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Abstract

A database of functional sites for proteins with known structures, SITE, is constructed and used in conjunction with a
simple pattern matching program SiteMatch to evaluate possible function conservation in a recently constructed
database of fold predictions forEscherichia coliproteins~Rychlewski L et al., 1999,Protein Sci 8:614–624!. In this
and other prediction databases, fold predictions are based on algorithms that can recognize weak sequence similarities
and putatively assign new proteins into already characterized protein families. It is not clear whether such sequence
similarities arise from distant homologies or general similarity of physicochemical features along the sequence. Leaving
aside the important question of nature of relations within fold superfamilies, it is possible to assess possible function
conservation by looking at the pattern of conservation of crucial functional residues. SITE consists of a multilevel
function description based on structure annotations and structure analyses. In particular, active site residues, ligand
binding residues, and patterns of hydrophobic residues on the protein surface are used to describe different functional
features. SiteMatch, a simple pattern matching program, is designed to check the conservation of residues involved in
protein activity in alignments generated by any alignment method. Here, this procedure is used to study conservation
of functional features in alignments between protein sequences from theE. coli genome and their optimal structural
templates. The optimal templates were identified and alignments taken from the database of genomic structural pre-
dictions was described in a previous publication~Rychlewski L et al., 1999,Protein Sci 8:614–624!. An automated
assessment of function conservation is used to analyze the relation between fold and function similarity for a large
number of fold predictions. For instance, it is shown that identifying low significance predictions with a high level of
functional residue conservations can be used to extend the prediction sensitivity for fold prediction methods. Over 100
new fold0function predictions in this class were obtained in theE. coli genome. At the same time, about 30% of our
previous fold predictions are not confirmed as function predictions, further highlighting the problem of function
divergence in fold superfamilies.
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The prediction of protein folds and functions from sequence is the
“Holy Grail” of molecular biology. With improving sequencing
methods, the number of known protein sequences has increased
over 10-fold in the last two years and is expected to grow even
faster in the next several years. The experimental characterization

of new proteins is also improving, but at a much slower rate.
Consequently, computer analysis of new sequences, particularly
aiming at recognition of similarity to the already characterized
protein families, has become a primary tool for analysis of new
sequences. For instance, most newly sequenced genomes were first
analyzed by tools such as BLAST~Altschul et al., 1990! or FASTA
~Pearson & Miller, 1992!, and the results of this analysis were the
primary source of most annotations present in sequence databases.

This type of analysis is based on the “similar sequence–similar
structure–similar function” rule. Most often, this rule is applied to
closely homologous proteins where sequence similarity is easily
recognizable. For such proteins, both their structures and their
functions are usually similar. With accumulating experimental data
about thousands of proteins, many examples of proteins with sim-
ilar folds but no apparent sequence similarity were discovered.
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Some level of functional similarity sometimes, but not always,
accompanies such structural similarity. It is not clear what the
evolutionary relationship between such proteins is. Arguments for
distant evolutionary relationship, convergent evolution, and ran-
dom similarity are often made in the same cases~Murzin, 1998!.
However, from the point of view of function prediction, we are
faced with similar question in both “distant homology” and “ran-
dom similarity” ~or “convergent evolution”! scenarios of function
prediction.

Many new sequence analysis methods developed in the last few
years attempt to recognize such proteins by extending the notion of
sequence similarity beyond a simple mutation matrix. This is done
by including additional information about one or both of the pro-
teins being compared. Two classes of methods seem to exemplify
two possible solutions for the “similar fold–not similar sequence”
puzzle. For instance, in the “profile” methods~Gribskov et al.,
1987; Bork & Gibson, 1996; Altschul et al., 1997; Rychlewski
et al., 1998!, sequence information is enhanced by a mutation
pattern on a given position along the sequence. In the “threading”
methods~Bowie et al., 1991; Godzik et al., 1992; Jones et al.,
1992; Russell et al., 1996; Jaroszewski et al., 1998!, sequence
information is enhanced or replaced by residue interaction prefer-
ences, thus aiming at identifying the “structural” signature of the
sequence and recognition of the structural similarity even in the
absence of homology.

The “profile” methods have a wider application, because they
could recognize similarities between proteins, for which none of
the structures is known. However, “profile” methods can be ap-
plied to the problem of structure prediction by limiting the data-
base of proteins used for comparison to proteins with known
structures. Surprisingly, despite their different points of origin,
both profile and threading methods seem to give similar results, at
least in limited tests~Rychlewski et al., 1998; also see Methods!.
This makes the “profile” methods practically, if not logically, sim-
ilar to the threading methods. Therefore, in this, as well as in
previous papers~Pawlowski et al., 1999; Rychlewski et al., 1998!,
we are using a sequence based method for fold assignments.

Does it make sense to divide the problem of identification of a
new protein into two subproblems: an unrestricted search for any
similar proteins and a restricted search for similar protein with
known three-dimensional~3D! structure? Here and in the previous
papers we argue that it does. In particular, we argue that knowl-
edge of the full 3D structure allows much deeper understanding of
the protein function. This understanding gives us the opportunity
for additional verification of both fold and function prediction, and
in many cases, some of which were discussed in detail in the
previous publications, allows to make additional predictions as to
the molecular level function for new proteins. In this contribution,
we attempt to automate some of these “next level” analysis of the
fold prediction.

Function predictions are often made implicitly after some level
of sequence similarity is detected between two proteins. Many
newly sequenced proteins are annotated as “putative homologues”
of some well-characterized proteins, with an implicit assumption
that their function must be similar to that of its putative homo-
logue. However, the function prediction could be wrong, even if
the two proteins are homologous, because of the divergence of
functions in homologous proteins. It could also be right, even if the
two proteins are not homologous, because the sequence similarity
could be a result of convergent evolution. At the same time, the
functional prediction could be easily verified by checking the level

of conservation of functionally important residues. Such verifica-
tion is intuitively obvious, and on numerous occasions was done
by various authors in the analysis of specific protein families.

With improvement in fold assignment algorithms, whether by
threading or profile methods, several groups attempted genome
scale analyses for microbial genomes:Mycoplasma genitalium
~Fischer & Eisenberg, 1997; Huynen et al., 1998; Jones, 1998;
Rychlewski et al., 1998!, Escherichia coli~Rychlewski et al., 1999!
andHelicobacter pylori~Pawlowski et al., 1999!. In each of these
papers, several examples of fold predictions in each genome were
analyzed manually for possible function conservation. In addition,
an algorithm for functional analysis of 3D protein models~Fetrow
& Skolnick, 1998! was used to screen fold predictions obtained
from threading~Jaroszewski et al., 1998! for proteins that may
possess glutaredoxin0thioredoxin activity for proteins fromE. coli
~Fetrow et al., 1998!. Here, both efforts are combined in an attempt
to generate a wide survey of the possibility of following fold
prediction with function prediction. In particular, the previous fold
assignments for proteins from theE. coli genome~Rychlewski
et al., 1999! are now complemented with an automated function
assessment based on conservation of the functional site residues.

The paper is constructed as follows. In Results, the SiteMatch
program is used to analyze function conservation in the database of
fold predictions for proteins from theE. coli genome~Rychlewski
et al., 1999!. The program uses SITE, a database of multilevel
protein function description, built from records preset in Protein
Data Bank~PDB! files as well as from direct analysis of structure
files. At present, the database contains information about active
site residues, ligand binding sites, and potential protein–protein
interfaces. The main purpose of the SiteMatch program is to an-
notate the alignments and thus make the prediction analysis easier
and faster. At the same time, some observations about a general
picture of function conservation among proteins predicted to be-
long to already known fold superfamilies can be made and are
presented in Results. Examples of closely homologous proteins
that have lost their activity highlight the differences between the
homology and function predictions. Next, examples of predictions
that were below the previously used significance thresholds and
were therefore discarded in the previous analysis~Rychlewski
et al., 1999! are discussed in the second part of Results. These
examples highlight the use of fold prediction~with or without
homology! as a first step in function prediction. Finally, the analy-
sis of hydrophobic pattern conservation is used to predict the oligo-
merization state of new proteins. “SITE,” a database of multilevel
protein structure functional annotations, and “SiteMatch,” a pattern-
matching program to analyze the conservation of specific func-
tional residues in alignments, are described in Methods. Other
algorithms used in the paper are also described. Throughout the
text, the first part of a SwissProt~Bairoch & Apweiler, 1999! name
is used to identify proteins; thus, for example, the name YRAR
refers to YRAR_ECOLI SwissProt entry.

Results

Function prediction vs. fold prediction

Fold predictions for the set of 4,287 protein sequences from the
E. coli genome were adopted from previous work~Rychlewski
et al., 1999!. There, each protein from theE. coli genome was
matched against all proteins from the structural database using two
sensitive sequence alignment programs, PSI-BLAST~Altschul
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et al., 1997! and BASIC ~Rychlewski et al., 1998! and the best
scoring protein was identified. As discussed in the introduction and
explained in detail in Methods, these sensitive sequence compar-
ison algorithms are used here for fold assignments, in the spirit of
the threading approach. Therefore, despite using a sequence align-
ment algorithm, results are interpreted as fold predictions.

For everyE. coliprotein, most of the proteins from the structural
database are not similar to it, and thus the alignment scores follow
an extreme value distribution~Waterman, 1995!. The probability
that the best score is a part of this distribution~E-value! could be
used as a measure of the similarity between theE. coli protein and
the best scoring protein from the database~Altschul et al., 1997!.
Similar information can be conveyed by the value of the best score
expressed in units of the standard deviation of the distribution
~Z-score!. The latter measure is better suited for the Gaussian and
not extreme value distribution; nevertheless, it is often used in the
literature as a measure of protein similarity. Thus, if the best score
has a high Z-score~or a low E-value!, the best-scoring protein is
similar to theE. coli protein, and its structure is treated as a crude
prediction of theE. coli protein structure. The shaded boxes in
Figure 1 show the distribution of the significance of the structural
prediction. In previous work~Rychlewski et al., 1999!, the analysis
concentrated on high significance predictions, as identified by a
Z-score greater than 10~E-value 0.05! for predictions obtained
with the BASIC algorithm and an E-value less than 0.1 for pre-
dictions obtained with PSI-BLAST. BASIC and PSI-BLAST scores
could not be compared directly, because they were calculated for
different distributions. However, the statistical derivation of these
scores is analogous, and therefore they can be compared in a
qualitative way. The very conservative thresholds used for BASIC
predictions were introduced to avoid the problem of false posi-
tives. This strategy allowed the identification of folds for almost
30% of the entire genome~Rychlewski et al., 1999!. As discussed
in the introduction, this approach had two important drawbacks.
First, the fold prediction was implicitly treated as function predic-
tion, with the underlying assumption that the function of theE. coli
proteins should be similar to that of their putative homologous
family. Several examples analyzed by hand seemed to confirm this
assumption, but they represented only a small fraction of all pre-
dictions, and function similarity was not defined in any formal
way. Second, with a very strict significance threshold, many cor-

rect predictions are left out of the analysis. Both problems are
addressed here.

For 4,287 sequences, there are about 1,250 predictions with a
Z-score greater or equal to 10~E-value of 0.05!, and there are
1,280 more with the Z-score value between 10 and 5~E-value
between 1 and 0.05!. Only the former group was analyzed in the
previous manuscript~Rychlewski et al., 1998!; here, the entire
group of predictions with Z-scores above 5 will be analyzed. Thus,
the scope of the analysis almost doubles. From this group, 63%
~1,593 proteins! can be matched to one of the 304 structural tem-
plates with an active site record~see Methods for details of the
active site record!. From this point on, only this group will be the
subject of analysis. Proteins with identified active site residues
form a specific subgroup of all proteins, with predominance of
enzymes. The first question is how much this bias will change the
score distribution. The shaded bars on Figure 2 show the number
of fold predictions as a function of prediction significance for this
subgroup. This part of Figure 2 is analogous to Figure 1 and
suggests that the distribution of predictions in various Z-score
ranges for all proteins is similar to the distribution for structures
with identified functional site residues.

Each alignment from this group was evaluated using SiteMatch
for conservation of residues within the active sites~see Methods
for details!. The numbers of proteins where more than 50% of the
active site residues are conserved as a function of sequence sim-
ilarity significance are shown by the solid boxes in Figure 2. As
discussed in Methods, the threshold of 50% is used only for the
purpose of the general analysis. In any individual case, the con-
servation threshold must be defined separately, often with separate
rules for specific positions and specific functional signatures. Ob-
servations, such as presented here, are useful only to capture gen-
eral trends. As seen in the figure, there are proteins that have
conserved functional sites even if their significance scores~Z-
score or E-value! are very close to a random value. For the sig-

Fig. 1. The distribution of significance scores~Z-score! of fold predictions
for proteins inE. coli.

Fig. 2. SiteMatch result~active site sequence identity! vs. BASICZ-scores
~fold prediction! for E. coli. Light gray bars: total numbers of predicted
folds having a SITE record in PDB file. Dark gray bars: numbers of
predicted folds meeting the above criteria plus having sequence identity
within SITE record greater than or equal to 50%~as defined by the BASIC
alignment!. Solid line: percentage of predicted folds having SITE sequence
identity greater than or equal to 50%. For everyE. coli protein, the best 5
BASIC hits exceeding aZ-score of 5 were taken into account. From among
them, the hit with the highest residue identity in the PDB SITE record was
selected~note: it was not always the best hit as defined by itsZ-score!.
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nificance threshold previously used for fold predictions, about 50%
of predictions have functional sites conserved. At the same time,
this ratio levels off at about 90% for very similar proteins, iden-
tified with Z-scores greater than 30~E-values less than 1025!. In
each of the following sections, we will concentrate separately on
the two ends of the similarity spectrum. Similar trends were ob-
served before in analysis of specific families, using a different fold
assignment algorithm and different measure of prediction signifi-
cance~Fetrow et al., 1998!.

Predictions with significant overall similarity
but a weak active site match

It is very interesting that there are proteins that do not retain their
active site residues despite being closely homologous to the tem-
plate. Over 124 previously made fold predictions have half or more
of their active site residues missing, including 26 with prediction
significance over a Z-score of 30~see Fig. 2!. In this Z-score range,
the sequence identity is above 25% of identical resides, and there
is no doubt that such proteins are homologous. Although it is
generally accepted that the functional sites are more conserved
than entire sequences, it must be pointed out that other factors,
such as alignment errors, sequencing errors, and, last but not least,
errors in SITE database annotations, may result in apparent non-
conservation of functionally important residues.

There are four predictions with Z-scores greater than 30 where
active sites are totally missed inE. coli proteins.~1! Three~YBCL
and ORFs 01345 and 01516! are aligned with the part of the
template that is not involved in its primary activity. The functional
similarity between these proteins and their respective templates
might be limited to other functions, not related to its primary
activity as described by the SITE record.~2! The fourth~NADE!
is identified as being similar to the NAD synthetase~1nsy! ~the
first match! or GMP synthetase~1gpmA! ~the second match!, and
SwissProt 35 annotation identifies this protein as an NAD synthe-
tase. The GMP synthetase has two domains. The first domain
includes a conserved Cys-His-Glu and is representative of a new
family of enzymes that use a catalytic triad for hydrolysis~Tesmer
et al., 1996!. The second domain has a nucleotide binding site that
is common to the family of ATP pyrophosphatases, including NAD
synthetase, asparagine synthetase, and argininosuccinate synthe-
tase. NADE_ECOLI has only one domain that matches the second
domain of GMP synthetase that does not include the active site.
Interestingly, in theE. coli genome there are few proteins predicted
to match only the first domain of GMP synthetase including two
proteins with Z-scores below 10~E-value greater than 0.05!. There
are no sequences that could be reliably aligned to the entire length
of the known nucleotide synthetases. It is possible that inE. coli
NAD synthetase activity is carried by an enzyme complex, rather
than a single, multidomain protein.

Multidomain structures of proteins, withE. coli proteins being
similar to nonactive domains, account for most of apparent lack of
function conservation between closely homologous proteins~Z-
score over 30, i.e., percent of identical residues above 25!, but at
lower significance levels other effects come into play. Overall, for
predictions above a Z-score of 10, this effect accounts for only
20% of all cases. For proteins with Z-score values in the range
between 10 and 30, sequence identity is usually below 25% of
identical residues, and thus their homology is not obvious. The
most important effect in this prediction significance range is due to
the function diversification in structural superfamilies. For in-

stance, the FAD0NAD-linked reductase superfamily includes glu-
tathione and thioredoxin reductases, NADH peroxidases, and
dihydrolipoamide dehydrogenases. Each of these enzymes has a
different active site, and thus, a new member of this superfamily
might have a function different from that of its best structural
match. Over 50% of all cases of proteins with apparent lack of
conservation of functional residues in the Z-score range below 30
and above 10 are predicted to belong to structural superfamilies
with diverse functions. Examples with significant sequence simi-
larity and obvious lack of conservation of active site residues
account for only 20% of cases in the same significance range. An
example of such a case is illustrated below, where the sequence of
ORF00446 shows high sequence similarity to DNA methyltrans-
ferase~Z-score of 56.5, 25.2% sequence identity!. At the same
time, the active side cysteine, conserved in all known members of
this family, is mutated to tryptophan.

IP CHRVV lsfe
| ||||

LPWHRVV ORF00446

Thus, from proteins with high~Z-score between 30 and 10!
sequence similarity and less than 50% of conserved active site
residues, 50% belong to fold superfamilies with diverse functions,
20% to multidomain proteins, where only part of the protein can be
matched to theE. coli protein and another 20% have apparently
lost their activity. The remaining 10% could not be easily ex-
plained and may be a combination of alignment errors, sequencing
errors, and false predictions.

Predictions with weak sequence similarity,
but significant active site match

In the present prediction database, 119 predictions for theE. coli
genome from BASIC and 29 predictions from PSI-BLAST meth-
ods have strong active site conservation, while the significance of
their fold predictions is below previously used thresholds and,
therefore, they were not included in the previous fold prediction
list ~Rychlewski et al., 1999!. For these cases we can argue that
conservation of active site residues could be used as additional
verification of the fold prediction. Predictions in this group con-
form to the accepted idea that the functional residues are more
conserved than protein sequences. The entire list of the new pre-
dictions forE. coli genome using BASIC algorithm is presented in
Table 1. A few specific examples are studied below.

META_ECOLI is a homoserine transsuccinylase, predicted by
the BASIC algorithm to have a similar fold to the catalytic domain
of GMP synthetase. This domain includes a Cys-His-Glu triad and
is representative of a new family of enzymes that use a catalytic
triad for hydrolysis~Tesmer et al., 1996!. The Z-score of the align-
ment between META and GMP synthetase is 6.82~the sequence
identity is only 17.5%!, and the three active residues~C86, H181,
E183! are conserved. Using PSI-BLAST, the similarity between
META and GMP synthetase can also be found, but with a marginal
E-value of 0.8.

ORF02791 is a hypothetical protein, predicted by BASIC to
have a similar fold as a lysozyme~PDB ID: 1lzr!. The Z-score is
5.49, and the sequence identity between the ORF and the lysozyme
is 14.1%. The PSI-BLAST shows the significance of the ORF02791
alignment to a lysozyme is the E-value of 0.34. The residues in the
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Table 1. BASIC predictions below the significant similarity threshold (Z-score, 10) but having significant active site matchesa

GNO PID Sidn Act Num Z-score Idn Swiss-Prot or Genebank annotationb PDB annotationb

01648 1ajsA 11.4 SWS 1 9.450 100.0 016178~d90811! nifs protein Aspartate aminotransferase
00230 1amp_ 13.2 SWS 1 9.630 100.0 pepd_ecoli aminoacyl-histidine dipe Aminopeptidase~aeromonas!
00507 1amp_ 12.7 SWS 1 9.280 100.0 ylbb_ecoli hypothetical 45.7 kd prot Aminopeptidase~aeromonas!
01308 1amp_ 12.9 SWS 1 5.440 100.0 ~ae000231! f481; this 481 aa orf I Aminopeptidase~aeromonas!
01309 1amp_ 13.6 SWS 1 5.180 100.0 ydaj_ecoli hypothetical 47.1 kd prot Aminopeptidase~aeromonas!
03805 1amp_ 16.2 SWS 1 9.950 100.0 frvx_ecoli putative frv operon protein Aminopeptidase~aeromonas!
04195 1amp_ 13.3 SWS 1 8.910 100.0 ~ae000501! hypothetical 41.7 kd prot Aminopeptidase~aeromonas!
00774 1aqzA 16.0 CA1 4 5.050 50.0 ybia_ecoli hypothetical 18.7 kd prot Restrictocin
00206 1bhgA 9.8 SWS 1 5.290 100.0 glo2_ecoli probable hydroxyacylglut Beta-glucuronidase~gus gene product!
02639 1bmfD 14.3 CAT 1 5.210 100.0 reca_ecoli reca protein.gi62098390 Bovine mitochondrial f1-atpase~f1-
00467 1broA 15.8 ACT 3 5.570 100.0 ybac_ecoli hypothetical 36.0 kd prot Bromoperoxidase a2~haloperoxidase!
01813 1broA 11.5 ACT 3 6.690 100.0 ptrb_ecoli protease ii~oligopeptidase! Bromoperoxidase a2~haloperoxidase!
02113 1broA 11.7 ACT 3 8.800 100.0 yeig_ecoli hypothetical 31.3 kd prot Bromoperoxidase a2~haloperoxidase!
02424 1broA 14.4 ACT 3 8.220 100.0 ypfh_ecoli hypothetical 25.7 kd prot Bromoperoxidase a2~haloperoxidase!
03640 1broA 14.1 ACT 3 6.100 100.0 yiel_ecoli hypothetical 44.1 kd prote Bromoperoxidase a2~haloperoxidase!
00084 1btl_ 11.9 ACT 11 9.900 63.6 pbp3_ecoli penicillin-binding protein Beta-lactamase tem1
00149 1btl_ 8.8 ACT 11 9.900 54.5 ~ae000124! penicillin-binding protein Beta-lactamase tem1
00476 1btl_ 15.4 ACT 11 6.580 54.5 ybas_ecoli hypothetical 32.9 kd prot Beta-lactamase tem1
01495 1btl_ 12.8 ACT 11 6.380 54.5 yneh_ecoli hypothetical 33.5 kd prot Beta-lactamase tem1
02686 1ceo_ 11.1 SWS 2 5.620 50.0 ygbb_ecoli hypothetical 16.9 kd prot Cellulase celc~1,4-beta-d-glucan-
02717 1ceo_ 14.7 SWS 2 5.780 50.0 ygcf_ecoli hypothetical 25.0 kd prote Cellulase celc~1,4-beta-d-glucan-
02884 1ceo_ 10.8 SWS 2 5.020 50.0 yqgf_ecoli hypothetical 15.2 kd prote Cellulase celc~1,4-beta-d-glucan-
02927 1ceo_ 11.1 SWS 2 5.660 50.0 hybd_ecoli hydrogenase-2 operon pro Cellulase celc~1,4-beta-d-glucan-
03296 1ceo_ 12.7 SWS 2 5.880 50.0 ~ae000413! hypothetical 14.6 kd prot Cellulase celc~1,4-beta-d-glucan-
02029 1csn_ 11.4 SWS 1 9.120 100.0 ~ae000297! f648 Casein kinase-1
03547 1csn_ 13.0 SWS 1 5.480 100.0 rfay_ecoli lipopolysaccharide core Casein kinase-1
03261 1ctn_ 13.8 CA 2 5.700 100.0 yheb_ecoli hypothetical 97.1 kd prot Chitinase a~pH 5.5, 48C!
02510 1ctt_ 12.9 A1 4 9.960 100.0 yfhc_ecoli hypothetical 20.0 kd prot Cytidine deaminase~cda! complexed
00347 1din_ 11.5 SWS 3 8.550 66.7 yaim_ecoli hypothetical 31.4 kd prot Dienelactone hydrolase~dlh!
01762 1fbaA 12.6 FBA 1 5.750 100.0 ~ae000274! o384; uug start; this 3 Fructose-1,6-bisphosphate aldolase
01768 1fbaA 11.2 FBA 1 5.020 100.0 016319~d90823! 3-isopropylmalate d Fructose-1,6-bisphosphate aldolase
03788 1fbaA 18.3 FBA 1 9.860 100.0 yiht_ecoli hypothetical 32 kd protein Fructose-1,6-bisphosphate aldolase
03084 1fds_ 16.3 SWS 1 6.380 100.0 Yrar_ecoli hypothetical 24.8 kd prote 17-Beta-hydroxysteroid-dehydrogenase
03411 1fjmA 11.5 SWS 1 5.260 100.0 yhij_ecoli hypothetical 61.2 kd prote Protein serinethreonine phosphatase-1
00299 1fxd_ 3.6 FES 3 6.370 100.0 ykgf_ecoli hypothetical 53.1 kd prot Ferredoxin ii
00870 1fxd_ 9.8 FES 3 9.650 100.0 dmsb_ecoli anaerobic dimethyl sulf Ferredoxin ii
00966 1fxd_ 4.2 FES 3 7.430 100.0 yccm_ecoli hypothetical 40.1 kd pr Ferredoxin ii
01198 1fxd_ 4.1 FES 3 5.500 100.0 narh_ecoli respiratory nitrate reduc Ferredoxin ii
01438 1fxd_ 4.5 FES 3 5.910 100.0 nary_ecoli respiratory nitrate redux Ferredoxin ii
01446 1fxd_ 6.5 FES 3 7.700 100.0 fdnh_ecoli formate dehydrogenase Ferredoxin ii
01559 1fxd_ 9.8 FES 3 9.620 100.0 016034~d90801! dimethylsulfoxid Ferredoxin ii
01598 1fxd_ 9.4 FES 3 8.980 100.0 016104~d90806! ferredoxin ii Ferredoxin ii
01639 1fxd_ 6.3 FES 3 7.180 100.0 ~u68703! hypothetical protein Ferredoxin ii
01642 1fxd_ 7.7 FES 3 7.060 100.0 ~u68703! hypothetical protein Ferredoxin ii
02162 1fxd_ 5.6 FES 3 8.280 100.0 naph_ecoli ferredoxin-type protein Ferredoxin ii
02163 1fxd_ 8.7 FES 3 7.080 100.0 napg_ecoli ferredoxin-type protein Ferredoxin ii
02166 1fxd_ 10.4 FES 3 9.000 100.0 napf_ecoli ferredoxin-type protein Ferredoxin ii
02201 1fxd_ 3.8 FES 3 5.830 100.0 glpc_ecoli anaerobic glycerol-3-phos Ferredoxin ii
02239 1fxd_ 10.0 FES 3 9.080 100.0 nuoi_ecoli nadh dehydrogenase i chai Ferredoxin ii
02432 1fxd_ 8.7 FES 3 8.820 100.0 ~ae000335! hypothetical 22.2 kd prot Ferredoxin ii
02439 1fxd_ 8.3 FES 3 8.380 100.0 hyfh_ecoli hydrogenase-4 component Ferredoxin ii
02653 1fxd_ 9.7 FES 3 8.430 100.0 hydn_ecoli electron transport protein Ferredoxin ii
02660 1fxd_ 12.2 FES 3 8.460 100.0 hycf_ecoli formate hydrogenlyase sub Ferredoxin ii
02664 1fxd_ 8.4 FES 3 8.650 100.0 hycb_ecoli formate hydrogenlyase sub Ferredoxin ii
02822 1fxd_ 14.7 FES 3 7.880 100.0 ~u28375! orf_f163 Ferredoxin ii
02930 1fxd_ 6.7 FES 3 7.170 100.0 mbht_ecoli hydrogenase-2 small chai Ferredoxin ii
03495 1fxd_ 10.8 FES 3 9.030 100.0 ~ae000435! hypothetical 17.5 kd prot Ferredoxin ii
03800 1fxd_ 7.7 FES 3 7.390 100.0 fdoh_ecoli formate dehydrogenase-o, Ferredoxin ii
03967 1fxd_ 6.7 FES 3 7.980 100.0 nrfc_ecoli nrfc protein.gi62144352 Ferredoxin ii
04047 1fxd_ 8.6 FES 3 5.490 100.0 frdb_ecoli fumarate reductase iron- Ferredoxin ii
04266 1fxd_ 5.9 FES 3 5.880 100.0 yjjw_ecoli hypothetical 31.5 kd prot Ferredoxin ii

~continued!
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Table 1. Continued.

GNO PID Sidn Act Num Z-score Idn Swiss-Prot or Genebank annotationb PDB annotationb

02720 1gpmA 13.5 GAA 3 9.600 100.0 pyrg_ecoli ctp synthase gmp synthetase~xmp aminase!
03908 1gpmA 13.4 GAA 3 6.820 100.0 ~u00006! homoserine transsuccinylas gmp synthetase~xmp aminase!
00714 1iba_ 5.0 S1 1 9.100 100.0 hrsa_ecoli hrsa protein.gi62121156 Glucose permease fragment
02840 1iyu_ 18.6 LIP 1 7.070 100.0 gcsh_ecoli glycine cleavage system Dihydrolipoamide acetyltransferase
00511 1jdc_ 13.4 SWS 3 5.070 66.7 ylbf_ecoli hypothetical 29.6 kd prot 1,4-Alpha maltotetrahydrolase
00742 1jud_ 15.1 CAT 2 5.140 100.0 ybha_ecoli hypothetical 30.2 kd prot l-2-Haloacid dehalogenase
01919 1jud_ 16.8 CAT 2 6.820 100.0 ~ae000287! o271; this 271 aa orf I l-2-Haloacid dehalogenase
03128 1jud_ 13.1 CAT 2 9.210 50.0 ~ae000399! hypothetical 20.0 kd prot l-2-Haloacid dehalogenase
00901 1lbu_ 16.2 CAT 3 8.600 100.0 ycbk_ecoli hypothetical 20.4 kd pro Muramoyl-pentapeptide
01366 1ldg_ 13.0 SWS 1 8.240 100.0 015717~d90777! 3-hydroxybutyryl-co l-Lactate dehydrogenase
02299 1ldg_ 12.9 SWS 1 7.350 100.0 ~ae000322! f714; this 714 aa orf I l-Lactate dehydrogenase
03759 1ldg_ 11.2 SWS 1 8.340 100.0 fadb_ecoli fatty oxidation complex l-Lactate dehydrogenase
02236 1lml_ 11.4 ACT 5 6.330 60.0 nuol_ecoli nadh dehydrogenase i cha Leishmanolysin~gp63 protein, psp!
00813 1lt3A 12.4 SWS 1 5.090 100.0 ~ae000186! o371; this 371 aa orf I Heat-labile enterotoxin fragment~lt-i !
02791 1lzr_ 20.3 SWS 2 5.490 100.0 ~u28375! orf_o138 escherichia coli Lysozyme~lz406! complexed with
03662 1nhp_ 14.3 SWS 2 6.280 50.0 ~ae000451! glucose inhibited divis Nadh peroxidase~npx! mutant with
02086 1pamA 8.7 SWS 3 5.160 66.7 yehv_ecoli hypothetical transcripti Cyclodextrin glucanotransferase
03578 1pamA 12.5 SWS 3 9.670 66.7 ~ae000443! hypothetical 88.1 kd pr Cyclodextrin glucanotransferase
04087 1pii_ 12.6 ASS 5 8.580 60.0 sgah_ecoli probable hexulose-6-phosN-~59phosphoribosyl!anthranilate
02990 1pth_ 14.1 PER 3 6.680 66.7 cca_ecoli trna nucleotidyltransfera Prostaglandin h2 synthase-1
03020 1scuA 11.0 SWS 1 8.270 100.0 ~ae000390! o334; sequence change j Succinyl-coa synthetase~succinate-coa
03785 1smd_ 14.6 SWS 3 6.040 66.7 ~ae000463! hypothetical 77.2 kd pr Amylase
02024 1svpA 13.4 TRI 3 6.800 66.7 dcd_ecoli deoxycytidine triphosphat Sindbis virus capsid protein fragment
01747 1thtA 10.8 CAT 3 7.230 66.7 g3p1_ecoli glyceraldehyde 3-phosph Thioesterase
00825 1thx_ 11.9 DIS 2 7.440 100.0 glr1_ecoli glutaredoxin 1~grx1! .g Thioredoxin~thioredoxin 2!
01624 1thx_ 19.0 DIS 2 6.090 50.0 ydhd_ecoli hypothetical 12.9 kd prot Thioredoxin~thioredoxin 2!
04012 1tplA 14.0 PLA 7 7.930 57.1 6 arginine decarboxylase, biodegrad Tyrosine phenol-lyase
00410 1vid_ 11.6 SWS 2 7.000 50.0 pgpa_ecoli phosphatidylglycerophosp Catechol o-methyltransferase~comt!
02939 1vid_ 11.7 SWS 2 5.940 50.0 exbd_ecoli biopolymer transport exb Catechol o-methyltransferase~comt!
03212 1vid_ 13.8 SWS 2 8.070 50.0 sun_ecoli sun protein~fmu protein! Catechol o-methyltransferase~comt!
00110 1vjs_ 10.9 SWS 3 5.550 66.7 ampd_ecoli ampd protein.gi6783106p Alpha-amylase~bla!
00379 1vjs_ 9.6 SWS 3 5.140 66.7 ~ae000145! o192; 100 pct identical Alpha-amylase~bla!
01120 1vjs_ 9.4 SWS 3 8.040 66.7 ~ae000214! o189; phage stats; this Alpha-amylase~bla!
01330 1vjs_ 12.7 SWS 3 6.340 66.7 ~ae000233! o285; this 285 aa orf I Alpha-amylase~bla!
01781 1vjs_ 12.4 SWS 3 5.380 66.7 yeab_ecoli hypothetical 21.4 kd prot Alpha-amylase~bla!
02259 1vjs_ 11.1 SWS 3 6.180 66.7 yfcf_ecoli hypothetical 24.3 kd prote Alpha-amylase~bla!
02275 1vjs_ 12.6 SWS 3 7.210 66.7 deda_ecoli deda protein~dsg-1 proein Alpha-amylase~bla!
02721 1vjs_ 14.1 SWS 3 5.170 66.7 mazg_ecoli mazg protein.gi6882675 Alpha-amylase~bla!
02881 1vjs_ 10.9 SWS 3 5.040 66.7 ~u28377! orf_o252 Alpha-amylase~bla!
03894 1vjs_ 10.2 SWS 3 5.910 66.7 yjae_ecoli hypothetical 18.2 kd prote Alpha-amylase~bla!
00941 1vsd_ 12.3 ACT 3 5.800 66.7 ~ae000198! f122; this 122 aa orf I Integrase fragment
01741 1xyzA 11.8 SWS 2 5.160 100.0 016287~d90820! tagatose-bisphosp 1,4-Beta-d-xylan-xylanohydrolase
00585 2af8_ 11.9 S42 1 5.880 100.0 entb_ecoli isochorismatase~2,3 dih Actinorhodin polyketide synthase acyl
02093 2bltA 11.4 CTA 7 9.510 57.1 pbp7_ecoli penicillin-binding prote Beta-lactamase~cephalosporinase!
01437 2btfA 12.6 CAT 3 5.860 66.7 narw_ecoli respiratory nitrate redu Beta-actin-profilin complex
02028 2btfA 13.1 CAT 3 9.190 66.7 ~ae000297! o471; uug start; 99 pct Beta-actin-profilin complex
01592 2dkb_ 12.4 PLP 1 9.760 100.0 maly_ecoli maly protein.gi6961646p 2,2-Dialkylglycine decarboxylase
01980 2dkb_ 15.5 PLP 1 9.740 100.0 his8_ecoli histidinol-phosphate amin 2,2-Dialkylglycine decarboxylase
02839 2dkb_ 12.1 PLP 1 9.050 100.0 gcsp_ecoli glycine dehydrogenase 2,2-Dialkylglycine decarboxylase
03494 2dkb_ 16.1 PLP 1 8.670 100.0 avta_ecoli valine–pyruvate aminotr 2,2-Dialkylglycine decarboxylase
04026 2dkb_ 13.7 PLP 1 7.020 100.0 dcly_ecoli lysine decarboxylase 2,2-Dialkylglycine decarboxylase
00161 2sga_ 10.3 SWS 3 7.670 100.0 heat shock protein Proteinase a~component of the
03164 2sga_ 10.5 SWS 3 9.670 100.0 degq_ecoli protease degq precursor Proteinase a~component of the
00766 3dni_ 11.3 ACT 4 6.280 100.0 ~ae000181! f253 Deoxyribonuclease i~dnase i!
00164 4kbpA 11.3 SWS 1 7.790 100.0 ~u70214! hypothetical protein Purple acid phosphatase
02210 4pgmA 17.0 CIC 4 8.120 75.0 ais_ecoli ais protein.gi61788586 Phosphoglycerate mutase 1
03165 5ptp_ 14.6 CAT 4 8.180 100.0 degs_ecoli protease degs precursor Beta trypsin
00015 5rubA 13.9 SWS 1 5.460 100.0 dnaj_ecoli dnaj protein.gi672228 Rubisco~ribulose-1,5-bisphosphate!

aGNO, gene number; PID, the identification of a structure; Sidn, sequence identity between a sequence and a structure; Num, number of active site
residues; Act, names of actives sites, except “SWS” for information coming from Swiss-Prot, others use names from “SITE” records in PDB; Idn, sequence
identity in active site.

bDescriptions in the two last columns of Table 1 were shortened to fit into the manuscript format. The full text of Table 1 is available at the WEB site
bioinformatics.burnham-inst.edu.
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active site~E35, D53! are conserved in both the BASIC and PSI-
BLAST alignments.

AIS_ECOLI was predicted to have a similar fold to that of
6-phosphofructo-2-kinase0fructose-2,6-bisphosphatase~PDB ID:
1bif ! and phosphoglycerate mutase 1 biological unit~PDB ID:
4pgmA!. The Z-score of the alignments are 8.66 and 8.12, while
the sequence identity between AIS and the two proteins with known
structures are 12.0 and 17.0%, respectively. The first structure does
not have a SITE record. Checking the alignment between the ORF
and the second structure by SiteMatch, three out of four active site
residues are conserved. The fourth one is a histidine that is aligned
with a gap. Investigating the structural alignment between the first
and the second fold predictions, it can be seen that the histidine in
the active site from both structures is actually aligned as shown in
Figure 3. Meanwhile, the alignment between AIS and the first fold
prediction shows that a histidine from AIS is aligned with the same
histidine as in the structural alignment. Thus, it can be concluded
that the alignment between AIS and 4gpmA contains errors, and in
fact, all residues in the active site should be aligned. This example
illustrates that by combining SiteMatch and information from
structural alignments, one can find and correct errors in specific
alignments.

Five proteins~YBAC, PTRB, YEIG, YPFH, and YIEL! are
predicted to have a similar fold and exact active site match as
bromoperoxidase a2~PDB ID: 1broA!, with a Z-score below 10.0
~an additional eightE. coli proteins are predicted to have the same
fold with a Z-score above 10!. Bromoperoxidase catalyzes the
bromination of organic compounds in the presence of bromide and
peroxide. The overall structure of bromoperoxidase can be char-
acterized as ana0b-hydrolase fold with a catalytic triad of Ser532,
D617, and H652~Hecht, 1994!. The sequence identities between
all five E. coli proteins, and 1broA are listed in Table 2. Four of
them are hypothetical proteins. Only one is known as protease II
~PTRB!, which catalyzes the hydrolysis of Arg-6-XAA and
Lys-6-XAA bonds in oligopeptides, even when P19 is proline
~Kanatani et al., 1991!. Although the significance score~Z-score!
between PTRB and 1broA is only 6.9, it has the same active triad
~Ser532, D617, and H652! as the template. The reactive serine
residue of protease II was experimentally identified as Ser532
~Kanatani et al., 1991!. The sequence around the serine residue is
identical to the common sequence of Gly-X-Ser-X-Gly, which has
been found in the active site of most serine proteases, thus function
prediction based on local patterns might misclassify it as serine
protease. Except for this region, protease II showed no significant
sequence similarity withE. coli serine protease, protease IV, and
protease La~Kanatani et al., 1991!, and consequently, it is usually
classified as a member of a separate family, the prolyl oligopep-
tidase family of peptidases. A recent study suggests a striking
secondary structure similarity between serine carboxypeptidase and
prolyl oligopeptidase~Medrano et al., 1998!. This observation
indirectly supports our prediction in this study.

Conservation of the hydrophobic pattern

One of the most important and, at the same time, most difficult to
study experimentally, aspects of protein function are their inter-
actions with other proteins. Assembly of multienzyme complexes,
interactions between regulatory proteins and their targets, all de-
pend critically on the character of the interacting surfaces. For
many proteins, the function prediction could not be complete with-
out prediction of the way they associate with other proteins. At the

same time, the mode of association often varies in homologous
families, often correlating with the changes in function.

Our experience in studying the domain assembly within the
family of calcium binding EF-hand proteins~Pawlowski et al.,
1996! showed that analysis of conservation and position of surface
residues can be successfully used in predicting a mode of multi-

B

Fig. 3. A: Superposition of the Ca trace of 6-phosphofructo-2-kinase
fructose-2,6-bisphosphatase~1bif ! and phosphoglycerate mutase 1~4pgm,
chain A!. 1bif is shown as a dashed line and 4pgmA as a solid line. The
inset is the superposition of the enlarged active sites.B: Annotated align-
ments for fold predictions of gene 02210. The abbreviations used here are
the same as those in Figure 7. The histidine discussed in the paper is shown
in bold.
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meric assembly of multidomain proteins. Proteins from this family
are built from 70 amino acid domains, which could be found as
monomers~ICaBPs used for calcium storage!, dimers@S100B pro-
teins, participating~among other functions! in signal processing in
the brain# or domains in multidomain proteins~calmodulin, tropo-
nin C, recoverin, and several other proteins!. Here we present an
application of these ideas to automated analysis of protein interfaces.

In particular, the conservation or changes in patches of hydro-
phobic residues on the surface could be used as an indication of the
similarity in the mode of multimeric assembly of the predicted
protein to that of its best-scoring structural template. All fold pre-
dictions were analyzed for hydrophobic pattern conservation, as
described in Methods.S, the sum of absolute values of the burial
energy difference between the template sequence in its own struc-
ture and the prediction target sequence in the template structure,
was calculated for all fold predictions. The distribution ofS is
shown in Figure 4. As expected, the distribution of energy differ-
ences is very broad, suggesting a very strong level of noise from
random mutations. The sudden widening of the distribution around
Z-score 5~E-value of 1!, where most of the fold predictions and
alignments become essentially random, is clearly visible. At the
same time, several proteins clearly lay outside of the envelope of
the distribution. The complete list of such proteins is available
from the authors’ Web server. Here, a few examples will be ana-
lyzed in more detail.

First examples nicely illustrate the predictive possibilities of
burial energy difference analysis. The spermidine binding protein

strongly recognizes~Z-score of 56.5! the structure of the malto-
dextrin binding protein, despite a low sequence identity of 16%
~Fig. 5!. At the same time, the hydrophobic energy difference for
the target protein in the template structure is 61.4 energy units,
which on the per-residue basis is almost three times higher than the
average. The template, maltodextrin binding protein is a monomer
in solution, while the experimental structure for a spermidine bind-
ing protein~known, but absent from our database! is known to be
an octamer. Another example is the cysB transcription factor. It is
weakly recognized to be similar to the lysine binding protein, with
a Z-score of 6.9 and the sequence identity of 17.2%, but an un-
usually high hydrophobic energy difference of 78.6 energy units.
This prediction was independently validated by experiments when
the cysB protein fromKlebsiella aerogenswas crystallized. This
structure, now available in the PDB, was absent from our database
of structural templates, which was prepared before the cysB struc-
ture submission. The cysB protein has an unusual tetrameric struc-
ture in contrast to the lysine binding protein, which is a monomer.

The next example attempts to predict the oligomerization state
in addition to fold and function prediction. The hypothetical pro-
tein YBCK_ECOLI is predicted to be homologous to a diphtheria
toxin. The alignment has a Z-score of 37, indicating a very strong
match despite a low sequence similarity of 12%. At the same time,
the first 70 residues, containing the DNA binding site and two out
of five catalytic residues, are missing from the sequence of theE.
coli protein. Two other catalytic residues are conserved, with a
third one probably missed due to an alignment error~see Fig. 7!.
The hydrophobic pattern from a dimeric diphtheria toxin, present

Table 2. Sequence identities between 5 ORFs and 1broA

Sequence
identity PTRB YEIG YPFH YIEL 1broA

YBAC 15.5 18.8 15.8 18.7 15.8
PTRB 12.4 14.6 16.7 11.5
YEIG 16.9 15.9 11.7
YPFH 17.3 14.4
YIEL 14.1

Fig. 4. Absolute difference of burial energy per aligned residue vs. signif-
icance scores~Z-score! for all predictions with aZ-score greater than 5 in
E. coli. Energy units correspond to kT in room temperature~Godzik et al.,
1992!.

Fig. 5. Fold predictions for gene 01096 inE. coli. The abbreviations used
here are the same as those in Figure 7.
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in our template database, gives a very high burial energy, suggest-
ing that the YBCK protein has a different oligomerization state.

Discussion

In fold prediction, the goal is to assign a fold to a protein sequence
by finding a most compatible fold from a library of known protein
folds. Here, this goal was achieved by using a supersensitive se-
quence alignment program, which for every protein from the
E. coli genome identified the most similar protein sequence from
a group of proteins with known structures. In previous work, as
well as in examples shown in Methods, it was verified that such
similarity, if sufficiently strong as measured by the statistical sig-
nificance of the similarity score, indeed translates into the fold
similarity ~Rychlewski et al., 1999!. This way, a new protein can
be~putatively! included in the fold superfamily. But how to extend
the fold prediction to function prediction? The most common ap-
proach is to assume that the function of a putative superfamily
member is going to be the same as the already known members of
the family. However, this type of “implicit” prediction may not
work when the evolutionary distance between the new protein and
the known proteins increases to the point where function diver-
gence becomes common. It becomes even more questionable, when
the homology relation becomes uncertain. One easy way to con-
firm or refute this type of naive prediction is to check the conser-
vation of the active site or ligand binding site residues. Traditionally,
this approach concentrates on specific protein families. With thou-
sands of fold predictions available on genome scale~Casari et al.,
1996; Fischer & Eisenberg, 1997; Jones, 1998; Pawlowski et al.,
1999; Rychlewski et al., 1998, 1999!, the automated alignment
analysis becomes increasingly important.

An automated method to verify the conservation of the func-
tional site residues for alignments from sequence analysis and fold
prediction methods was used to analyze the results of the previous
fold prediction for proteins from theE. coli genome. Using
SiteMatch, thousands of detailed function prediction verifications
can be done in a few hours. The results presented here offer several
insights into the common practice of using distant sequence sim-
ilarity, which can be verified as fold prediction, for function pre-
diction. Even for clearly homologous proteins with significant
sequence identity, about 10% do not contain conserved functional
site residues. This percentage drops to 50% for weakly similar
proteins, where the relationships between proteins are variously
interpreted as distant homology or accidental fold similarity. Al-
though a part of this effect can be explained by alignment errors,
sequencing errors, database annotation errors, or other trivial ex-
planations, clearly the effect of function diversification remains
and is likely to challenge many existing functional assignments in
genomic databases. Detailed analyses of specific protein families
provided examples of this problem~Fetrow et al., 1998!. Here, the
large-scale analysis of over 300 protein families gives a large-scale
view that confirms insights obtained from smaller scale studies.

At the other end of the significance spectrum, the functional site
conservation analysis offers a simpler and more immediate appli-
cation. Conservation of functional features could strengthen many
fold predictions with low significance scores. For prediction in this
significance range, the ratio between the distant homologues and
accidental fold similarities shifts toward the latter and the number
of incorrect fold assignments becomes significant. Over a hundred
new predictions with low sequence similarity but strong conser-
vation of functional features may be added to the prediction list,

raising the number of fold0homology predictions to over 32% of
all E. coli proteins. We can expect this number to increase even
more as fold prediction methods are improved, and more function
descriptions become available. This marks a qualitative increase
over the usually quoted 10–15% of the genome proteins for which
folds could be predicted~Casari et al., 1996; Fischer & Eisenberg,
1997; Frishman & Mewes, 1997!. It strongly suggests that for
proteins from newly sequenced genomes fold predictions, fol-
lowed by detailed function predictions will play an increasing role
in interpretation of the genomic information.

Analysis of the hydrophobic pattern conservation in homolo-
gous proteins, while very preliminary, also illustrates additional
insights into the biological function of proteins identified in ge-
nomic studies that could be achieved with fold assignments. Sev-
eral examples discussed in this paper, together with over 100
additional ones available from the authors’ Web server, identify
proteins that change the way they associate in complexes, which
opens a way to more detailed analysis of their function.

The key to the success of such automated analysis is the quality
of the database of the detailed functional information about the
known protein structures. Due to the incomplete annotation in
PDB, it is impossible to assign functional information for every
protein structure. Also, the SITE record is not used very consis-
tently. For instance, SITE records often include binding sites, which
often change with changing specificity of binding, even if the
activity is constant. Such information is useful to obtain a general
view of function conservation in homologous families, but for
detailed study of specific families, functional information from
detailed structural analysis of specific structures must be used
instead of database derived information. Such function signatures
for several protein functions were built and used in detailed pre-
dictions for specific functions~Fetrow et al., 1998; Fetrow &
Skolnick, 1998!.

Methods

Protein structural database and group
of representative structures

The vast majority of experimentally known protein structures is
deposited in the Brookhaven PDB~Bernstein et al., 1977!. The
release from January 1998, including 6,700 proteins that have over
11,000 single chains, has been used in the work described here.
Many of the proteins were solved multiple times, and for many
others, structures of their close homologues were solved and de-
posited in the PDB as well. Thus, to avoid multiple counting of
protein structures, all PDB single chains were clustered based on
their sequence similarity. The goal is to divide all proteins within
PDB into groups, such that all proteins within one group would
have a similarity above the threshold, and all pairs with each of the
proteins coming from a different cluster have similarity below
threshold. Several such sets were prepared by different groups,
with the most popular sets being available from EMBL~Hobohm
et al., 1992!. In this work, we use a set prepared at EMBL, based
on a 30% sequence identity threshold. Each structure in the set is
accompanied with a cluster of similar proteins, which can be used
to crosscheck and compare function-related annotations. There are
1,151 proteins in the set; the complete list is available from the
authors’ Web site as pdb30. According to our definition, different
function would mean completely different active sites.
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An analysis of a similar set of sequence clusters~results not
shown! showed that there are no clusters with completely different
active sites. All the clusters but four had at least 50% sequence
conservancy in the active site, and majority of clusters had 100%
conservancy.

Database of multilevel function signatures

As mentioned in the introduction, the term “function” is used in many
different meanings, often encompassing such different concepts as
activity, mechanism of action, or function in the organization of
entire organisms. As a first approximation to such a multilevel func-
tion description, we have decided to focus on three aspects of func-
tion: ~1! activity, as described by active site residues in an enzyme;
~2! ligand binding, as described by the residues in binding sites and
residues in contact with inhibitors, cofactors, etc. cocrystallized with
the protein; and~3! interaction with other proteins, as described by
a pattern of hydrophobic residues on the surface.

Such description is obviously highly simplified and does not
attempt to provide a complete functional description of proteins in
the structural database. The SITE database contains information
from three sources:~1! SITE records of PDB files: most of the
protein structural files are annotated by their authors with annota-
tions identified by specific keywords following PDB guidelines. In
particular, the “SITE” record is intended to describe residues in-
volved in biological activity. This information was extracted di-
rectly from the PDB files and reformatted into a specific format
used later by the SiteMatch program. About 500 of the 1,151
proteins in the structural database~see the previous section! have
at least one protein with a “SITE” record in their homologous
cluster. At the same time, structure depositors have significant
freedom in including various residues into the SITE record. To
arrive at a more consistent definition, the residues in the SITE
record of each PDB file are cross-checked with additional in-
formation coming from the PDB file or other databases: E.C. clas-
sification, presence of specific keywords in protein name or
MEDLINE record, residue conservation in the immediate homol-
ogous family, and others.~2! Functional annotations in the Swis-
sProt 34 sequence database: the curated protein sequence database
contains information about active site residues. This information
was extracted using a simple script.~3! Analysis of ligand~pros-
thetic groups, substrates, or inhibitors! binding in PDB structures:
such groups are denoted as HETATOM in the PDB files, and
residues involved in their binding can be identified by searching
for all protein atoms that are within a certain cutoff distance from
any of the HETATOMs in a PDB file. Here, a 3.9 Å cutoff is used
for all ligand atoms, including DNA and RNA. Names of ligands
are extracted from the PDB files and include all HETATOM records
except water molecules.

When combining information from all sources, some functional
annotation can be made for about 705 proteins out of 1,151 in our
structural database. For 304 proteins the SITE database identifies
active site residues. This latter group was the focus of the analysis
presented here.

Finally, surface regions involved in interactions between differ-
ent proteins can be identified by the presence of hydrophobic
residues on the protein surface. To identify such sites, information
about the burial0exposed status of all positions along the sequence
and corresponding statistical potential parameters were adopted
from the topology fingerprint description of protein structures
~Godzik et al., 1992; Jaroszewski et al., 1998!.

An example of a record in the SITE database is presented in
Figure 6. A star denotes the active sites extracted from “SITE”
records and confirmed as described above. Consecutive numbers
beginning with “1” denote the ligand binding sites. In most pro-
teins, multiple ligand binding sites are identified. A list of identi-
fied functionally important positions is presented, following the
name of the ligand or a star symbol for the active site. Finally, a list
of buried0exposed0interface assignments for all positions along
the sequence is included in the SITE database record. The SITE
database can be extended, and its records can be improved and
verified by literature searching, cross-reference with other similar
databases~Laskowski et al., 1997! or detailed analysis of func-
tional requirements in the experimental structure~Fetrow & Skol-
nick, 1998!. Various improvement of the database are planned for
the near future, and the fold and function prediction database for
several microbial genomes, available at the authors’ Web site at
bioinformatics.burnham-inst.org uses a continuously updated su-
per set of the features described here.

Fold assignments

Fold assignments for proteins fromE. coli genome were adapted
from a preceding manuscript~Rychlewski et al., 1999!. In this and
other related manuscripts~Pawlowski et al., 1999; Rychlewski
et al., 1998, 1999!, two algorithms were used for fold assignments.
The first one is a profile-to-profile comparison method BASIC
~Rychlewski et al., 1998!. The second is the position specific it-
erated BLAST~PSI-BLAST! algorithm ~Altschul et al., 1997!,
which is the newest version of the de facto standard of database
protein similarity searching algorithms.

Both algorithms are able to detect weak sequence similarities, in
many cases not detectable using standard methods of sequence
analysis. It is not clear what is the exact relation between proteins
with such similarities. As shown in the next section, it can be
shown that for proteins with sequence similarity above certain
threshold, folds of both proteins~if known! are always similar.
Thus, both algorithms are used as fold predictors, similar in spirit
to application of threading algorithms.

For both algorithms, a representative subset of all proteins in the
PDB, as described in the first section of Methods, is used as a
database of potential templates. This is the same set that was used

Fig. 6. A sample record from the SITE database for avian sarcoma virus
integrase~PDB ID: 1vsd!. In the lines marked with “DE”: the active site,
the site of a hydroxyethyl group~bound covalently to a cysteine!, a mag-
nesium binding site and HEPES binding site are listed. These sites are
denoted by “ACT,” “OHE,” “MG,” and “EPE,” respectively. The hydro-
phobic pattern follows the reference sequence of the protein.
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in the previous work~Rychlewski et al., 1999!. The best-scoring
protein from the database is identified for each of the proteins from
the E. coli genome. The alignment between these two proteins is
used as an input to the SiteMatch program. Because of the specific
choice of the database~proteins with known structures!, BASIC
and PSI-BLAST programs that employ only sequence information
are used as fold predictors.

Alignments for all target–template pairs with a significance
score above a certain threshold are used. Fold predictions for
two genomes~M. genitaliumandE. coli! with all methods used
in this manuscript are available on the authors’ Web server at
bioinformatics.burnham-inst.org. A third genome,H. pylori, is ana-
lyzed with updated versions of the template database and upgraded
fold prediction algorithms~Pawlowski et al., 1999! and is now also
available on the server.

Optimization and verification of the BASIC algorithm

The BASIC algorithm was optimized to recognize the maximal
number of structurally similar proteins on benchmarks customized
for fold prediction algorithms. A particular benchmark available
from the Web server at UCLA~http:00www.doe-mbi.ucla.edu0
people0frsvr! was used during the development of a BASIC algo-
rithm. This benchmark consists of 68 target proteins for which the
correct template~structural similar protein! has to be found in a
database of about 300 examples. The results~Table 3! presented
here show that a sequence-only fold recognition method can closely
match the prediction accuracy of best threading algorithms. A more
extensive evaluation of different fold recognition algorithms is
presented elsewhere~L. Rychlewski, L. Jaroszewski, K. Pawlowski,
A. Godzik, in prep.!.

Site identification

SiteMatch is a computer program designed to analyze the conser-
vation of residues in functionally important regions in target–
template alignments. It uses the SITE database described above
and the alignment between the new protein~the prediction target!
and an already characterized protein~the template!. The align-

ments from various sources can be used, including, but not limited
to, the BLAST, BASIC, and threading methods.

The criterion for significant site match, used later in the statis-
tical analysis of function conservation for the entire genome, is
50% of sequence identity in functional site. This threshold was
introduced rather arbitrarily, only for the purpose of general analy-
sis. In every specific case, the threshold must be chosen individ-
ually, and often different positions must be treated in a different
way. If there is no active site information available for the first hit
of a prediction, the second hit will be checked, and so on, until a
template with a functional description is found.

Because the functional description in the SITE database usually
involves the active site and0or one or more binding sites, conser-
vation can be calculated separately for each separate record. This
allows a more complete functional conservation analysis, because
often only some of several functional records are conserved in the
alignment.

The pattern of buried0exposed positions along the sequence is
used to assess the conservation of interprotein interactions, which
is important in multimeric assembly. Interaction sites between pro-
teins often could be recognized as patches of hydrophobic residues
on protein surfaces. Often, even closely related proteins assemble
in different complexes, which is reflected in the different positions

Table 3. Results achieved on the UCLA threading benchmark
containing 68 target-template pairs and a database
of 300 templatesa

Rank5 1 Rank# 5 Rank# 10

Simple BLAST 27 — —
PSI-BLAST 32 — —
THREADING

~Godzik et al., 1992! 22 30 34
Global sequence alignment 40 50 52
THREADING

~Jaroszewski et al., 1998! 54 58 60
BASIC 52 57 60

aThe values present the number of pairs, where the template obtained a
rank given above. For BLAST predictions it is difficult to estimate lower
significance predictions, because they often are not listed due to a large
number of homologous proteins.

Fig. 7. The output from the SiteMatch program for assessing the align-
ment between gene 00534 and template~1ddt!. The alignment is annotated
according to the functional information of the template. The one body
energy~denoted by “TOTENERGY”! is divided into three terms, exposed
~EXPENERGY!, interface~INFENERGY!, and burial~BURENERGY!.
“ENG0” is calculated by putting the sequence of the template into its own
structure while “ENG1” by putting the query sequence into the template
according to the alignment between them. “LEN0” is the length of the
template, and “LEN1” is the length of the query sequence. “ALNLEN” is
the length of the aligned residues. “ABSDIF” is the absolute energy dif-
ference summed up in residue level. In the “RESULT” part, “w_idt” is
sequence identity between the query sequence and the template while
“a_idt” only in aligned region. Active site and ligand information is given
under “__ligand_”; the similarity “ratio” is calculated by dividing the align-
ment score in a site by the self-alignment score of residues in the “ident”
and “simil” are the sequence identity and similarity in functional sites,
respectively.
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of such hydrophobic patches~Pawlowski et al., 1996!. Here, such
differences are estimated by calculatingS, the sum of absolute
values of the difference between the burial energy of the prediction
target sequence and the original native sequence, using the tem-
plate burial0exposed pattern according to the alignment. The sum-
mation is over all residues in the alignment. Any significant changes
in the number and the position of hydrophobic residues on posi-
tions exposed to the solvent would result in the substantial changes
to the value ofS.

The result of a SiteMatch analysis of the target–template align-
ment is quite complex, listing conservation of various functional
sites and changes in burial0exposed energy. An example of such
analysis is presented in Figure 7, with several other examples
presented earlier in this paper. The main purpose of such analysis
is to provide a starting point in a detailed evaluation of the function
conservation for every fold prediction. Records similar to that
presented in Figure 7 are a part of a genomic prediction web site
maintained in our group. For general analysis, such as presented in
this paper, only some features of a full analysis were used.

Database availability

The fold prediction database for the proteins from theM. geni-
talium, E. coli,andH. pylori genomes is available on the group’s
Web server at http:00bioinformatics.burnham-inst.org~also avail-
able at http:00cape6.scripps.edu! as described previously~Rych-
lewski et al., 1999!, is now enhanced with function predictions.
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