 1996; Rost et al., 139% when plot-

and failures of the fold recognition procedére ting the histograms for both the SS and AC accuradg. 2), we
can see a clear overlap between the successes and failures of the
Successés Failure$ method.
(28 casep (38 casep
Sequence 0.05(D.036 —0.008(0.055
Structuré 0.041(0.063 —0.019(0.037
Gap 0.0130.053 —0.024(0.069
Structural decompositién 0.35 [ ]
Correctly predicted 0.066(0.04) —0.005(0.042 LA 1
Incorrectly predictedl —0.025(0.025 —0.014(0.029 I ]
SS decompositich 0.3 q
s 0.019(0.028 —0.020(0.028 ]
AC! 0.022(0.025 0.001(0.02 I 1
SS decompositidn 0.25 E
Alpha + bet& 0.017(0.016 —0.007(0.022 [
Coil' 0.002(0.02) —0.013(0.018

02|

ENCY

8Calculated as the differencasbetween the correct match and nonho-
mologous match with the highest score. Positive values indicate a favorabl8
contribution to the correct candidates while negative scores indicate tha 0.15
the nonhomologous protein scored more highly. o i

bThe values are listed for the different contributions computed for each
protein using Equation 6 and averaged over the 28 successful fold recog-
nition examples. The standard deviations are given in parentheses.

¢Same as in footnote b, for the 38 protein pairs that were not success-
fully matched. [

9A in total contribution of the structure terfSS+ AC). 0.05

¢Decomposition of the structural term.

fContribution from those residues for which SSAC are correctly
predicted.

9Contribution from those residues for which SSAC are incorrectly 0
predicted. 55 60 65 70 75 80 85 90

hTotal contribution toA of the SS term. o

Total contribution toA of the AC term. % PREDICTION ACCURACY (SECONDARY STRUCTURE)

/Decomposition of the total SS term.

KContribution to theA SS term from the aligned residue pairs in which 0.5
the residues belonging to the selected candidates were in helix and sheet. [ B

'Same as in footnote k for residues in the coil state.

0.1}

0.4 .

distribution of the SS states along the sequéheg long stretches I — ]
of SS can match, even in incorrectly paired sequences 03 L i

In the following sections, we discuss in more detail different L p
effects modulating the fold recognition performance of PBM.

FREQUENCY

Structure prediction accuracy

As expected, the contribution of residues with correctly pre-
dicted structurdSS+ AC) makes a major contributiof®.066 to
the successful recognition of the target structure. In contrast, the
average contribution of those residues with incorrectly predicted
structure(—0.025 favors recognition of the wrong candidate. This
is also true for the failures of the meth¢@able 2, indicating the
relevance of good structure predictions in the recognition of the
correct target structure.

To further evaluate the relevance of the prediction accuracy to 30 35 40 45 50 55 60 65
the recpgr_ﬂtion process, we computed the secondary structure and % PREDICTION ACCURACY (ACCESSIBILITY)
accessibility prediction accuracies for the 73 query sequences. The
results obtained show that, on average, they are only slightly bettefig. 2. Prediction accuracy histograms fgk) SS and(B) AC. The data
when the method succeeds n recogrizing the remote homolog E7ES0°04n0 1 e Seessees o e meton e s e T
(76.0% and 59.5% for SS and AC, respectl\)qbiatlve to 7_3'0% prediction aFt):curaciges are computed by c%mparing thegqu)gry sequence pre-
and 55.2%, respectively, when the method fails. These differencegctions (from the PHD package, Rost & Sander, 198%d observed
in prediction accuracy partly explain the failures of the methodstructuresfrom the DSSP assignments, Kabsch & Sander, 1983

0.2 + -
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The previous results indicate that while correct predictions make6.3%, respectively while it drops clearly(60.7%9 when consid-
an important contribution to the success of the method, the presertring residues in the coil state.
level of structure prediction accuracy is not the main factor dis- To evaluate, at the score level, the effect of this information loss
criminating correct from incorrect fold recognition. Two factors in the recognition performance of the PBM, we computed the
have more effect on the correct recognition of the target structurecontribution of the coil-based SS terms to the score difference
the degree of similarity between the query and the target structurdsetween the correct alignment and the highest ranking incorrect
and the pattern degeneracy problem. match(Table 2. The results obtained show that the coil term plays
In Figure 3 we display the fraction of secondary structure con-an important role in the recognition of the wrong candidate, while
served between the known query and the target structures, for bothe remaining secondary structure elements, alpha and beta, appear
the successes and the failures of the method. We can see thatfavor more frequently and strongly the recognition of the correct
secondary structure is clearly more conserved for the successeandidate.
than for the failures of the method. This indicates that even at the Finally, note that secondary structure repetitions, which are very
present level of secondary structure prediction accuracy, recogncommon(e.g., in TIM barrel, exacerbate the pattern degeneracy
tion of the target structure will strongly depend on the degree ofproblem.
similarity between the query and the target structures. This is in The pattern degeneracy problem also affects the accessibility
accordance with the results by Brydi996. term, as the same accessibility state—buried, exposed, or half-
exposed—may be obtained from different combinations of neigh-
bors. However, the average low contribution of the accessibility
term to the failures of the methd.00)) indicates that the acces-

and accessibility matching - o h -
. sibility cannot distinguish the correct and incorrect matches for the
Usually in PBM the problem of pattern degeneracy refers to thefatilures at all
£ .

secondary structure pattern degeneracy. It corresponds to the fa
that different folds, or parts of them, may have similar 1D structure

patterns(Rost et al., 199% Its origin lies in the information loss ~ Pattern degeneracy in the sequence term

due to the projection of the three-dimensio(&iD) structure of the Sequence effects usually favor the ranking of an incorrect fold
protein into a 1D string of symboldRost et al., 199% The infor- in the first position. These unspecific effects are similar to the
mation loss is most pronounced in the coil state, because coiecondary structure pattern degeneracy, and can be explained by
residues can map to different zones of the Ramachandran plothe fact that even for different proteins, hydrophobic residues mainly
This can be seen in the case of the remote homologue pairs. If weonstitute the core, and hydrophilic residues mainly constitute the
compute the percentage of Ramachandran zone conseryseien surface. Therefore, just by aligning core and surface positions we
Methods, for the aligned residues in the 73 pairs, we can see thamay obtain positive scores, favoring the alignment between any
it is very high for residues in the alpha or beta sta@%8% and  protein pair, despite underlying structural differences.

The predicted alignments generally comprise correctly and in-
correctly aligned stretches of residugsta not showy a feature
obscured by the average alignment shifts. In general, favorable
sequence contributions are expected to come only from the cor-

0.35 ] rectly aligned residues, e.g., in Figure 4 we see that for the pair
(1abe, 1gch with an average shift of 0.43, the vast majority of the
residues are correctly aligned. However, in some cases sequence
information may benefit the correct over the incorrect match, even
though the alignment is grossly incorrect. For example, for the pair
(3blm, 3pte, the correct target is ranked first, favored only by the
sequence term, despite an average alignment shift of 48.4. Figure 4
confirms that in this case the number of residue pairs with high
shifts is large.

Pattern degeneracy in secondary structure

025 F

02 |
I Possible alternatives to improve the performance of prediction-
based methodsThe previous analysis highlights some of the prob-
lems that affect the success of PBM. In this section, we discuss
some strategies that could be used to overcome them.

As we have previously seen, the pattern degeneracy problem is
the main factor limiting the accuracy of fold recognition using
PBM. One approach to eliminate this effect could, in principle, be
the use of a normalization scheme to estimate the significance of
a match. Bryant and Altschuil 995 suggest a procedure to elim-
inate unspecific sequence composition effects based on the gener-
ation of a reference state by randomly shuffling the aligned residues.
In a second step this reference state is used to normalize the score
of the alignment. Unfortunately, this procedure cannot be easily
applied to scoring functions involving SS terms, due to the high

Fig. 3. Histogram of SS conservation between the query and the targe?o""e|‘5‘ti0_n petween the SS state of _neighboring _residu_es. This
structures for the success@sack) and the failureggrey) of the method.  problem is likely to affect any correction scheme involving SS

0.15 |
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with similar functions, it is likely that the functionally important
residues will be more conserved. Therefore, if we have information
to identify these residuedrom multiple sequence alignments or
structural datg these data should be used to aid recognition. To
this end we have utilized a tool already developed in our labora-
tory, the program SASMilburn et al., 1998, to annotate sequence
alignments with information extracted from the Protein Data Bank
(PDB) file (Bernstein et al., 197%70f the target sequence, e.g.,
SITE records, contacts with the ligand, etc. Unfortunately, the
results obtained are limited by the fact that such information is
often not available.

For the 21 pairs in our database for which SITE records were
available, only for the pair of protein tyrosine phosphatdgesaq,
1yts) did the observed coincidence suggest a common function. In
this case, 1lyts was the top hit in the threading method. The anno-
tated alignment is shown in Figure 5. Protein 1yts shows two
segments of active-site residues, residues 350—360 and residues
402-410, according to the PDB file records. It can be seen that for
2hnq several of these residues are conserved. These matches sug-
gest that the query protein is likely to have the same function as the
target protein. We have not attempted to quantify the likelihood of
these matches, as this is beyond the scope of this paper.

0.8

0.6

FREQUENCY

0.4

]
0.2 4
|

1

Hﬂﬂﬂﬂ

49 57
SHIFT

L] .1

83

1
13

5

Fig. 4. Frequency distribution of the alignment shifts of the predicted align- conclusions

ments for the pairs labe—1g@alack) and 3bim—3ptegrey).
Our results indicate that by enriching the number of remote ho-
mologues per fold in the searched database, the average accuracy
of PBM may increase substantially. We have also observed that the

shuffling. For this reason, we decided to explore a different ap

proach to evaluate the reliability of the threading hits and decreas!

the weight of unspecific effects.

accuracy level reached by secondary structure and accessibility
gredictions is often sufficient to allow their use in the recognition
of remote homologues by PBM, without introducing any major

The SS pattern degeneracy problem is due in part to the stru@ource of error. Interestingly, at this stage the degree of structural

tural degeneracy of the coil state. In the coil state, residues ar

characterized by the fact that thep;) angles may occupy any
allowed zone of the Ramachandran plot. Interestingly, Swindell

§|milarity between the query and the target structure becomes a
more relevant factor. However, the pattern degeneracy problem, a

gLonsequence of using 1D information, is probably the main prob-

et al. (1995 have shown that residues in the coil state have weII-Iem affecting fold recognition by PBM. This suggests two direc-

defined propensities for different zones of they map. This sug- tions for the improvement of prediction-based fold recognition

gests that replacing the simple coil state by a set-gfzones may methods: use of more specific function-related sequence informa-

help to improve the recognition ability of PBM. tion, as shown by our use of structure-derived sequence annota-
The feasibility of such an approach relies in the conservation O]IIOFIS, or the introduction of 3D information such as that used in

the ¢-i zones, for the residues in the coil state, across proteins iﬁistance-based threading methods, in the form of additional terms

the same structural families. However, the degree of zone consef® the scoring function. We are at present exploring these two

vation is only 61% for the aligned coil residues in the observedd/termatives.
structural alignments and a very similar percent@§é%) was
observed in the threading alignments. This suggests a limited US§jethods

fulness for the proposed approach. A more refined analysis was

done in which coil residues were classified according to their .

accessibility state. The results obtained showed that, for the obrhe set of remote homologue pairs

served structural alignments, only buried coil residues display ave used a set of 73 remote homologue pairs derived from the set
high degree(70% of ¢-# zone conservation. However, as they provided by Russell et al1997), after eliminating all the pairs
only are a small fraction of the coil residues in the protein, it iswhere one of the proteins had missing or unknown residues. In this
very unlikely that the use of-is zones for these residues will paper, the first and the second protein in each pair will be consid-
contribute to increase the success rate of the method. Also a changged as the query and the target sequences, respectively.

of ¢, values for a single residue can critically affect the overall

3D topology of the coil, rendering such predictions very sensitive

to errors. The searched database

The searched database was a set of 627 proteins, with less than
Post-threading analysis 25% sequence identity between any pair, derived from the set
In our threading method, the contribution of all the residues hagrovided by Rost1996 after eliminating all those proteins having
been given the same weight. However, for remote homologuegmissing or unknown residues.
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Fig. 5. Annotated predicted threading alignment between the two tyrosine-phosphatases 2hnq and lyts. 2hng was used as the query
sequence to search the structure database and lyts; the remote homologue of 2hng was the first hit found by our threading method. The
alignment shift errors were 1.7 and 3.8 residues, relative to the $E&\for & Orengo, 1989and STAMP(Russell & Barton, 1992
alignments, respectively. Residues colored in red correspond to 1yts active-site residues, according to the PDB fi(Beeosteis

et al., 1977. The upper case is used for the 1yts sequence to indicate that information on the active-site residues is available. The
display was produced using the in-house program $Mburn et al., 1998.

Due to the nature of the database, there are several remote The alignment accuracy was measured using the alignment mean
homologues for each of the 73 query sequences. However, wheshift error, computed as follows:
performing a search with a given query sequence, only the remote

homologue coinciding with the target sequence was kept in the Nal
database. This provided a much more conservative measure of the 1002 | shift; |
success of our metha@ee Results and discussjon T\ll I 2
a
Fold recognition performance and alignment quality summed over all the query sequence residues present both in the

threading and the structural alignmerit&l is the total number of
¥hese residues. The shifs the residue shift between the correct
(structura) alignment and the predictgthreading alignment for

a given query sequence residue.

We measured the fold recognition performance of our method b
the percentage of correct first hits computed as follows:

100nf
N

()
Effect of having multiple target structures

where nf is the number of pairs for which the query sequenceIn the fold recognition performance

ranked its corresponding target sequence in the first posiias;  To test the effect of the number of targésery, the performance
the number of test cases, 73 in our case. of our method was computed using all the homologues of each



Prediction-based fold recognition 757

query sequence present in the target database, rather than or#ander, 1988and predictedusing the PHD program, Rost &

using one target per query. However, some of the query sequenc&ander, 1998SS. That is to say, the probability to observe a

in our test set belonged to the same SCOP superfafivlyrzin residue in the helix state when it is predicted to be in a beta state,

et al.,, 199%. To avoid any bias due to this fact, we generated awith reliability 7, is equal to

collection of 50 reduced test sets. Each set was constituted by 35

query sequences, randomly chosen from the 73 query sequences of H N s
(&)= %

our initial test set, and each belonging to different superfamilies. = (6)
Finally, the performance of the method was averaged over the Ne.7
values corresponding to the 50 sets.

EN7

whereny g 7 is the total number of residues havikigas observed
secondary structure artel as predicted secondary structure with
reliability 7. The denominatong 7 is the total number of residues
Due to the ambiguity in structural alignmer{Sodzik, 1996; Zu-  havingE as predicted SS with reliability 7.

Kang & Sippl, 1996, two sets of structural alignments were used The final comparison matrix was linearly scaled so that the
in this paper: one is available from Russell et @997, who maximum and minimunsc values were equal to 1 and1, re-
derived them using the STAMP progrdRussell & Barton, 1992 spectively(Rost, 1996.

and the other set was obtained using the SSAP prog¢Taylor & The gap function used was a simple linear gap scheme typically
Orengo, 1989 used in PBMFischer & Eisenberg, 1996; Rice & Eisenberg, 1997;
Rost et al., 199¥in which the penalty for opening a gap involving
n residues is given by

Structural alignments

The threading procedure

Our threading procedure is based in the use of a typical dynamic
programming algorithniNeedleman & Wunsch, 197@nd a scor-

ing function combining sequence information with SS and AC
information derived from predictions. Given a péiyj ) of aligned ~ whereg, and g. are the gap opening and elongation penalties,
residuesi belonging to the query sequence 4rid a given protein ~ respectively. No end gap penalties were applied.

0ot Qe (7)

from the searched database, their contributim, to the align- The penalty gap valueg, andge, as well as those of the two
ment score was obtained utilizing the following equation: weightswseq and we, Were obtained following a simple optimi-
zation procedure in which our threading method was applied to a
SG = Weeq- My + Weier - (S§, + acg) (3 set of 73 protein pairs for different sets of values of these param-

eters. The objective function used for the optimization procedure

wheremy, sg;, andacg; correspond to the sequence, SS, and ACWas the percentage of correct first higee abov).e The different

contributions, respectively, anel.,andwe correspond to their sets were obtained as followg, was systematically varied be-

respective weights. Note that the secondary structure and acceséj€en—1 and —9 at intervals of-2 U andg. was set to 04,

bility terms have the same weight. (Rost, 1996. The weightwseq was varied between 0 and 1, at
The sequence contribution to the scarg, was obtained using Intervals of 0.25 U, andvs was set equal to + Weeq Finer

the normalized PAM250 matrixDayhoff et al., 1978 from the intervals were not utilized to avoid overfitting problems. During

GCG program manudiGCG, 1994. the optimization runs, the values of the probabilities in Equation 3
The SS and AC terms were derived utilizing database probabilWere computed using a jackknife procedure. Also, for each query

ities p. The formula used for the secondary structure case was Sequence, the jackknifed SS and AC predictions were used. In our
case we are interested in studying the factors limiting the perfor-

OBS. mance of the PBM, rather than comparing the performance of a
sc= ln[p<m>] —(In[...]) (4) newly developed method relative to already developed methods.
S Therefore, the use of optimal parameters does not affect the con-

h ds to th f liani idue in th clusions reached. Note that the values of the optimal parameters
wheresc corresponds 1o the score for aligning a residue in edepend on the distribution of sequence similarities in the test set

target proteln, with observed segondary_ Stuctl@BS,d), to a used. However, due to the careful procedure followed by Russell
residue in the query sequence, with predicted secondary structureq al.(1997), to select their set of remote homologue pairs, as well
(PRED), and an associated reliability indéxk). OBS.;and PREL as becausé of the final number of pairs, 73, the test ’set used
may be equal to one of .the three secqndgry structure sﬂgltes: reasonably reflects an average threading scenario. The best results
(helix), E (strand, or C (coil). The normalization terin[.... ) is in the optimization runs were then obtained for weights equal to
equal to 0.75 and 0.25 for the sequence and structure terms, respectively.
5 _ Note that this does not mean that the sequence contribution to the
an[...]) = 1 S [p( OBS, )} (5) final alignment score is higher than that of the structure term. The
3 PREDN 1l optimal gap opening and elongation penalties were 3.0 and 0.3,
respectively. To test that the results obtained do not depend on
where OBS; goes through all the three possible SS states. Thesome pathological characteristic of the test set, we repeated the
score for the AC was derived in exactly the same way. optimization runs after eliminating, in turn, each of the 73 pairs.
The probabilitiep in Equation 3 were obtained from the query The optimal parameters obtained for the 73 optimization runs were
sequences in our set of 73 remote homologue pairs by aligning, fahe same, suggesting that the parameters listed are not significantly
each residue, its assignédsing the DSSP program, Kabsch & biased.

i=1
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The final scoreSC for the alignment between two sequences (RHA), against that of the highest scoring alignment with a non-
was given by homologous protein, the nonhomologue alignm@iitdA). Before
comparison, the scores and their components were normalized by
SC=3j,5G + k(G + Nk'Ge) (8  the number of aligned pairs. The few cases for which the raw and
the normalized scores had different relative rankings for the RHA
where the indexe§, j) andk run over all the aligned pairs and the and the NHA were discarded. To avoid any confusion, note that the
opened gaps, respectively; is the size ok gap. RHA utilized at this stage is the alignment generated by our thread-
ing method, not the structural alignment.
- To quantify the contribution of the different terms of interest
Score decompositions (e.g., sequence, structure, ¢tim the successes or failures of the

To understand how different factors such as SS prediction accurad{réading method, we divided the 73 test cases in two sets. One set
contribute to the performance of the threading method, we decidegorresponded to the 28 cases where the correct target was identi-
to use a score decomposition in which each score was divided inthed, and the second set corresponded to the 38 cases where the
three main terms: the sequence, structure, and gap contributionOntarget protein was ranked in the first position. Then, for a given
The structure term was divided in two different ways: contribu- t&rmX (X = sequence, structure, etcthe average contribution to
tions from the SS and AC residue states, and contributions from thEe successes or failures of the method is computed as follows:
correctly and incorrectly predicted residue structural states. Fi-
nally, the SS contribution was divided into the alphaeta and the EN: [X (RHA) — X, (NHA)]
coil terms. An example of the score decomposition is given in = '
Table 3. N 9
These score decompositions can tell us which are the main
contributions to the Optimal alignment between the query sequenCwhere the sum may run over thd = 28 successes d¥ = 38
and a database protein. However, given a query sequence, thgjures of the methodx;(RHA) and X;(NHA) are the contribu-
correct ranking of the corresponding target protein also depends Ofibns of the termX to the score of the RHA and NHA alignments,
whether the score for their alignment is better than that of therespectively, for thé™ case. Notice that a positive sign indicates

alignment between the query sequence and the best scoring nog-avorable contribution of terrX to the RHA, while a negative
homologous protein. Therefore, to assess the relevance of the abowgyn indicates a favorable contribution to the NHA.

mentioned effects, we need to understand their contribution to the

difference between the two scores. To that end, for each of the 73 )

query sequences, we compared the score decomposition of i€ ®-i regions

alignment with the target protein, the remote homologue alignmenirhe -y regions used in this paper are the ones defined by Swin-
dells et al.(1995. They defined four main regions:(eght-handed
alpha, b (beta nonaccessible to By (beta accessible to Pro
and L (left-handed helix To simplify, we have considered only

Table 3. Score decomposition for the remote one beta state, B, as the division between b and p is not relevant for
homologue pair 1abe-1gca the purposes of this paper.
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