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Abstract

The “calorimetric criterion” is one of the important experimental approaches for determining whether protein folding is
an “all-or-none” two-state transition~i.e., whether intermediates are present at equilibrium!. The calorimetric criterion
states that the equivalence of the “measured” calorimetric enthalpy change and the effective two-state van’t Hoff enthalpy
change demonstrates that there is a two-state transition. This paper addresses the essential question of whether the ca-
lorimetric criterion is a necessary and sufficient condition for a two-state process and shows that it is necessary but not
sufficient by means of specific examples. Analysis of simple models indicates that the heat capacity curve, regardless of
whether it originates from a two-state process or not, can always be decomposed in such a way that the calorimetric cri-
terion is satisfied. Exact results for a three-state model and a homopolymer tetramer demonstrate that the deviation from
the calorimetric criterion is not simply related to the population of intermediate states. Analysis of a three-helix bundle
protein model, which has a two-state folding from a random coil to ordered~molten! globule, shows that the calorimetric
criterion may not be satisfied if the standard linear interpolation of baselines~weighted or unweighted! is employed. A
specific example also suggests that the more recently introduced deconvolution method is not necessarily better than the
simple calorimetric criterion for distinguishing a two-state transition from a three-state transition. Although the calori-
metric criterion is not a sufficient condition for a two-state process, it is likely to continue to be of practical utility, par-
ticularly when its results are shown to be consistent with those from other experimental methods.
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An important feature of proteins is the abrupt~cooperative! change
upon heating in many of their properties, such as enzymatic activity
and optical density~Johnson et al., 1954!. Observation of these abrupt
changes led Anson and Mirsky~1934! to introduce the two-state ap-
proximation to describe protein denaturation. The two-state approx-
imation is a reference point for equilibrium and kinetic studies of
protein folding~Chen & Schellman, 1989; Jackson & Fersht, 1991;
Alexander et al., 1992; Chen & Matthews, 1994; Yi & Baker, 1996!.
In the two-state approximation, the protein folding0unfolding tran-
sition is described as a transition between a native state and a de-
natured state without intermediates that are populated at equilibrium.
The native state is assumed to be the tightly-structured global min-
imum energy state, and the denatured state is thought to be a col-
lection of many loosely structured states. Although the two-state
approximation is widely used, the meaning of the term continues to
be a subject of discussion~Lumry et al., 1966; Tanford, 1968;
Privalov, 1979; Chan et al., 1995; Dill et al., 1995!.

There are at least two ways to define a two-state transition for
the protein folding reaction. If one defines the denatured state to

consist of all protein conformations other than the native state,
protein folding is automatically a two-state transition. The two-
state definition based on measurements of enzymatic activity cor-
responds essentially to this definition. Also, many lattice model
studies~Dill et al., 1995; Karplus & Sˇali, 1995; Shakhnovich,
1996! have been analyzed in this way. We refer to this definition
as the “formal” definition and the corresponding two-state transi-
tion as the “formal” two-state transition. However, the formal def-
inition is not used in most considerations of two-state behavior.
Instead two-state behavior is associated with the requirement that
intermediate states make a negligible contribution due to the ex-
istence of a single free energy barrier between the native and
denatured states. If there is a single free energy barrier on the
multidimensional free energy surface or “landscape,” it provides a
necessary and sufficient condition for ensuring that the population
of intermediate species is negligible at the transition temperature.4

It also makes the identification of two states possible because they

Reprint requests to: Martin Karplus, Department of Chemistry and Chem-
ical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachu-
setts 02138; e-mail: marci@tammy.harvard.edu.

4The intermediate here is the “transition” intermediate that should be
distinguished from other equilibrium intermediates such as molten glob-
ules. A “transition” intermediate is the intermediate that is present during
the transition while equilibrium intermediates are the products of transi-
tions and are stable under certain thermodynamic conditions.
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are associated with well-separated distributions when plotted in
terms of appropriate order parameters. We refer to this definition as
the “thermodynamic” definition and the corresponding two-state
transition as the “thermodynamic” two-state transition. The thermo-
dynamic definition contains information regarding the free-energy
surface of the protein and the population of the intermediate states
and provides a link with the macroscopic liquid-gas and liquid-
solid two-state transitions. The latter are known to be induced by
free-energy barriers between two states~Temperley, 1956!, so that
two populations exist in equilibrium at the transition temperature.

The observation of sharp changes in the properties of a protein
does not necessarily signal a thermodynamic two-state transition
since sequential multistep transitions can show such behavior~Tsong
et al., 1972; Chan et al., 1995!. The most widely used criterion for
a two-state transition is the calorimetric criterion~Tanford, 1968;
Jackson & Brandts, 1970; Privalov, 1979; Schellman, 1987; Stur-
tevant, 1987; Jackson & Fersht, 1991!, which requires the equiv-
alence of the “measured” calorimetric enthalpy change~defined as
the area enclosed by the heat capacity vs. temperature curve! and
the calculated van’t Hoff enthalpy change based on the two-state
assumption. The same criterion is now being used in the analysis
of homopolymer collapse transitions~Tiktopulo et al., 1994, 1995!.
The criterion is found to be satisfied for low molecular weight
homopolymers but not for high molecular weight species that ap-
pear to have separate domains. For proteins, the calorimetric cri-
terion has been complemented by other measurements. These include
gel electrophoresis~Creighton, 1986!, size exclusion chromatog-
raphy~Uversky, 1993!, hydrogen-deuterium exchange~Yi & Baker,
1996!, as well as kinetic studies of the folding and unfolding
transitions~Jackson & Fersht, 1991!.

Although the use of multiple criteria has established that the
folding transition of many proteins is two-state-like, a clear analy-
sis of the calorimetric criterion is necessary to assess its scope and
limitations. For the calorimetric method to be the criterion for a
two-state process, it has to be both a necessary and a sufficient
condition. A necessary condition means that if a process is two-
state-like, the calorimetric criterion is satisfied while a sufficient
condition states that if the calorimetric criterion is satisfied, the
process is two-state-like. It is generally agreed that the calorimetric
criterion is a necessary condition. However, whether or not the
criterion is a sufficient condition is still a subject of discussion
~Chan et al., 1995!. Experimentally, deviation from the calorimet-
ric criterion has been interpreted as being related to intermolecular
transitions~Sturtevant, 1987!, ligand-protein interactions~Shrake
& Ross, 1990; Straume & Freire, 1992!, weakly stable proteins
~Haynie & Freire, 1994!, and the existence of a non-negligible
population of intermediate states including domain formation~Tan-
ford, 1968; Privalov, 1979; Sturtevant, 1987!.

In this paper, we provide an in-depth analysis of the calorimetric
criterion by the use of simple well-defined models. We find that for
any heat capacity curve, there always exist “two-state” solutions so
that the calorimetric criterion is satisfied. An exact formula is
obtained for the deviation from the calorimetric criterion in the
case of a simple three-state model whose baselines are exactly
known. It is found that the deviation from calorimetric criterion is
not simply related to the population of intermediate states, as has
been shown for a specific case by Freire~1995!. That the calori-
metric criterion is not a sufficient condition for a two-state tran-
sition is shown to be due to the fact that the two-state assumption
is implicit in the approximation that the folding transition is taking
place at a single temperature, rather than over a finite temperature

range. The use of the deconvolution method for identifying a two-
state transition~Freire & Biltonen, 1978; Freire, 1995! is also
briefly discussed.

Results and discussion

The calorimetric criterion

In the calorimetric criterion, the standard enthalpy difference be-
tween state I and state II is calculated according to the van’t Hoff
equation and then compared to the value measured in a heat ca-
pacity vs. temperature experiment. A thermodynamic two-state tran-
sition is said to occur if the two values are equal at a temperature
Td ~called the middle transition temperature! at which the popula-
tions of states I and II are equal.

The van’t Hoff equation for the standard enthalpy change may
be derived by assuming that a two-state transition exists and can be
described as a chemical reaction between state I~the reactant! and
state II ~the product!. The effective two-state “chemical” equilib-
rium constantK eff associated with the transition from state I to
state II is defined as~Privalov, 1979!:

K eff~T ! 5
^a~T !& 2 ^a~T !&I

^a~T !&II 2 ^a~T !&
5

fII
12 fII

, ~1!

where^a~T !& is the average value of some appropriate observable
quantity,a~T !, such as the enzymatic activity or optical density,
^a~T !&I and^a~T !&II denote the average values ofa~T ! in states I
and II, respectively, andfII is the fraction of the system in state II
~[ ~^a~T !& 2 ^a~T !&I!0~^a~T !&II 2 ^a~T !&I!!. The two-state ef-
fective ~van’t Hoff ! standard enthalpy change associated with the
transition from state I to state II,DH eff~T !, can be obtained from
the van’t Hoff equation for the derivative of the effective equilib-
rium constant with respect to temperatureT

DH eff~T ! 5 kBT 2
d ln K eff

dT
, ~2!

wherekB is the Boltzmann constant.
In the calorimetric criterion,DH eff~T ! is compared with the

experimentally “measured” value of the standard enthalpy change,
DH expt~T !, associated with the transition. By definition,DH expt~T !
is the excess heat released during the transition from the initial
state to the final state atconstanttemperatureT. However, unlike
liquid-solid and liquid-gas transitions in infinite systems, protein
denaturation by heating~or cooling! does not occur at a single
temperature but instead occurs over a finite temperature range.
Thus, the measurement ofDH expt~T ! from heat denaturation ex-
periments on proteins is not direct. Instead, one measures the sys-
tem heat capacityCp~T ! over a range of temperatures that extend
from TI , the temperature at which the system is assumed to be
entirely in state I, toTII , the temperature at which the system is
assumed to be entirely in state II. The “measured” enthalpy change,
DH expt~T !, is then taken to be the area under the peak enclosed by
theCp~T ! curve and a baseline curve, which is chosen to represent
the hypothetical situation in which the system transforms directly
from pure state I to pure state II at temperatureT ~Jackson &
Brandts, 1970! or gradually from pure state I to pure state II over
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a temperature range~Ackermann & Ruterjans, 1964; Beck et al.,
1965; Privalov, 1970; Takahashi & Sturtevant, 1981; Sturtevant,
1987!. A schematic illustration of such a measurement is given in
Figure 1. The area of the heat capacity peak is assumed to repre-
sent the excess heat released during the transition. However, since
the excess heat is released over a finite temperature range, it cannot
be identified directly asDH at a specific temperature such asTd

~the middle transition temperature! or Tc ~the heat capacity max-

imum temperature! unless the transition is approximated as a two-
state transition occurring at that temperature; i.e., it is assumed
implicitly that no intermediate states contribute to the transition.
Thus, the common experimental method used to measureDH expt

implicitly assumes that a two-state transition exists. In other words,
similar to DH eff, the so-calledDH expt is an approximate way to
evaluate the enthalpy changeHII ~T ! 2 HI~T ! even if intermediates
exist.

One of the widely used methods for calculating the “measured”
enthalpy change is that developed by Jackson and Brandts as shown
in Figure 1A~Jackson & Brandts, 1970; Privalov, 1979; Tiktopulo
et al., 1994; Gesierich & Pfeil, 1996!. In the method of Jackson
and Brandts, the “baseline” used to determine the heat capacity
peak area consists of two lines that are linearly extrapolated from
TI andTII , the temperatures at which only pure states I and II exist,
to the temperatureT. These lines represent hypothetical heat ca-
pacities for pure state I,CpI , and for pure state II,CpII , respectively.
The quantityDH expt~T ! is determined from the equation~Jackson
& Brandts, 1970!

DH expt~T ! 5E
TI

TII

Cp~T ! dT2E
TI

T

CpI~T ! dT

2E
T

TII

CpII ~T ! dT, ~3!

which can be rewritten in term of enthalpiesH~T ! as

DH expt~T ! 5 HII ~T ! 2 HI ~T ! 1 H~TII ! 2 HII ~TII !

1 HI ~TI ! 2 H~TI ! ~4!

since ~]H0]T !p 5 Cp~T !, by definition. Here,HI~T ! and HII ~T !
are the enthalpies of the system in states I and II, respectively.
Since we have assumed that only state I~state II! is present at
temperatureTI~TII !, it follows thatH~TII ! ' HII ~TII ! andHI~TI! '
H~TI!, which lead toDH expt~T ! 5 HII ~T ! 2 HI~T !. Thus,DH expt~T !
is indeed an approximate way to obtain the two-state enthalpy
change.

A weighted smooth baseline is also used in determining en-
thalpy changes~Fig. 1B!. The experimentally measuredDH expt~T !
is calculated from~Takahashi & Sturtevant, 1981; Sturtevant, 1987;
Freire, 1995!

DHs
expt 5E

TI

TII

@Cp~T ! 2 fI CpI ~T ! 2 fII CpII ~T !# dT, ~5!

rather than from Equation 3 wheres denotes the weighted smooth-
baseline method. Superficially, Equation 5 is physically more rea-
sonable since it calculates the “true-excess” heat released during
the transition fromTI to TII . Mathematically, as we shall see,
DHs

expt for a two-state process is close or equal toHII ~Td! 2 HI~Td!
whereTd is the middle transition temperature. However, there is no
physical basis to assignDHs

expt as HII ~T ! 2 HI~T ! at a well-
defined temperature, such asTd or Tm ~the excess heat capacity
maximum temperature!, betweenTI and TII since the transition

A

B

Fig. 1. Schematic plot of temperature dependence of heat capacities for the
protein temperature denaturation process. Here,Cp~T ! is the heat capacity
of all states that are present;CpI~T ! andCpII ~T ! are the heat capacities for
states I and II, respectively. At temperatureTI or TII , it is assumed that only
state I or state II exists. The experimentally “measured” enthalpy change
associated with the transition from state I to state II is denoted asDH expt~T !.
~A! The Jackson–Brandts method and~B! a smooth weighted baseline are
shown.
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occurs over a range of temperatures~see below!. The calorimetric
criterion based on a weighted smooth baseline is often used in
conjunction with the statistical deconvolution method based on a
least-squares fit~Freire & Biltonen, 1978; Freire, 1995!.

The van’t Hoff enthalpy change and the “measured” enthalpy
change are thus two different ways of obtaining the two-state
enthalpy change regardless which baseline method is used. The
equivalence of these two enthalpy changes, the basis of the calo-
rimetric criterion, is not in general a sufficient condition for a
thermodynamic two-state process. That the calorimetric criterion is
satisfied could be a direct consequence of the implicit two-state
assumption in the enthalpy evaluation. On the other hand, if the
calorimetric criterion is not satisfied, it can indicate either that the
transition is not a two-state process or that the baseline for the heat
capacity curve is incorrect, as we point out below.

Simple statistical models

In this section, we demonstrate that~1! arbitrarily dividing a sys-
tem into two states~one state plus the remainder! will automati-
cally satisfy the calorimetric criterion and~2! the satisfaction of the
calorimetric criterion does not mean that the population of inter-
mediate states is negligible.

A: Formal two-state model

In the formal two-state definition, the conformational states
are arbitrarily divided into state I and the remainder~state II!.
For simple protein models, such as the lattice models mentioned
above ~Dill et al., 1995; Karplus & Sˇali, 1995; Shakhnovich,
1996!, one can define the native state as the lowest energy state
and the remaining states as the denatured state. For actual pro-
teins, the formal dichotomy is more complex in that the native
“state” includes the cluster of conformations sampled at a cer-
tain temperature~say, 300 K!, and the denatured state includes
all other conformations. It should be noted that the formal two-
state definition is not appropriate for cases where the existence
of an intermediate is evident from the appearance of a shoulder
in the main transition or even separate transition peaks. In other
words, the formal definition is limited to the cases where only
one well-defined heat-capacity peak exists.

In the formal definition, the partition functionQ can be ex-
pressed exactly as the sum of the contribution from state I,QI , and
that from state II,QII ,

Q 5 QI 1 QII . ~6!

The system internal energy and heat capacity and the individual
internal energies and heat capacities for states I and II can be
obtained fromQ, QI , andQII using ~Friedman, 1985!

U~T ! 5 2
d ln Q

db
, Cv~T !0kB 5 b2

d2 ln Q

db2 , ~7!

UI ~T ! 5 2
d ln QI

db
, CvI ~T !0kB 5 b2

d2 ln QI

db2 , ~8!

UII ~T ! 5 2
d ln QII

db
, CvII ~T !0kB 5 b2

d2 ln QII

db2 . ~9!

whereb 5 10kBT. From Equations 6–9

U~T ! 5 fI UI ~T ! 1 fII UII ~T ! ~10!

where fI~[ QI0Q! and fII ~[ QII 0Q! are the fraction of states in
states I and II, respectively. HerefII 5 1 2 fI since there are only
two states.

In applying the calorimetric criterion, we use the standard in-
ternal energy changeDU and the constant-volume heat capacity
Cv~T ! rather than the standard enthalpy changeDH and the constant-
pressure heat capacityCp~T ! because theoretical models are most
conveniently described in the canonical ensemble where volume
and temperature are the independent variables. This ensemble change
makes no difference to the argument.

In the canonical ensemble, the two-state effective standard change
of internal energy can be obtained by differentiating the effective
two-state “chemical” equilibrium constantK eff~T ! with respect to
temperatureT at constant volume~compared with Equation 2 at
constant pressure!

DU eff~T ! 5 kBT 2
d ln K eff

dT
5

kBT 2

fI fII

dfII
dT

~11!

where the second equality follows from Equation 1. Substituting
fII [ QII 0Q into Equation 11, we have~cf. Equations 7–9!

DU eff~T ! 5 UII ~T ! 2 UI ~T !. ~12!

The fraction of states in state II,fII , can also be expressed exactly
in terms ofU using Equation 10 andfI 5 1 2 fII

fII 5
U~T ! 2 UI ~T !

UII ~T ! 2 UI ~T !
. ~13!

Substituting Equation 13 into Equation 11, we obtain another equa-
tion for DU eff~T !

DU eff~T ! 5 kBT 2
Cv~T !@UII ~T ! 2 UI ~T !# 2CvI ~T !@UII ~T ! 2 U~T !# 2 CvII ~T !@U~T ! 2 UI ~T !#

@U~T ! 2 UI ~T !# @UII ~T ! 2 U~T !#
, ~14!

where we have used Equations 7, 8, and 9. At the middle point of the transition defined to be the temperatureT 5 Td at whichfII 5 102,
Equation 14 becomes~cf. Equation 13!

DU eff~Td! 5 4kBTd
2

DCv~Td!

@UII ~Td! 2 UI ~Td!#
, ~15!

where the excess heat capacityDCv~Td! [ Cv~Td! 2 102@CvI ~Td! 1 CvII ~Td!#.
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In experiments using the Jackson–Brandts method~Jackson &
Brandts, 1970; Privalov, 1979; Tiktopulo et al., 1994; Gesierich &
Pfeil, 1996!, DU eff~Td! obtained from Equation 12 is called the
“measured” standard change of internal energy whileDU eff~Td!
obtained from Equation 15 is called the “effective” two-state change
of internal energy. The equivalence of Equation 12 to Equation 15
means that arbitrarily dividing a system into one plus the remain-
der will automatically satisfy the calorimetric criterion. Thus, the
calorimetric criterion can be satisfied for any given heat capacity
vs. temperature curve provided that baselines used to close the area
of the heat capacity peak are consistent with the heat capacities of
the individual states. The number of solutions for the heat capac-
ities of the individual states that satisfy the calorimetric criterion is
theoretically infinite since there are infinite number of ways to
divide a system into two. Different solution have different baseline
requirements, so that if the baseline is known accurately within the
transition region, the number of such solutions will be limited to a
few or even to one, in practice. However, in general, it is difficult
to measure the thermodynamics of the transition region.~Also see
the section on the three-helix bundle protein model.!

In experiments using the weighted smooth baseline method~Ta-
kahashi & Sturtevant, 1981; Sturtevant, 1987!, the “measured”
standard internal energy change is obtained from~cf. Equation 10!

DUs
expt 5E

TI

TII

@Cv~T ! 2 fI CvI ~T ! 2 fII CvII ~T !# dT

5 UII ~TII ! 2 UI ~TII ! 2E
TI

TII

fII @CvII ~T ! 2 CvI ~T !# dT. ~16!

Equation 16 shows that even for a two state process,DUs
expt in

general does not equal toUII ~T ! 2 UI~T ! at a pre-assigned tem-
perature, although there are special cases when it does. For exam-
ple,DUs

expt5 UII ~T ! 2 UI~T ! if UII ~T ! 2 UI~T ! is independent of
temperature~CvII ~T ! 2 CvI~T ! 5 0!. For proteins,UII ~T ! 2 UI~T !
is temperature dependent butCvII ~T ! 2 CvI~T ! can be approxi-
mated as independent of temperature in most cases~Privalov, 1979!.
@This approximation is often used in the deconvolution method
~Freire & Biltonen, 1978; Freire, 1995! but is not true for all
proteins~Makhatadze & Privalov, 1995!.# In this case,DU expt 5
UII ~Td! 2 UI~Td! if fII ~T ! is a step function atTd or fII 2 0.5 is
symmetric aroundT 5 Td. The “measured” standard internal en-
ergy changeDU expt in some cases~Sturtevant, 1987; Freire, 1995!
has been assigned asUII ~Tm! 2 UI~Tm!, whereTm is the tempera-
ture at whichCv~T ! 2 fICvI~T ! 2 fIICvII ~T ! exhibits a maximum.
This assignment is not exact as has been shown by Privalov and
Potekhin~1986!. However, the error due to the assignment may be
smaller than the experimental error, which is rarely better than 5%.
Thus, although the Jackson–Brandts baseline is theoretically exact
for a two-state process while the weighted smooth baseline method
is only approximately so, the two methods are likely to be equiv-
alent within experimental errors unless very precise measurements
are available.

B: Simple three-state model

The thermodynamic definition of a two-state process corre-
sponds to the requirement that there be a negligible population of
intermediate states at the transition temperature. If there are no
intermediate states, whether by definition or because of the form of
the potential surface, the calorimetric criterion will be satisfied, as

shown in the previous subsection. The important question in ap-
plying this type of approach to protein denaturation is whether the
opposite is also true, i.e., does satisfying the calorimetric criterion
demonstrate that intermediate states make a negligible contribution?

To answer this question in the simplest fashion, we introduce a
three-state model. The three states for the model are:~1! the lowest
energy state I,~2! an intermediate statem, and ~3! the highest
energy state II. The partition function for this three-state model is

Q 5 gI e
2beI 1 gme2bem 1 gII e

2beII ~17!

whereb 5 10kBT, gl andEl are the degeneracy factor and energy
for the statel, respectively, andEI , Em , EII . For proteins, state
I can be thought of as the folded state, state II as the unfolded
denatured state, and statem as the intermediate state.~To ensure
that statem is a transition intermediate, only cases with a single
heat capacity peak are considered.4! Since each state is a collection
of many micro-states~Lumry et al., 1966; Chan et al., 1995!, the
energy level and degeneracy factor in the model represent average
properties. For simplicity, we assume that the energy levels and
degeneracy factors in Equation 17 are independent of temperature.

The three-state model can be analyzed by following the steps
corresponding to a calorimetric experiment. In experiments, the
only measurable quantity is the curve describing heat capacity as
a function of temperatureCv~T !. Experiments normally assume
that away from the transition region atT 5 TI andT 5 TII there
exists only the state I or the state II and the heat capacity of the
state I or the state II can be linearly extrapolated fromT 5 TI and
T 5 TII , respectively. Here, we useTI 5 0, TII 5`, and the exact
resultsCvI~T ! 5 CvII ~T ! 5 0. The use of exact results forCvI~T ! 5
CvII ~T ! 5 0 allows us to analyze the data without concern about
the method used for fitting the baselines.

The experimentally measured internal energy change satisfies
~cf. Equation 3!

DU expt 5E
0

`

Cv~T ! dT. ~18!

It should be noted thatDU expt is independent of temperature for
this model. To calculate the effective van’t Hoff two-state internal
energy change, we also need to evaluate the fraction of the system
in state II,fII , which can be obtained from Equation 13. Equation
13 is applicable here because one has to assume a two-state ap-
proximation to obtain van’t Hoff enthalpy changes. However, since
UI~T ! andUII ~T ! are not known in real experiments, we need to
replace them with the experimentally measurable quantityU~T !;
we include a temperature dependence for the energy and heat
capacity for generality. The denominator in Equation 13,UII ~T ! 2
UI~T !, is taken to be*0

`Cv~T ! dT from Equation 18. The numer-
ator in Equation 13,U~T ! 2 UI~T !, can be also exactly expressed
asU(T ! 2 U~0! for our model here sinceU~0! 5 UI~0! 5 UI~T !.
Thus, we have

fII 5

E
0

T

Cv~T ! dT

E
0

`

Cv~T ! dT

. ~19!
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In other words,fII can be approximated as the fraction of peak area
that lies between the temperatureT and temperature zero, a defi-
nition similar to that used in experiments~Privalov, 1979!. This
definition automatically satisfies the requirement thatfII 5 0 at
T 5 0 andfII 5 1 atT 5`. Using Equations 1 and 2, we obtain an
expression for the effective van’t Hoff two-state internal energy
change as~Privalov, 1979!

DU eff~T ! 5 kBT 2
Cv~T !

fII ~12 fII !E
0

`

Cv~T ! dT

. ~20!

At fII 5 102, which defines the middle transition temperatureTd,
we have the equation~cf. Equations 18 & 20!

DU eff~Td! 5 4kBTd
2

Cv~Td!

DU expt, ~21!

which is identical to the equation used in experiments~Privalov,
1979!. The ratiog of the “measured” enthalpy change to the ef-
fective two-state enthalpy change is given by

g [
DU expt~Td!

DU eff~Td!
5

@DU expt# 2

4kBTd
2 Cv~Td!

. ~22!

The parameterg 2 1 measures the deviation from the calorimetric
criterion.

The internal energyU~T ! of the three-state model system is
given by ~cf. Equation 17!

U~T ! 5 2
] ln Q

]b
5

(
l

gl el e
2bel

Q
~23!

and the expression for the constant-volume heat capacityCv~T ! is

Cv~T ! 5 S ]U

]T Dv5 1

kBT 2
H(

l

gl el
2 e2bel

Q
2 @U~T !# 2J . ~24!

Taking the limitT r 0 andT r `, we have~cf. Equation 23!

U~0! 5 eI , U~`! 5

(
l

el gl

(
l

gl

, ~25!

and ~cf. Equation 18!

DU expt 5E
0

`

Cv~T ! dT5 U~`! 2 U~0!. ~26!

SincefII 5 102 at T 5 Td, we also have~cf. Equation 19!

U~Td! 5 2
12@U~0! 1 U~`!# . ~27!

Equation 27 can be expressed as a nonlinear equation for the
middle transition temperatureTd. Substituting Equations 24, 25,
26, and 27 into Equation 22, we obtain a simple expression for the
ratio g

1

g
5 11

2@eII 2 U~`!#

DU expt 2
4~em 2 eII !~eI 2 em!Pm~Td!

@DU expt# 2 ~28!

where Pm~T ! ~[ gme2bem0Q! is the population of intermediate
statem. In Equation 28, the second term, which is greater than
zero, is proportional to the difference between the energy of state
II and the energy of the whole system atT 5 `. The third term,
which is less than zero, is proportional to, but not equal to, the
population of intermediate statem. Equation 28 shows that the
deviation from the calorimetric criterion, as measured byg 2 1, is
not simply equal to the population of intermediate statem as re-
quired by the sufficient condition.

We find that the calorimetric criterion works reasonably well if
the interval between the energies of state II and statem is the same
as the interval between the energies of statemand state I~i.e.,EII 2
Em 5 Em 2 EI 5 E!, and if the degeneracy factor for state II is much
greater than the sum of the degeneracy factors for state I and for
intermediate statem, i.e.,gII .. gI 1 gm. In this case, Equation 28
becomes~cf. Equations 25 & 26!

1

g
5 11

2~2gI 1 gm!

~2gII 1 gm!
2

4Pm~Td!~gI 1 gm 1 gII !
2

~2gII 1 gm!2 . ~29!

BecausegII .. gI 1 gm, we further obtain

g '
1

12 Pm~Td!
' 1 1 Pm~Td!. ~30!

Equation 30 agrees with the common presumption that the devi-
ation from the calorimetric criterion is equal to the population of
intermediate states~Tanford, 1968; Privalov, 1979; Sturtevant, 1987!.
If Equation 30 were exact, the calorimetric criterion would be the
necessary and sufficient condition for a two-state process. This is
clearly not the case, in general, even for the simple three-state
model. For example, we obtaing 5 1.003 for a hypothetical model
with parametersgI 5 1, gm 5 2, gII 5 20, EI 5 22E, Em 5 2E, and
EII 5 0 despite the fact that the heat capacity vs. temperature curve
has only one well-defined peak and the population of the inter-
mediate state at the middle transition temperatureTd

* 5 0.617 is
18%. Although the model described here is not based on protein
data, its simplicity allows us to establish the principle that for a
given heat capacity curve,g ; 1 does not necessarily signal a
two-state process.

C: Thermodynamic three-state model

A more realistic model for proteins is the thermodynamic model
that is used to fit the protein calorimetric data in the deconvolution
method ~Freire & Biltonen, 1978; Freire, 1995!. Here, we use
notations appropriate for a canonical ensemble as above. A parti-
tion functionQ for a three-state system can be written as

Q 5 QI 1 Qm 1 QII ~31!
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where the three states correspond to the native, intermediate, and
denatured states, respectively. With state I as the reference state,
Equation 31 becomes

Q0QI 5 11 Qm0QI 1 QII 0QI 5 1 1 e2bDAm~T ! 1 e2bDAII ~T !

~32!

whereDAm~T ! andDAII ~T ! are excess Helmholtz free energy over
the reference state I for statesmand II, respectively. Assuming that
the excess heat capacities relative to the reference states~DCvm and
DCvII ! are independent of temperature,DAm~T ! andDAII ~T ! can
be determined by

DAm~T ! 5 DUm~Tref ! 1 DCvm~T 2 Tref !

2 T @DSm~Tref ! 1 DCvm ln~T0Tref !# ~33!

and

DAII ~T ! 5 DUII ~Tref ! 1 DCvII ~T 2 Tref !

2 T @DSII ~Tref ! 1 DCvII ln~T0Tref !# . ~34!

Three constants are required for defining each state. They are the
excess heat capacityDCv, the excess internal energyDU~Tref!, and
the excess entropyDS~Tref!, at a certain reference temperatureTref.
The deconvolution method of Freire~1995! and Privalov et al.
~1995! makes use of a least-squares fit of the measured heat ca-
pacity curve by increasing the number of states from a minimum
of two ~i.e., I and II! to the number required to obtain an accurate
fit. Note, that if DCvII 5 0 and DCvm 5 0, the thermodynamic
three-state model reduces to the simple three-state model described
in the previous subsection.

Due to increased complexity of the thermodynamic model, a
simple expression forg, similar to Equation 28, does not exist.
An example to illustrate that the intermediate population is not
identical to the deviation from theg value has been given by
Freire ~1995!. Here, we use a similar model withDUm~558C! 5
40 kcal0mol, DCvm 5 500 cal0K 0mol, DSm~558C! 5 121.9 cal0
K 0mol, DUII ~508C! 5 200 kcal0mol, DCvII 5 2,000 cal0K 0mol,
and DSII ~508C! 5 618.9 cal0K 0mol. The temperature depen-
dence of the heat capacity and populations of states for the
three-state model is shown in Figure 2. The intermediate con-
centration is;20% around the transition temperature, thus, is
non-negligible. The model yields 1.1 for the ratio of the two
DUs, suggesting only a small deviation from a two-state transi-
tion. This confirms that the magnitude of the deviation from the
simple calorimetric criterion is not sensitive to the population of
intermediates~Freire, 1995!.

With the deconvolution method, theCv curve can also be fitted
very accurately by a two-state model using the same value for
DCvII ~5 2,000 cal0K 0mol! but different values forDUII ~508C!
~5 190.7 kcal0mol! andDSII ~508C! ~5 589.5 cal0K 0mol!. Only
a small discrepancy between the original heat capacity curve and
the fitted curve is found at the edge of the transition~T ; 408C!.
This small error may well be masked by uncertainties in experi-
mental data. As the data improve, deviations obtained with over-
simplified ~two-state! descriptions become more significant. The
model described here indicates that because of the large number of
parameters in the deconvolution method~three per state!, its ap-

plication is meaningful only if very precise data are available. It
should be emphasized that the analysis in here and the next sub-
sections is independent of the choice of baseline methods since the
exact baselines are used.

Homonuclear square-well tetramer

To obtain a clearer understanding of the results presented so far, it
is useful to apply them to simple examples for which an exact
analysis is possible. Since the calorimetric criterion has been used
to analyze experiments on homopolymers~Tiktopulo et al., 1994,
1995!, we first illustrate the criterion by using a model for an
isolated homonuclear square-well tetramer. The square-well chain
model is chosen for this purpose because it is perhaps the simplest
yet reasonably-realistic off-lattice model of a homopolymer and
because exact results for the thermodynamics of isolated trimers
and tetramers are available~Taylor, 1995!. Recently, it has been
shown that homonuclear square-well chains are accurate models
for alkanes ranging from methane to eicosane~Bokis et al., 1994!.

A

B

Fig. 2. ~A! The temperature dependence of the heat capacity and~B! the
populations for a three-state model described in text. The dashed line
shown with the heat capacity curve~A! is a fit using the deconvolution
method with a two-state model for the three-state system.
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The square-well tetramer consists of four freely-jointed beads;
i.e., there are four spheres, which could represent extended atom
alkane~CH2 or CH3! groups that are joined by rigid bonds. The
bead-bead interaction potentialuij for beads that are not bonded to
each other is defined as

uij ~r ! 5 5
`, r0s , 1,

2e, 1 , r0s , l,

0, r0s . l,

~35!

wheres is the hard-sphere bead diameter,ls is the square-well
diameter,E is the square-well depth, andi and j refer to any two
nonbonded beads.

Exact results of thermodynamics for isolated square-well tetra-
mers are known~Taylor, 1995!. A square-well tetramer has four
micro-states with reduced energy levelsEl0E ranging from23 to 0.
Its partition function is

Q 5 g0 1 g1eb* 1 g2e2b* 1 g3e3b* ~36!

whereb*5 10T * with the reduced temperatureT *5 kBT0E andgl

is the degeneracy factor for energy levelEl 5 2lE wherel 5 0, 1,
2, and 3. The values of the normalized degeneracy factorsgl vary
with the square-well diameterls and are tabulated in Table 1.

Figure 3 shows an example of the tetramer heat capacity vs.
temperature curve. It has a single peak that represents the heat
released during transition. We can make the same calorimetric
analysis of the tetramer heat capacity vs. temperature curve as for
the three-state model. Using the fact that the heat capacities of the
initial state I and the final state II are zero, the ratiog of the
“measured” internal energy change to the effective van’t Hoff
internal energy change can be obtained from Equation 22 after the
nonlinear Equation 27 for the middle transition temperatureTd is
solved. The results are also listed in Table 1. As the square-well
diameter increases from 1.1s to 1.8s, the ratiog decreases mono-
tonically from 2.4 to 0.69, reflecting the fact that the peak area
~DU expt! decreases faster thanDU eff estimated from theCv peak
height. However, the intermediate population is 56.5% even when
g ~5 1.08! is close to 1 atl 5 1.6. Thus, the calorimetric criterion
can be satisfied even in the presence of significantly populated
intermediate states. In addition, Table 1 shows thatg can even be

less than 1. This would be not be possible ifg 2 1 were interpreted
as the population of intermediate states. In real calorimetric ex-
periments,g , 1 would be interpreted as an indication of inter-
molecular cooperative transition~Sturtevant, 1987!. This is not
applicable here since there is only one molecule. However, theCv
curve with g 5 1.08 cannot be fitted using a simple two-state
model that has a temperature independentgI , gII , EI , andEII . Thus,
the two-state fitting used in a deconvolution method can eliminate
some false positive results.

Three-helix bundle protein model

To further illustrate the calorimetric criterion, we apply it to a
two-state-like transition of a model three-helical fragment ofStaph-
ylococcus aureusprotein A; details of the calculations are given in

Table 1. The degeneracy factors gl for the four reduced energy levels (el0e 5 23,22,21, and 0) for isolated
square-well tetramers at various square-well diametersls (Taylor, 1995) with corresponding middle transition
temperature Td

*, internal energy ratiog, and the population of intermediates Pm (5 P1 1 P2)

l g3 g2 g1 g0 Td
* g Pm

1.1 0.000122 0.004554 0.065336 0.463868 0.356 2.40 0.696
1.2 0.001064 0.018018 0.121262 0.393536 0.469 2.15 0.691
1.3 0.00397 0.039654 0.166486 0.323768 0.574 1.90 0.678
1.4 0.01064 0.06756 0.20011 0.25557 0.681 1.63 0.655
1.5 0.02467 0.09650 0.222457 0.190251 0.806 1.34 0.614
1.6 0.04871 0.12362 0.231958 0.129594 0.938 1.08 0.565
1.7 0.08238 0.15361 0.220877 0.077011 1.05 0.87 0.515
1.8 0.12489 0.19174 0.18115 0.0361 1.12 0.69 0.461
El0E 23 22 21 0

Fig. 3. The reduced heat capacityCv~T !0kB and reduced internal energy
as a function of reduced temperatureT * 5 kBT0E for a square-well
tetramer at the square-well diameterl 5 1.6. Td

* denotes the middle
transition temperature defined in the text. The dashed line denotes the
Cv curve with l 5 1.8.
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Zhou and Karplus~1997!. The model consists of 46 freely-jointed
beads each of which represents an amino acid residue that can
interact with other residues via a square-well potential. Such a
square-well potential mimics standard interactions~e.g., van der
Waals and hydrogen bonds!, but is much faster for simulations by
the use of discrete molecular dynamics~Liu et al., 1994!. The
global minimum structure of the model is shown in Figure 4. The
square-well depth is2E if the interaction pair involves a native
contact and is zero otherwise~Taketomi et al., 1975!. The detailed
thermodynamics~phase diagram! of this model has been calcu-
lated and shown to correspond to experiments on proteins. It is
thus a useful system for illustrating the calorimetric criterion. We
focus on the transition from a random coil to a molten globule. The
molten globule state is found to have well-defined three-helix struc-
ture on average with large liquid-like fluctuations. This transition
is found to be a two-state transition as characterized by a bimodal
distribution in the potential energies near the transition tempera-
ture ~i.e., a free energy barrier separates the two states, each of
which consists of many configurations~Fig. 5!!. Although there
are population overlaps between the two states, the actual popu-
lation of intermediates is low; it is below 10% even when all
configurations that have an energy in the range from2100E
to 2120E ~the region of small population! are assumed to be
intermediates.

The heat capacity vs. temperature curve for the collapse tran-
sition shown in Fig. 6 is obtained from equilibrium simulations
at 21 reduced temperatures ranging from 0.1 to 5.0 via the
weighted histogram method~Ferrenberg & Swendsen, 1989; Zhou
et al., 1997!. The curve shows that the heat capacity of random
coils that are stable atT * . 1.1 is smaller than that of the
compact globule state that exists atT * 5 0.5 2 0.7. This re-
flects the fact that random coils have many similar stable energy
states and, thus, the energy changes slowly with temperature.
Such behavior is different from proteins~see Fig. 6! and homo-

polymers~Tiktopulo et al., 1994, 1995!5 where the random-coil
state has a higher heat capacity than the compact state. This
disagreement with the experimental curve is probably due to the
absence of temperature-dependent protein-solvent interactions in
the model. Experimentally, the increased heat capacity upon un-
folding is attributed to the exposure of hydrophobic residues to
water ~Kauzmann, 1959; Privalov & Khechinashvili, 1974; Mur-
phy & Gill, 1991!. However, this difference in behavior does
not affect the arguments given below.

Based on the standard experimental approach~Privalov, 1979!,
the heat capacities for two individual states are extrapolated lin-
early from high or low temperatures. The middle transition tem-
perature~Td

*! is obtained by solving the nonlinear Equation 13 for
fII 5 0.5. The experimentally “measured” standard change of in-
ternal energyDU expt calculated from Equation 12 is found to be
~remember thatDU expt is simply another way to obtainDU eff, see
also Equation 4!.

DU expt~Td! 5 UII ~Td! 2 UI ~Td! 5 1.26Ne. ~37!

The effective standard change of internal energy can be calculated
from Equation 15:

DU eff~Td! 5 0.787Ne. ~38!

The value ofg, obtained from the ratio of the twoDUs ~Equation
22!, is 1.60. The use of a weighted smooth baseline yields an
essentially the sameg value. Thus, we have shown that even for a

5We note that poly~N-isoproylacrylamide! and poly~N-isopropyl-
methacrylamide! are more compact at high temperatures.

Fig. 4. The global minimum structure of the model three-helix bundle
protein.

Fig. 5. The distribution of potential energies atT * 5 0.898 for the model
three-helix bundle protein. The overlaps between the two states, the actual
population of intermediates, are low; it is below 10% even when all con-
figurations that have an energy in the range from2100E to 2120E ~the
region of small population! are assumed to be intermediates.

1072 Y. Zhou et al.



thermodynamic two-state transition, the calorimetric criterion may
not be satisfied if the standard linear interpolation of baselines is
employed.

As pointed out earlier, one way to makeg 5 1 is to arbitrarily
divide the system into two parts~“formal” definition!. For exam-
ple, we can assign the states with energy less than or equal to2112E
as state I and the rest as state II. This yields nonlinear baselines~solid
lines! of CvI andCvII vs. temperature curves as shown in Figure 7.
The large change in baselines within the transition region is ob-
served whenE # 2120E is used to separate the state I from the rest
~state II! ~Fig. 5!. This demonstrates that the detailed interpretation
of the heat capacities for individual states, which is represented in
the choice of the baselines, makes an essential difference in the re-
sult obtained from the calorimetric criterion. Obviously, the num-
ber of such solutions that leadg 5 1 depends on the knowledge of
the baselines within the transition region.

Conclusions

We have shown that the calorimetric criterion for a two-state pro-
cess~g 5 DU expt~Td!0DU eff~Td! 5 1! can be satisfied even when
there is a significant population of intermediate states. Conversely,
g can deviate significantly from unity even when the transition is
a thermodynamic two-state process. The above statement, how-
ever, does not preclude that under certain conditions~e.g.,EII 2
Em 5 Em 2 EI 5 E, gII .. gI 1 gm for the simple three-state model!
the deviation from the calorimetric criterion is correlated with the
population of intermediates. It is not clear whether proteins belong
to this category, though the degeneracy criterion is expected to be
satisfied. Even if they do, there is still an uncertainty regarding the
meaning of the calorimetric criterion; i.e., for any given heat ca-
pacity vs. temperature curve, regardless of whether it originates
from a two-state process or not, one can always find baselines
~both linear or nonlinear! that makeg 5 1 by simply dividing the

system into two parts. Conversely, seemingly reasonable baselines
can makeg deviate significantly from unity for a two-state process
as we shown in Figure 6. This illustrates the importance of using
the correct baseline from the theoretical point of view. Experi-
ments have also shown that errors in baselines of weakly stable
proteins yield incorrect results concerning the two-state character
of transition~Haynie & Freire, 1994!. Multiple experiments with
different solvent conditions have also been used to obtain baselines
for a wider temperature range~Makhatadze & Privalov, 1995!. The
deconvolution method~Freire & Biltonen, 1978; Freire, 1995!
improves over the simple criterion since it compares the entire
curve rather than one temperature point. However, unlike the sim-
ple criterion, additional assumptions regarding the behavior of
individual states have to be made. In at least one case, a good fit
does not necessary mean a low population for the intermediate
even with correct baselines~Fig. 2!.

Although the simple calorimetric criterion is not a sufficient
condition for the existence of a two-state transition, the criterion
has been applied to proteins in cases where its results are consis-
tent with the results from other methods, including gel electropho-
resis~Creighton, 1986!, size exclusion chromatography~Uversky,
1993!, and hydrogen-deuterium exchange~Yi & Baker, 1996!.
This suggests that the criterion is a useful tool for studying folding
transition though it is important to be confirmed it by other mea-
surements. This is particularly true when the baseline within the
transition region is not accurately known.

Recently, Sturtevant and his coworkers~Liu & Sturtevant, 1995,
1997; Naghibi et al., 1995! have found significant deviations be-
tween van’t Hoff and calorimetric enthalpies for a wide variety of
processes that are believed to be two-state like~e.g., the reaction
of n-heptanoic acid with n-heptanoate in dodecane solution and of
sodium heptanoate witha-cyclodextrin in aqueous solution!. The
results in this paper cannot be used to interpret the discrepancy

Fig. 6. The reduced heat capacityCv~T !0kB per bead as a function of
reduced temperatureT * for a model three-helix bundle protein.Td

*5 0.898.
The dashed lines are weighted smooth baselines.

Fig. 7. As in Figure 6 butCvI andCvII calculated by dividing all states into
two states shown in Figure 5. Solid lines:Td

* 5 0.902 and two states are
divided atE5 2112E. Dashed lines:Td

*5 0.896 and two states are divided
at E 5 2120E.
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found by them since their experiments involve calorimetric enthal-
pies determined at a single temperature.
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