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Abstract

We have developed a method for the prediction of an amino acid sequence that is compatible with a three-dimensional
backbone structure. Using only a backbone structure of a protein as input, the algorithm is capable of designing
sequences that closely resemble natural members of the protein family to which the template structure belongs. In
general, the predicted sequences are shown to have multiple sequence profile scores that are dramatically higher than
those of random sequences, and sometimes better than some of the natural sequences that make up the superfamily. As
anticipated, highly conserved but poorly predicted residues are often those that contribute to the functional rather than
structural properties of the protein. Overall, our analysis suggests that statistical profile scores of designed sequences
are a novel and valuable figure of merit for assessing and improving protein design algorithms.
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There has been considerable recent success in the development of
computational methods for the design of protein sequences, at
various degrees of sophistication. Several groups have presented
results in which computer algorithms were used to design novel
hydrophobic cores for proteins~Hellinga & Richards, 1994; Kono
& Doi, 1994; Desjarlais & Handel, 1995; Dahiyat & Mayo, 1996,
1997b; Lazar et al., 1997!, in many cases with experimental val-
idation of the proteins by biophysical and0or structural methods
~Desjarlais & Handel, 1995; Dahiyat & Mayo, 1996, 1997b; Lazar
et al., 1997, 1999; Kono et al., 1998; Johnson et al., 1999!. Addi-
tional developments in core design have included the incorporation
of backbone flexibility in a number of ways~Harbury et al., 1995;
Su & Mayo, 1997; Desjarlais & Handel, 1999!. In a particularly
noteworthy case, this led to the successful design of a novel right-
handed coiled-coil motif~Harbury et al., 1998!.

Mayo and colleagues have pioneered the development of algo-
rithms for noncore~Dahiyat et al., 1997a! and full sequence design
~Dahiyat & Mayo, 1997a; Dahiyat et al., 1997b!, using parameter-
ized force fields and sophisticated optimization methods~Desmet
et al., 1992; Goldstein, 1994!. These methods were used success-
fully to design a sequence that adopts the zinc finger fold with no
requirement for zinc binding~Dahiyat & Mayo, 1997a!. The force
fields used for these design processes have been parameterized
over time by comparison between the calculated and experimen-
tally determined folding stabilities of the designed proteins, a pro-

cess referred to as the design cycle~Dahiyat & Mayo, 1996;
Hellinga, 1997; Gordon et al., 1999; Street & Mayo, 1999!. This is
a sensible approach that has thus far worked extremely well.

We have developed a sequence prediction algorithm~SPA! for
the design of complete protein sequences for moderately sized
backbone templates. We have also explored a novel approach to
the evaluation and parameterization of this algorithm that is com-
plementary to efforts that rely on feedback from experimental
stability data. This approach involves an in-depth analysis of the
ability of SPA to design or predict sequences that are similar to
those that exist naturally for a given fold. Using four protein motif
superfamilies and representative structural templates from each,
we demonstrate the ability of SPA to design sequences that look,
by statistical profiling methods, as if they belong to the natural
superfamilies.

Results

A sequence prediction algorithm~SPA! has been developed to
design amino acid sequences that are consistent with a given three-
dimensional~3D! backbone structure. The algorithm depends on a
combination of filtering, sampling, and optimization procedures,
and a relatively straightforward scoring function. This function is
a combination of the Amber0OPLS force field~Weiner et al.,
1984; Jorgensen & Tirado-Rives, 1988! and additional terms that
account implicitly for solvation effects~Eisenberg & McLachlan,
1986!. We have also recently derived an important set of terms,
referred to as amino acid baseline corrections, which are critical
for maintaining reasonable compositions of the designed sequences.
The sequence selection process involves a combination of filtering
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criteria for the choice of input side-chain rotamer possibilities, and
a genetic algorithm to perform the combinatorial search for a low
scoring sequence0structure. The algorithm and its parameters are
described in more detail in Methods.

In this study, we treat the design problem as one of sequence
prediction. In other words, rather than attempting to design novel
sequences that are different from natural sequences, we assess the
ability of a computer algorithm to predict amino acid sequences
that are similar to naturally existing sequences that adopt the same
tertiary structure as the target. Only the backbone structure is used
as input, with no prior knowledge of the native sequence or
composition.

Prediction of sequences for superfamily structural motifs

A count of the number of identities between a predicted and native
sequence can be used as a simple assessment of the predictive
ability of a design algorithm. However, the large amount of se-
quence degeneracy expected~Bowie et al., 1990! and observed for
many protein families suggests that this analysis is limited, and
potentially misleading. To fully assess the ability of SPA to predict
sequences appropriate for a given structure, we have explored its
ability to predict sequences for a small number of structural motifs
that belong to protein superfamilies.

We have chosen four protein superfamily motifs for our analy-
sis. These are the SH3 domain, the homeodomain~HM !, the fi-
bronectin type III~FNIII ! domain, and the RNA recognition motif
~RRM!. Each of these families are comprised of over 400 evolu-

tionarily related sequences. For convenience, we have used the
Pfam alignments~Bateman et al., 2000! of each protein family in
our analysis. A single representative high-resolution crystal struc-
ture was chosen from each family as a structural template for the
design algorithm. Table 1 lists these and the number of sequences
contained in edited versions of the Pfam alignments.

The results of sequence prediction on each of the structural
motifs are shown in Figure 1. These experiments were performed
using SPA with a fixed set of optimized parameters. The agreement
between the predicted sequences and the native sequence of each
backbone template is significant, with sequence identities ranging
from 24–28%. The extent of similarity is remarkable, considering
that the only information used for the design process was the
backbone structure itself. Koehl and Levitt~1999a, 1999b! re-
cently described similar levels of success for a full-sequence de-
sign method. However, their use of the native sequence composition
as a constraint provides a significant statistical advantage to the
prediction process.

Although these prediction results are very encouraging, it is
difficult to fully evaluate the predictive success of the design al-
gorithm by comparing individual sequences, as discussed above.

Profile analysis of predicted sequences

The designed sequences for each of the structural motifs have
significant similarity to the native proteins from which the back-
bone structure was derived. However, a large number of positions
are predicted to contain nonnative amino acids. Are these amino

Table 1. Motif families and representative structures

Family Abbreviation
Aligned

sequences
Crystal

structurea Protein
Resolution

~Å!

SH3 SH3 463 1shg Spectrin 1.8
RNA recognition motif RRM 850 1urn U1A 1.9
Fibronectin type III FNIII 1923 1ten Tenacin 1.8
Homeobox HM 1067 1enh Engrailed 2.1

aStructural references are as follows: 1shg~Musacchio et al., 1992!; 1urn~Oubridge et al., 1994!; 1ten
~Leahy et al., 1992!; 1enh~Clarke et al., 1994!.

Fig. 1. Comparison of designed and native sequences. Protein sequences designed by SPA for the four structural motifs are compared
to the native sequence from which the backbone template was derived. Identities are marked with vertical bars. The percentage identity
between each designed sequence and its corresponding native sequence is also listed. The region of each sequence that corresponds
to its respective Pfam alignment is underlined.
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acids reasonable alternatives? This question can be addressed by
comparing the designed sequences to a large family of sequences
expected to adopt the same 3D structure.

For each of the superfamily motifs used in our prediction ex-
periments, over 400 nonredundant, evolutionarily related, se-
quences can be aligned. With the reasonable assumption that all of
these sequences fold to approximately the same structure, the large
number of sequences provides us with a statistical evaluation of
the suitability of a designed amino acid at any position. Designed

residues that have been selected against in the natural sequences
will be found rarely in the aligned sequences, whereas those that
contribute favorably to the folding or function of the protein will
be found frequently. We draw from established methods~Durbin
et al., 1998! for estimating the statistical likelihood that a newly
determined protein sequence belongs to an existing family of re-
lated proteins, using a profile derived from a multiple sequence
alignment of the family~Gribskov et al., 1987!. Here, we use the
method to determine if a designed~predicted! protein sequence

A

B

Fig. 2. Profiles of designed sequences compared to multiple sequence alignments. Log-odds ratios were calculated for each position
of each designed sequence, using the Pfam alignments listed in Table 1. Positive values represent positions for which the designed
amino acid occurs more frequently than random in the natural sequences. Negative values represent positions for which the designed
amino acid has been selected against. Positions for which the native or designed side chain makes a close contact with ligand~if any
atoms of the side chain are within 4 Å of a ligand atom! are designated with open bars. Note the strong correspondence between
positions with negative values and those participating in functional contacts.~Figure continues on facing page.!
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would be categorized as an evolutionary member of the family
from which its structural template was derived~if it was not known
that the sequence was indeed designed!.

For each designed sequence, we determined the frequency of
occurrence of each of its amino acids in the Pfam~Bateman et al.,
2000! sequence alignment for the corresponding superfamily. The
alignment of the designed sequence to the natural family is set to
be identical to the alignment of the natural sequence from which
the structural design template was derived. A log-odds ratio rela-
tive to a random model was defined for each designed amino acid
as follows:

log10~ fx, i 0qx!

where fx,i is the frequency of the designed amino acid typex at
position i in the alignment, andqx is the overall frequency of
occurrence of amino acid typex in all known proteins. Positive
log-odds values represent positions for which the designed amino
acid occurs more frequently than random, or has been selected for.
Negative values represent positions for which the designed amino
acid has been selected against. Plots of these values for the de-
signed sequence of each motif are shown in Figure 2. A corre-
sponding structural map of the log-odds ratio values is shown in

C

D

Fig. 2. Continued.
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Figure 3 for the SH3 motif design: the map reveals that in this case
conserved amino acids predicted by SPA are dispersed throughout
the structure.

There are several important trends in the data that indicate that
the design algorithm has a strong predictive ability. First, one
observes that many of the most highly conserved positions are, in
fact, correctly predicted by SPA. Furthermore, many of the posi-
tions for which the predicted amino acid differs from the native
contain amino acids that occur at significant frequencies in the
alignment. These substitutions might represent neutral substitu-
tions to the sequence. At most of these positions, the frequency of
occurrence of the designed amino acid significantly exceeds that
expected from random occurrence, suggesting that their selection
is based on structural considerations. Interestingly, there are a small
number of positions for which a designed but nonnative amino
acid occurs at a frequency higher than that of the native amino
acid.

The general trend in the results is that amino acids in the de-
signed sequences are found at a lower frequency than those of the
native. This is, of course, not surprising and could result from the
combination of several effects. First, we assume that the design
algorithm is not perfect, particularly with respect to the accuracy
of the potential energy function. Second, because only structure is
considered by SPA, amino acids conserved for functional reasons
alone will not be predicted. Indeed, for several of the motifs,
positions for which highly conserved amino acids are not predicted
by SPA are found to be close to the site of functional interaction
with the cognate ligands of these proteins, as discussed below.

Third, our design algorithm does not consider determinants of
folding kinetics, so amino acids conserved for those reasons may
constitute an additional subset for which SPA performs poorly.
Finally, there is some possibility that the native sequences are not
fully optimized, and that the designed amino acids represent po-
tential improvements to the protein.

Profile scores

The concept of multiple sequence profiles is clearly useful for
evaluating the performance of a sequence prediction algorithm.
The analysis can be carried further with the designation of a single
profile score for each of the designed sequences, taken as the sum
of the position-specific log-odds ratios defined above. This single
numerical value can be used to report on the merit of a designed
sequence. More importantly, this figure can be used to evaluate the
performance of SPA for various combinations of parameters, as
discussed below.

Although the designed sequences are shown above to have amino
acids with generally lower frequencies than those associated with
their structural templates, each of the families contain a large num-
ber of sequences, with a wide range of individual profile scores. In
Figure 4, we show the distribution of calculated profile scores for
each member of the pertinent Pfam alignment, compared to a
distribution of profile scores for a set of randomly generated se-
quences. As an additional control, we generate random sequences
constrained by a simple HP model for each template structure,
using a contact score definition of buried versus exterior positions
in the structure~Micheletti et al., 1998!. The score of each se-
quence predicted by SPA is also highlighted. In all cases, the
profile score of the predicted sequence is several standard devia-
tions above both random sequence distributions. In some cases, the

Fig. 3. Structural distribution of designed amino acid conservation in an
SH3 domain. Amino acids designed by the program SPA are color coded
according to their extent of occurrence at the same position in natural SH3
proteins, calculated as a log-odds ratio compared to random occurrence
frequencies~Fig. 2!. This figure was prepared using MOLSCRIPT~Krau-
lis, 1991!.

Table 2. Average log-odds values for subsets of amino acid
and structural types

Helix Sheet Coil Turn N-cap Functionala
Total

nonfunctional

A 0.53 0.79 0.35 — — 21.22 0.57
D 20.13 0.22 20.12 0.24 — 0.57 0.05
E 20.05 0.32 — 0.32 — — 0.04
F 0.88 0.24 — — — 1.01 0.54
G — 0.55 0.06 0.67 — — 0.62
I 0.39 0.23 20.18 — — 20.56 0.14
K 0.11 20.04 0.02 0.05 — 20.51 0.01
L 0.26 0.07 0.00 20.08 — 20.62 0.10
N 20.04 0.56 0.12 0.17 0.28 0.22 0.20
P 0.08 20.43 0.66 1.06 — 0.74 0.23
Q 0.58 0.15 20.25 — — 20.07 0.18
R 0.04 0.08 0.13 — — — 0.04
S 0.05 — — 20.25 0.61 20.02 0.09
T — — 0.59 — 0.96 20.36 0.34
V 20.67 0.15 20.35 — — — 0.05
W 20.45 0.20 — 20.85 — 0.53 20.14
Y 20.25 — 20.50 — — — 20.37

Total 0.16 0.16 0.09 0.28 0.62 20.12

aDefined as in Figure 2. These positions were not included in the sta-
tistics for the other classes.
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sequence predicted by SPA scores better than a significant fraction
of the native sequences contained in the Pfam alignment.

These results convincingly demonstrate the ability of SPA to
predict sequences that look like evolutionary relatives of natural
protein families, using nothing more than the coordinates of the
backbone structure from a single member of the family. The de-
signed sequences, however, generally score lower than a majority
of the natural sequences. In the sections that follow, we examine
more closely the contributions of individual designed amino acids
to the overall profile score.

Prediction of conserved interaction patterns

Inspection of the designed structures and their corresponding log-
odds plots reveals the structural location of positive and negative
contributions to the profile score. Many of the strongly positive
contributions to the profile score come from de novo prediction of
highly conserved hydrophobic core residues. This is not surprising,
given the considerable success reported for computational design
of hydrophobic cores~Hellinga & Richards, 1994; Kono & Doi,
1994; Desjarlais & Handel, 1995; Dahiyat & Mayo, 1996, 1997b;
Lazar et al., 1997; Kono et al., 1998!. A structural view of hydro-
phobic core prediction for the RRM motif is shown in Figure 5A.

The hydrophobic core residues constitute only a subset of
positions for which SPA predicts conserved amino acids. Others
include conserved hydrogen bonding interactions, an example of
which is shown in Figure 5B. Our potential function is defined
to explicitly penalize the burial of polar atoms unless their hy-
drogen bonding potential is satisfied. Many of the conserved
interactions predicted by SPA involve a polar backbone atom
that would be buried in the absence of a complementary polar
side chain. The fact that these positions are highly conserved in
the native proteins underscores their importance in maintaining
structure and stability.

A third type of predicted interaction is shown in Figure 5C,
where a designed Lys-Asp salt-bridge interaction at positions 22
and 64 of the RRM motif is displayed~numbered according to
Fig. 2C!. Although each of these amino acids occurs infrequently
at those positions in the RRM alignment, their occurrence is highly
correlated, suggesting that the interaction is favorable and specific.

There are many other positions for which SPA predicts a residue
that contributes favorably to the profile score, but in which the
selective pressure, as gauged from the natural sequences, is less
dramatic. At these positions, SPA appears to be sensitive to subtle
combinations of influence from steric, solvation, and electrostatic
effects.

As shown in Table 2, the ability of SPA to predict conserved
amino acids is not particular to structural class. However, some
amino acid types, such as Tyr and Trp, are found to contribute
unfavorably to the profile score more frequently, suggesting that
our potential function can be further refined.

Structure vs. function

While in general each designed sequence contains a large number
of amino acids found frequently in the natural alignments, there are
in all cases a significant number of positions for which SPA pre-
dicts an amino acid that has been selected against in the natural
sequences. Inspection of the structural location of these positions
indicates that a large fraction of them cluster to the functional
interaction sites of the molecules~Table 2!. Examples of such

positions are highlighted in Figure 2. Structural representations of
this effect are shown in Figure 6 for the SH3 and RRM domains.
As shown in Figure 6A, designed amino acids Thr7, Lys16, Gln47,
and Ile48~numbered according to Fig. 2!, all of which have neg-
ative contributions to the designed SH3 profile score, are located
in the peptide binding groove of the natural SH3 domains. Because
peptide binding is not included as a constraint in our design pro-
cedure, SPA selects amino acids that are consistent with the struc-
ture alone, but have been selected against for functional reasons—
they are apparently incompatible with peptide binding. A similar
example is observed in the design of a larger set of amino acids
within the RRM structure. These amino acids, all of which have
negative contributions to the designed RRM profile score, cluster
on the RNA binding face of the U1A structure, according the
structure of the complex of U1A with an RNA hairpin~Oubridge
et al., 1994!, as shown in Figure 5B. Interestingly, in both cases
there are a number of nearby residues that are highly conserved
and correctly predicted by SPA, suggesting some overlap of func-
tional and structural conservation. Finally, 11 out of 54 residues in
the design of a homeodomain sequence appear to have negative
contributions to the profile score because of their proximity to the
DNA ligand in the functional interface~Kissinger et al., 1990;
Fraenkel et al., 1998!. This substantial fraction of designed and
nonconserved residues largely accounts for the lower profile score
of this designed sequence relative to those designed for the other
motifs. A similar analysis for the FNIII domains is not straightfor-
ward, as the interaction sites of these modules is varied and diffi-
cult to clearly define.

Structure vs. folding

Our design algorithm only calculates the compatibility of a se-
quence with a backbone structure. In no manner does it consider
the folding process itself. Interestingly, for all of the designed
sequences except the homeodomain, at least one designed proline
has a strong negative contribution to the profile. Because prolines
frequently contribute to slow isomerization folding phases, it is
possible that the presence of excessive prolines in proteins is se-
lected against. Although there may be other predicted amino acids
that compromise the ability of the protein to fold quickly, they are
not obvious in the analysis performed here. However, future ex-
perimental characterization of such designed sequences will pro-
vide interesting insight into this issue.

Prediction of structurally precise sequences

The statistical agreement between the SPA-predicted sequences
and those of each corresponding superfamily is noteworthy and
highly encouraging. These results suggest that SPA might have an
ability to design proteins that fold stably and uniquely to the input
structures. Another important feature of natural proteins is their
ability to fold to a precise and ordered structure. Such precision has
been shown in various studies to be closely linked to the functional
integrity of the protein. For example, Sauer and colleagues, study-
ing a hydrophobic core variant ofl-repressor, showed that a dif-
ference in backbone structure of 0.3 Å root-mean-square deviation
can result in a significant loss in DNA binding affinity~Lim et al.,
1994!.

We have assessed the ability of SPA to predict structurally pre-
cise sequences by comparing the number of identities between the
designed sequence and the native sequence of the structural tem-
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plate and between the designed sequence and all other native se-
quences in the alignment. The results of this analysis, shown in
Figure 7, are intriguing. For the RRM and FNIII motifs, the de-

signed sequences are significantly more similar to the native se-
quence of the backbone template than to most other members of
the family, demonstrating that SPA is sensitive to the idiosyncra-

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

score

fre
qu

en
cy

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50

score

fre
qu

en
cy

random random HP native

random random HP native

SH3

HM

designed

designed

A

B

Fig. 4. Distributions of profile scores for random and natural sequences.~A! SH3;~B! homeodomain;~C! RNA recognition motif; and
~D! fibronectin type III. Log-odds profile scores based on the Pfam alignments were calculated using random, designed, or natural
sequences. For each structure, a simple hydrophobic-polar~HP! model was constructed and used as a constraint for generating the
random HP sequences~see Methods!. ~Figure continues on facing page.!

1112 K. Raha et al.



sies of the template structure. In contrast, for the HM and SH3
families, the designed sequence shares similar levels of identity
with many members of the family. One possible explanation for
this is that the natural members of these families have generally
more similar structures, leading to less distinctive pressure toward
particular sequences.

Parameterization of design algorithms using profile scores

A high profile score is generally taken as evidence that a protein
sequence belongs to the protein family from which the profile was
derived. In general, high profile scores for designed sequences are
thus desirable. Pursuing this notion, we can evaluate the influence
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of scoring parameters on the performance of SPA by calculating
profile scores of sequences designed using different parameter
conditions. In fact, the solvation parameters used for the simula-
tions shown here were derived in part by a coarse search for the
combination of parameters that gave the best overall profile scores
for the four motifs. Although the analysis was incomplete due to
time constraints on the simulations, the removal of the current set
of solvation parameters strongly affects the profile scores of the
resulting designed sequences~Table 3!. With the exception of the
FNIII design, removal of the solvation parameters results in a
significant decrease in profile score.

Surprisingly, the profile score appears to be relatively insensi-
tive to the removal of the amino acid baseline correction factors.

Although this is true, compositional analysis indicates that the
inclusion of these factors is important for generating reasonable
sequence compositions. For instance, although the profile score of
the SH3 sequence designed in the absence of baseline corrections
factors is similar to that which includes them, it contains six Trp
residues as opposed to the two found in the normal design and the
native sequence. The values of the baseline parameters were de-
rived in a separate study~K. Raha & J.R. Desjarlais, unpubl. data!.
Perhaps the use of profile scores will be a constructive strategy for
further refinement of those parameters.

Future work will focus on a higher precision exploration of the
effect of various parameter types and weights on the designed
sequence profile scores. While the results shown here suggest that

Fig. 5. Representative amino acids in a designed RRM sequence.A: Hydrophobic core amino acids predicted by SPA and found
frequently in natural RRM sequences are highlighted in green. The core residues of the native protein are shown for comparison.
B: Prediction of the highly conserved amino acid Asn7. The orientation is similar to that observed in the native structure.C: Prediction
of an infrequent but highly correlated amino acid pair of Lys22 and Asp64, suggestive of a potential salt-bridge interaction.
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the parameters are reasonably well defined, some of our results
suggest there is room for improvement.

Discussion

We have demonstrated the ability of SPA to design amino acid
sequences that resemble natural members of protein families, using
four representative superfamily motifs. For the SH3 and RRM
families, the designed protein sequences score better than a sig-
nificant fraction of the native sequences making up the alignment.
Although this is highly suggestive of an accurate design algorithm,
a more complete evaluation of the ability of SPA to design appro-
priate sequences for a structural motif will require experimental
production and characterization of the designed proteins. We note
that while a single deleterious mutation would have a relatively

minor effect on the profile score of the designed sequence, it could
completely preclude formation of the target structure. Neverthe-
less, the use of the profile score strategy described here has greatly
facilitated our initial search for a well-balanced scoring function
for computational protein design.

One significant potential advantage of the use of profile scores
for preliminary evaluation of designed sequences relates to our
supposition that a profile score, in contrast to experimental stabil-
ity measurements, is a comprehensive measure of the compatibility
of a sequence with a structure. Profile scores are likely to reflect a
combination of protein traits, including stability, structural speci-
ficity, solubility, and perhaps even foldability. Of course, from a
purely structural perspective, they also contain extraneous infor-
mation: amino acids are often conserved because of functional
constraints to which SPA is insensitive. In the cases studied here,

Fig. 6. Structure vs. function. Models of the replaced functional sites in designed proteins.A: View looking down into the peptide
binding site of the spectrin SH3 domain and the designed SH3 domain.B: Comparison of the complex of U1A–RNA and the designed
RRM protein. Residues shown in green are selected against in the natural sequences, corresponding to the highlighted bars in Figure 2
with negative log-odds values.
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however, positions with a dominant role in the functional activities
of proteins are clearly demarked by their positions in structures of
each template in complex with a cognate ligand.

The use of four distinct structural fold families in the evaluation
of SPA leads us to the preliminary conclusion that the ability of
SPA to properly design sequences for a structure is general. Given
the historical difficulty of designingb-sheet versusa-helical pro-
teins ~Hecht, 1994!, the level of apparent success on theb-rich
SH3 and RRM motifs is noteworthy. Interestingly, the success
does not depend on the use of any explicit secondary structure
propensity term.

The sizes of the designed motifs studied here, while modest
compared to many natural proteins, are significant when compared
to previously reported computationally designed proteins. This was
achieved using fairly modest computer resources, similar to those
available to many modern laboratories, made possible by the use of
a finely tuned genetic algorithm for the combinatorial optimiza-
tion. Although the merits of various deterministic vs. stochastic
search methods such as a GA are often contrasted~Desjarlais &
Clarke, 1998!, the results shown here suggest that a genetic algo-
rithm approach is sufficient for arriving at reasonable sequences
for a defined target structure.

Applications of the technology described here include its even-
tual use for the design of novel proteins, or the modification of
existing proteins for improved properties. As recently discussed by
Koehl and Levitt~1999b!, such algorithms can also be used to
generate diverse sets of virtual sequences that would be useful for
protein fold recognition. Finally, application of SPA combined with
multiple sequence analysis might eventually be used to predict
functional regions of proteins by virtue of its tendency to predict
nonconserved amino acids at functional positions.

Methods

Description of the sequence prediction algorithm (SPA)

Potential function and geometries

The Amber potential function~Weiner et al., 1984! with the
OPLS nonbonded parameters~Jorgensen & Tirado-Rives, 1988! is
used as a basis for evaluation of the energies of protein models
with different sequences. Our form of the potential includes most
of the terms of the Amber potential: nonbonded, electrostatic, and
torsional energies. Fixed bond lengths and angles~set at the equi-
librium values described for the Amber force field! are used for
side-chain geometries, eliminating the need for bond stretching
and angle bending terms. The energy of a model is therefore cal-
culated as follows:
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whereRij is the distance between atomsi and j; s and E are the
Lennard–Jones parameters related to the radii and well depth, re-
spectively. The first term is a sum over side-chain dihedral angles;
the second term is a sum of nonbonded~Lennard–Jones! inter-
actions over all atom pairs~side chain–side chain and side chain–
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Fig. 7. Distribution of identities between designed and natural sequences.
For each structural motif, the distribution of identities between the de-
signed and natural sequences is plotted. The position of the sequence of the
template structure is shown with an arrow.

Table 3. Influence of parameter removal
on log-odds profile scores

Motif Design score No solvation No baselines

SH3 12.9 25.2 13.6
HM 22.2 29.9 26.9
RRM 15.5 2.3 15.3
FNIII 4.7 5.4 12.3
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backbone!; the third term is a sum of electrostatic interactions
summed over all charged atom pairs. Scaling factors for the non-
bonded and electrostatic terms, and combining rules fors andE,
are those defined for use of the OPLS parameter set. In the current
version of the algorithm, backbone geometries are fixed, so back-
bone self-energy terms are not evaluated.

The fourth term~SiSi DA i! is used to represent the solvation
energetics of the system~Eisenberg & McLachlan, 1986!. The
solvation free energy of a model structure is determined by sum-
ming the products of the atomic solvation parameter and the esti-
mated change in solvent accessible surface area for each atom in
the model structure, where the change is relative to an estimate of
the average exposure of that atom type in the unfolded state of the
protein. The use of atomic solvation parameters is expected to
provide an approximation of the true solvation free energy and has
been used effectively for protein design~Gordon et al., 1999!.
Furthermore, recent theoretical results indicate that, despite its
simplicity, it can largely reproduce the energetics calculated using
more sophisticated methods~Hendsch & Tidor, 1999!. Here we
use only three solvation parameters, corresponding to the burial of
polar atoms~N,O!, the burial of nonpolar atoms~C!, and the
exposure of nonpolar atoms~C!. The first two terms represent
conventional use of atomic solvation parameters, relating to the
free energy cost of desolvation of polar groups and the strength of
the hydrophobic effect, respectively. The desolvation penalty for
the burial of polar atoms is only calculated when the atom is not
participating in a hydrogen bond. This is assessed using the con-
dition that the distance between the hydrogen atom and the accep-
tor atom is,2.5 Å, and if the following function has a value less
than20.3:

f ~u,f! 5 cos2~uD, H, A!•cos~fH, A, AA!

where D, H, and A refer to the donor, hydrogen, and acceptor
atoms, respectively, and theAA refers to the acceptor antecedent
atom. If a polar atom is indeed involved in a hydrogen bond, we
use the approximation that there is no desolvation penalty associ-
ated with that atom. The final term, a penalty factor for exposure
of nonpolar surface, has been applied successfully for designing
proteins by Mayo and colleagues~Dahiyat et al., 1997b; Gordon
et al., 1999!, and may be considered to be both an implicit fold-
specificity constraint and a solubility constraint.

The strengths of the three parameters for the simulations per-
formed herein were derived from a coarse grid search over com-
binations of the parameters. The values that appeared to give the
best overall results in terms of designed sequence profile scores are
shown in Table 4. The strengths of these parameters are within the
range of similar parameters derived from other studies~Juffer et al.,
1995!.

Amino acid baseline corrections

We have recently generated a set of correction factors to account
for changes in amino acid sequence within the design process~K.
Raha & J.R. Desjarlais, unpubl. obs.!. These factors account for the
absence of an explicit reference state in the calculation of the
energy of a designed sequence. We refer to the factors as amino
acid baseline corrections. Because the terms depend only on the
identity of amino acid at each position, the correction factors de-
pend on composition only. The application of these 20 factors is
straightforward and is of the following form:

F 5 (
x51

20

nx Bx

whereF is the total compositional correction term,nx is the num-
ber of times amino acid typex occurs in the designed sequence,
andBx is the baseline correction factor for amino acidx, given in
Table 5.

Side-chain sampling and optimization

A rotamer library of statistically prevalent combinations of side-
chain dihedral angles~Dunbrack & Cohen, 1997! is used to guide
sampling of side-chain identities and orientations in the combina-
torial search for low energy structures~all amino acids except Cys,
His, and Met were used for sequence prediction!. Additional flex-
ibility is incorporated by adding discrete increments of6158 to
each dihedral angle of each library rotamer.

A genetic algorithm~Holland, 1992! is used for performing the
combinatorial search. An initial population of 300 members is
generated by creating models with side chains at each position
sampled randomly from the rotamer library. This sampling is bi-
ased according to a Boltzmann probability of the rotamer, calcu-
lated from its energy of interaction with the backbone structure and
a temperature of 2,000 K. The energy of each model in the popu-
lation is calculated according to the scoring function described
above. Based on these energies, selective recombination between
models is performed using a uniform crossover scheme. Parent
models are selected from a roulette wheel weighted according to
the Boltzmann probability of the model, calculated from its energy
and a temperature that is set at each round according to a pre-
defined diversity value. This value, defined as the informational
entropy of the population, is set to decay linearly from 5.5 to 3.0
throughout the simulation. Finally a small amount of random mu-
tation at a frequency of 0.04 is used to modify the population
generated by crossover of parent models. This cycle of energy

Table 4. Atomic solvation parameters

Atom types
Solvation parameter

~cal0mol0Å2!

Buried C 120
Buried N,O 2120
Exposed C 160

Table 5. Amino acid baseline correction factors

A 21.791 M 0.335
C 20.402 N 20.118
D 20.251 P 22.18
E 20.02 Q 0.175
F 1.005 R 0.914
G 0 S 21.001
H 0.771 T 20.971
I 20.864 V 22.385
K 20.002 W 2.823
L 0.066 Y 0.975
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evaluation, selective recombination, and mutagenesis is repeated
200 times. The designed sequences reported here were derived
from a two-stage process where five separate GA simulations were
performed and the output of these runs was used to seed a final
simulation.

Rotamer filtering

Because of the enormous combinatorial complexity involved in
protein sequence optimization, we pre-filter the rotamer library for
a given structural template. Filtering is based on steric and solvent
effects. The steric filter is straightforward. For a given position,
any rotamer that results in an energy of interaction with the back-
bone structure.20 kcal0mol is rejected. The second filter is de-
signed to prevent the burial of polar groups or the hyperexposure
of nonpolar groups. This filtering stage is performed as follows.
Each possible side-chain rotamer is placed into a position on the
backbone structure. The extent of burial of each of its atoms is then
assessed relative to a set of generic side-chain centroid coordinates
at all other positions, defined at 2.9 Å from the Ca atom along a
standard geometry Ca–Cb bond vector. A contact score for each
rotamer atom is defined as~Micheletti et al., 1998!

Ca 5 (
i51

chainlength 1

11 eda, i26.5

whereCa is the contact score for atoma, andda,i is the distance
between atoma and the side-chain centroid at positioni. Rotamers
of side chains containing polar atoms$D,E,K,N,Q,R,S,T,Y,W% are
eliminated when any of their polar atoms have a contact score
.5.5 and are incapable of forming hydrogen bonds with the back-
bone. Rotamers of nonpolar side chains$F,I,L,V,P,W% are elimi-
nated when any of their atoms have a contact score,2.0. These
criteria are defined conservatively because of the coarse nature of
the definition of burial. Trp side chains are subject to both criteria.
Ala and Gly residues are not subject to filtering.

Other groups have used definitions of surface, buried, and bound-
ary positions to generate position-specific subsets of amino acid
types. The approach described here obviates the need for explicit
definition of burial class, in principle allowing appropriate subsets
of rotamers from all amino acid types at some positions.

Profile analysis of designed sequences

Pfam alignments were downloaded from the Pfam web site~http:00
pfam.wustl.edu0index.html!. All redundant entries were elimi-
nated. Sequences with large gaps relative to the rest of the alignment
were also eliminated so that designed sequences were compared
only to proteins of similar structure. Only positions that align to the
native sequence of the design template were used in the analysis.
In other words, no gap or insertion penalties were accrued for
either the designed or natural sequences when calculating profile
scores. This was based on the philosophy that the designed se-
quence should not be unduly penalized or rewarded by virtue of
the number of insertions or deletions contained in its template
structure. As a control, we also collected profile statistics with
sequence weighting incorporated to correct for biased sampling in
the aligned sequences~Henikoff & Henikoff, 1994!. The results
were not significantly different from those reported here, presum-
ably because of the large number of sequences included in each
alignment.

HP models for random sequence generation

Hydrophobic-polar models for each structural template were con-
structed using a procedure similar to that described by Micheletti
et al. ~1998!, with a cutoff value for the contact score of 5.5. Any
generic side-chain centroid with a contact score higher than 5.5
was assigned anH. Lower scoring centroids were assigned aP.
Subsets of amino acids were defined asH 5 $A,F,G,I,L,P,V,W,Y%
andP 5 $A,D,E,K,N,Q,R,S,T%.
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