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Prediction of amino acid sequence from structure
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Abstract

We have developed a method for the prediction of an amino acid sequence that is compatible with a three-dimensional
backbone structure. Using only a backbone structure of a protein as input, the algorithm is capable of designing
sequences that closely resemble natural members of the protein family to which the template structure belongs. In
general, the predicted sequences are shown to have multiple sequence profile scores that are dramatically higher than
those of random sequences, and sometimes better than some of the natural sequences that make up the superfamily. As
anticipated, highly conserved but poorly predicted residues are often those that contribute to the functional rather than
structural properties of the protein. Overall, our analysis suggests that statistical profile scores of designed sequences
are a novel and valuable figure of merit for assessing and improving protein design algorithms.
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There has been considerable recent success in the developmentoefss referred to as the design cy¢@ahiyat & Mayo, 1996;
computational methods for the design of protein sequences, dfellinga, 1997; Gordon et al., 1999; Street & Mayo, 199%is is
various degrees of sophistication. Several groups have presentadsensible approach that has thus far worked extremely well.
results in which computer algorithms were used to design novel We have developed a sequence prediction algoritBRA) for
hydrophobic cores for proteiri$iellinga & Richards, 1994; Kono the design of complete protein sequences for moderately sized
& Doi, 1994; Desjarlais & Handel, 1995; Dahiyat & Mayo, 1996, backbone templates. We have also explored a novel approach to
1997hb; Lazar et al., 1997in many cases with experimental val- the evaluation and parameterization of this algorithm that is com-
idation of the proteins by biophysical afat structural methods plementary to efforts that rely on feedback from experimental
(Desijarlais & Handel, 1995; Dahiyat & Mayo, 1996, 1997b; Lazar stability data. This approach involves an in-depth analysis of the
et al., 1997, 1999; Kono et al., 1998; Johnson et al., 1.99&di- ability of SPA to design or predict sequences that are similar to
tional developments in core design have included the incorporatiothose that exist naturally for a given fold. Using four protein motif
of backbone flexibility in a number of way@$larbury et al., 1995;  superfamilies and representative structural templates from each,
Su & Mayo, 1997; Desjarlais & Handel, 1999n a particularly ~ we demonstrate the ability of SPA to design sequences that look,
noteworthy case, this led to the successful design of a novel rightby statistical profiling methods, as if they belong to the natural
handed coiled-coil motifHarbury et al., 1998 superfamilies.

Mayo and colleagues have pioneered the development of algo-
rithms for noncord Dahiyat et al., 1997aand full sequence design Results

(Dahiyat & Mayo, 1997a; Dahiyat et al., 1997hising parameter- - .
A sequence prediction algorithdSPA has been developed to

ized force fields and sophisticated optimization methddesmet ; - i . ) "
design amino acid sequences that are consistent with a given three-

et al., 1992; Goldstein, 1994These methods were used success--. ‘ :
fully to design a sequence that adopts the zinc finger fold with nodlmensmna(SD) backbone structure. The algorithm depends on a

requirement for zinc bindingDahiyat & Mayo, 1997xa The force Combinatio_n of filter_ing, sampling, a_nd optimization_ procequre_s,
fields used for these design processes have been parameteriz%'&d a re_Iatl\_/er straightforward scoring fun_ctlon. T_h|5 function is
over time by comparison between the calculated and experimerﬁa- combination of the AmbgOPLS force field (Weiner et al.,

tally determined folding stabilities of the designed proteins, a pro-+984: Jorgensen & Tirado-Rives, 19&hd additional terms that
account implicitly for solvation effectéEisenberg & McLachlan,

1986. We have also recently derived an important set of terms,
Reprint requests: John R. Desjarlais, Department of Chemistry, 40éeferred to as amino acid baseline corrections, which are critical

Chandlee Lab, University Park, Pennsylvania 16803; e-mail: jrd@chemfOr maintaining reasonable compositions of the designed sequences.
psu.edu. The sequence selection process involves a combination of filtering
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Table 1. Motif families and representative structures

Aligned Crystal Resolution
Family Abbreviation sequences  structuré Protein A)
SH3 SH3 463 1shg Spectrin 1.8
RNA recognition motif RRM 850 1urn U1A 1.9
Fibronectin type IlI FNII 1923 1ten Tenacin 1.8
Homeobox HM 1067 lenh Engrailed 2.1

aStructural references are as follows: 1$Mysacchio et al., 19921urn(Oubridge et al., 1994 1ten
(Leahy et al., 1992 lenh(Clarke et al., 199%

criteria for the choice of input side-chain rotamer possibilities, andtionarily related sequences. For convenience, we have used the
a genetic algorithm to perform the combinatorial search for a lowPfam alignment$Bateman et al., 200®f each protein family in
scoring sequengstructure. The algorithm and its parameters areour analysis. A single representative high-resolution crystal struc-
described in more detail in Methods. ture was chosen from each family as a structural template for the

In this study, we treat the design problem as one of sequencdesign algorithm. Table 1 lists these and the number of sequences
prediction. In other words, rather than attempting to design novetontained in edited versions of the Pfam alignments.
sequences that are different from natural sequences, we assess th@he results of sequence prediction on each of the structural
ability of a computer algorithm to predict amino acid sequencesmotifs are shown in Figure 1. These experiments were performed
that are similar to naturally existing sequences that adopt the samesing SPA with a fixed set of optimized parameters. The agreement
tertiary structure as the target. Only the backbone structure is usdaetween the predicted sequences and the native sequence of each
as input, with no prior knowledge of the native sequence orbackbone template is significant, with sequence identities ranging
composition. from 24—-28%. The extent of similarity is remarkable, considering
that the only information used for the design process was the
backbone structure itself. Koehl and Levitt999a, 1999pre-
cently described similar levels of success for a full-sequence de-
A count of the number of identities between a predicted and nativ&ign method. However, their use of the native sequence composition
sequence can be used as a simple assessment of the predict%a constraint provides a significant statistical advantage to the
ability of a design algorithm. However, the large amount of se-prediction process.
quence degeneracy expect&bwie et al., 199pand observed for ~ Although these prediction results are very encouraging, it is
many protein families suggests that this analysis is limited, andifficult to fully evaluate the predictive success of the design al-
potentially misleading. To fully assess the ability of SPA to predictgorithm by comparing individual sequences, as discussed above.
sequences appropriate for a given structure, we have explored its
ability to predict sequences for a small number of structural motif
that belong to protein superfamilies.

We have chosen four protein superfamily motifs for our analy-The designed sequences for each of the structural motifs have
sis. These are the SH3 domain, the homeodoridiM ), the fi- significant similarity to the native proteins from which the back-
bronectin type llII(FNIII') domain, and the RNA recognition motif bone structure was derived. However, a large number of positions
(RRM). Each of these families are comprised of over 400 evolu-are predicted to contain nonnative amino acids. Are these amino

Prediction of sequences for superfamily structural motifs

Sprofile analysis of predicted sequences

KELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVEVNDRQGFVPAAYVKKLD SH3 native
KLKAVAKTNFNASKNEK&LVRQéQQVVIK$PQ$P$L*VIQ$GGQP£I$LSQILRIRN SH3 design 24%
RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI HM native
KGKIQLTNWéKDYlNDFLASTSEPSSPELEDLéKKLéI$VEELLK&LSELKEAD HM design 24%
NHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMOGFPFYDKPMRIQYA RRM native
LNV}FVQ$I&PNVNEPDLQLQIYRKLIQLéééIEiN¢NKéNQNIKKVW&V;VRPDALDEAKKAKééDK;NNTKLV}KKN RRM design 29%
LDAPSQIEVKDVTDTTALITWFKPLAEIDGIELTYGIKDVPGDRTTIDLTEDENQYSIGNLKPDTEYEVSLISRRGDMSSNPAKETFTT FNIII native
LIPéQDlKPQ$KRPKKVIlWFVLLDTYl$élLVIFéVLWéDN£LKPinKK$QLVKPFY$lNéN4VFKIVIVAKKéSDKAPFKEFELSA FNIII design 28%

Fig. 1. Comparison of designed and native sequences. Protein sequences designed by SPA for the four structural motifs are compared
to the native sequence from which the backbone template was derived. Identities are marked with vertical bars. The percentage identity
between each designed sequence and its corresponding native sequence is also listed. The region of each sequence that corresponds
to its respective Pfam alignment is underlined.
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Fig. 2. Profiles of designed sequences compared to multiple sequence alignments. Log-odds ratios were calculated for each position
of each designed sequence, using the Pfam alignments listed in Table 1. Positive values represent positions for which the designed
amino acid occurs more frequently than random in the natural sequences. Negative values represent positions for which the designed
amino acid has been selected against. Positions for which the native or designed side chain makes a close contact (figmljgand

atoms of the side chain are with#4 A of aligand atom are designated with open bars. Note the strong correspondence between
positions with negative values and those participating in functional cont&itgire continues on facing page.

acids reasonable alternatives? This question can be addressed egidues that have been selected against in the natural sequences
comparing the designed sequences to a large family of sequenceasll be found rarely in the aligned sequences, whereas those that
expected to adopt the same 3D structure. contribute favorably to the folding or function of the protein will

For each of the superfamily motifs used in our prediction ex-be found frequently. We draw from established meth@srbin
periments, over 400 nonredundant, evolutionarily related, seet al., 1998 for estimating the statistical likelihood that a newly
guences can be aligned. With the reasonable assumption that all determined protein sequence belongs to an existing family of re-
these sequences fold to approximately the same structure, the largged proteins, using a profile derived from a multiple sequence
number of sequences provides us with a statistical evaluation adlignment of the family(Gribskov et al., 198} Here, we use the
the suitability of a designed amino acid at any position. Designednethod to determine if a designégredicted protein sequence
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Fig. 2. Continued.

would be categorized as an evolutionary member of the family 10010( fx.i /0x)
from which its structural template was derivigfit was not known
that the sequence was indeed designed wheref,; is the frequency of the designed amino acid typat

For each designed sequence, we determined the frequency pbsitioni in the alignment, andy, is the overall frequency of
occurrence of each of its amino acids in the Pf@ateman et al., occurrence of amino acid typein all known proteins. Positive
2000 sequence alignment for the corresponding superfamily. Théog-odds values represent positions for which the designed amino
alignment of the designed sequence to the natural family is set tacid occurs more frequently than random, or has been selected for.
be identical to the alignment of the natural sequence from whichNegative values represent positions for which the designed amino
the structural design template was derived. A log-odds ratio relaacid has been selected against. Plots of these values for the de-
tive to a random model was defined for each designed amino acidigned sequence of each motif are shown in Figure 2. A corre-
as follows: sponding structural map of the log-odds ratio values is shown in
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Figure 3 for the SH3 motif design: the map reveals that in this cas@able 2. Average log-odds values for subsets of amino acid
conserved amino acids predicted by SPA are dispersed throughoand structural types
the structure.

There are several important trends in the data that indicate that _ _ . Total
the design algorithm has a strong predictive ability. First, one Helix Sheet  Coil - Tur N-cap Functiorialnonfunctional
observes that many of the most highly conserved positions are, iR 053 079 035 — — 192 0.57
fact, correctly predicted by SPA. Furthermore, many of the posip  -013 022 -012 024 — 057 0.05
tions for which the predicted amino acid differs from the native g -0.05 032 — 032 — _ 0.04
contain amino acids that occur at significant frequencies in ther 0.88 0.24 — — — 1.01 0.54
alignment. These substitutions might represent neutral substitus — 055 0.06 067 — — 0.62
tions to the sequence. At most of these positions, the frequency df 039 023-018 — — —-0.56 0.14
occurrence of the designed amino acid significantly exceeds that 011 -0.04 0.02 005 — -051 0.01
expected from random occurrence, suggesting that their selectidn 026 007 000-008 — ~0.62 0.10
is based on structural considerations. Interestingly, there are a sm%l ~004 056 012 017 028 0.22 0.20
number of positions for which a designed but nonnative aming 0.08 ~0.43 066 106 — 0.74 0.23

. ] ) . 058 0.15-0.25 — — —-0.07 0.18
acid occurs at a frequency higher than that of the native aming 004 008 013 — _ _ 0.04
acid. s 005 — — -025 061 —0.02 0.09

The general trend in the results is that amino acids in the deT — — 059 — 096 —0.36 0.34
signed sequences are found at a lower frequency than those of tve  —0.67 0.15 -0.35 — — — 0.05
native. This is, of course, not surprising and could result from thew  -045 020 — -085 — 0.53 -0.14
combination of several effects. First, we assume that the desigf @ -025 — -050 — — — —-0.37

algorithm is not perfect, particularly with respect to the accuracytotal 016 016 0.09 028 0.62 —-0.12

of the potential energy function. Second, because only structure is

conS|der.ed by SPA, amlno acids conserved for functional rea;ons 2Defined as in Figure 2. These positions were not included in the sta-
alone will not be predicted. Indeed, for several of the motifs,isiics for the other classes.

positions for which highly conserved amino acids are not predicted

by SPA are found to be close to the site of functional interaction

with the cognate ligands of these proteins, as discussed below.

Third, our design algorithm does not consider determinants of
folding kinetics, so amino acids conserved for those reasons may
constitute an additional subset for which SPA performs poorly.

Finally, there is some possibility that the native sequences are not
fully optimized, and that the designed amino acids represent po-
tential improvements to the protein.

Profile scores

The concept of multiple sequence profiles is clearly useful for
evaluating the performance of a sequence prediction algorithm.
The analysis can be carried further with the designation of a single
profile score for each of the designed sequences, taken as the sum
of the position-specific log-odds ratios defined above. This single
numerical value can be used to report on the merit of a designed
sequence. More importantly, this figure can be used to evaluate the
performance of SPA for various combinations of parameters, as
discussed below.

Although the designed sequences are shown above to have amino
acids with generally lower frequencies than those associated with
their structural templates, each of the families contain a large num-
ber of sequences, with a wide range of individual profile scores. In
Figure 4, we show the distribution of calculated profile scores for
each member of the pertinent Pfam alignment, compared to a
distribution of profile scores for a set of randomly generated se-
quences. As an additional control, we generate random sequences
constrained by a simple HP model for each template structure,
Fig. 3. Structural distribution of designed amino acid conservation in anusing a contact score definition of buried versus exterior positions
SH3 domain. Amino acids designed by the program SPA are color codeg, the structure(Micheletti et al., 1998 The score of each se-

according to their extent of occurrence at the same position in natural SH - . S
proteins, calculated as a log-odds ratio compared to random occurren uence predicted by SPA is also highlighted. In all cases, the

frequenciegFig. 2). This figure was prepared using MOLSCRIPRrau- profile score of the predicted sequence is several standard devia-
lis, 1991). tions above both random sequence distributions. In some cases, the
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sequence predicted by SPA scores better than a significant fractigeositions are highlighted in Figure 2. Structural representations of
of the native sequences contained in the Pfam alignment. this effect are shown in Figure 6 for the SH3 and RRM domains.

These results convincingly demonstrate the ability of SPA toAs shown in Figure 6A, designed amino acids Thr7, Lys16, GIn47,
predict sequences that look like evolutionary relatives of naturabnd lle48(numbered according to Fig),2all of which have neg-
protein families, using nothing more than the coordinates of theative contributions to the designed SH3 profile score, are located
backbone structure from a single member of the family. The dein the peptide binding groove of the natural SH3 domains. Because
signed sequences, however, generally score lower than a majorigeptide binding is not included as a constraint in our design pro-
of the natural sequences. In the sections that follow, we examineedure, SPA selects amino acids that are consistent with the struc-
more closely the contributions of individual designed amino acidsture alone, but have been selected against for functional reasons—
to the overall profile score. they are apparently incompatible with peptide binding. A similar
example is observed in the design of a larger set of amino acids
within the RRM structure. These amino acids, all of which have
negative contributions to the designed RRM profile score, cluster
Inspection of the designed structures and their corresponding logegn the RNA binding face of the U1A structure, according the
odds plots reveals the structural location of positive and negativetructure of the complex of ULA with an RNA hairpi@ubridge
contributions to the profile score. Many of the strongly positive et al., 1994, as shown in Figure 5B. Interestingly, in both cases
contributions to the profile score come from de novo prediction ofthere are a number of nearby residues that are highly conserved
highly conserved hydrophobic core residues. This is not surprisingand correctly predicted by SPA, suggesting some overlap of func-
given the considerable success reported for computational desigional and structural conservation. Finally, 11 out of 54 residues in
of hydrophobic coregHellinga & Richards, 1994; Kono & Doi, the design of a homeodomain sequence appear to have negative
1994; Desjarlais & Handel, 1995; Dahiyat & Mayo, 1996, 1997b; contributions to the profile score because of their proximity to the
Lazar et al., 1997; Kono et al., 1998\ structural view of hydro-  DNA ligand in the functional interfacéKissinger et al., 1990;
phobic core prediction for the RRM maotif is shown in Figure 5A. Fraenkel et al., 1998 This substantial fraction of designed and

The hydrophobic core residues constitute only a subset ohonconserved residues largely accounts for the lower profile score
positions for which SPA predicts conserved amino acids. Othersf this designed sequence relative to those designed for the other
include conserved hydrogen bonding interactions, an example ahotifs. A similar analysis for the FNIII domains is not straightfor-
which is shown in Figure 5B. Our potential function is defined ward, as the interaction sites of these modules is varied and diffi-
to explicitly penalize the burial of polar atoms unless their hy- cult to clearly define.
drogen bonding potential is satisfied. Many of the conserved
interactions predicted by SPA involve a polar backbone atomS
that would be buried in the absence of a complementary polar
side chain. The fact that these positions are highly conserved i®ur design algorithm only calculates the compatibility of a se-
the native proteins underscores their importance in maintainingjuence with a backbone structure. In no manner does it consider
structure and stability. the folding process itself. Interestingly, for all of the designed

A third type of predicted interaction is shown in Figure 5C, sequences except the homeodomain, at least one designed proline
where a designed Lys-Asp salt-bridge interaction at positions 2has a strong negative contribution to the profile. Because prolines
and 64 of the RRM motif is displayethumbered according to frequently contribute to slow isomerization folding phases, it is
Fig. 2C). Although each of these amino acids occurs infrequentlypossible that the presence of excessive prolines in proteins is se-
at those positions in the RRM alignment, their occurrence is highlylected against. Although there may be other predicted amino acids
correlated, suggesting that the interaction is favorable and specifithat compromise the ability of the protein to fold quickly, they are

There are many other positions for which SPA predicts a residu@ot obvious in the analysis performed here. However, future ex-
that contributes favorably to the profile score, but in which theperimental characterization of such designed sequences will pro-
selective pressure, as gauged from the natural sequences, is legde interesting insight into this issue.
dramatic. At these positions, SPA appears to be sensitive to subtle
combinations of influence from steric, solvation, and electrostati
effects.

As shown in Table 2, the ability of SPA to predict conserved The statistical agreement between the SPA-predicted sequences
amino acids is not particular to structural class. However, somand those of each corresponding superfamily is noteworthy and
amino acid types, such as Tyr and Trp, are found to contributénighly encouraging. These results suggest that SPA might have an
unfavorably to the profile score more frequently, suggesting thagbility to design proteins that fold stably and uniquely to the input
our potential function can be further refined. structures. Another important feature of natural proteins is their
ability to fold to a precise and ordered structure. Such precision has
been shown in various studies to be closely linked to the functional
integrity of the protein. For example, Sauer and colleagues, study-
While in general each designed sequence contains a large numbieg a hydrophobic core variant afrepressor, showed that a dif-
of amino acids found frequently in the natural alignments, there arderence in backbone structure of 0.3 A root-mean-square deviation
in all cases a significant number of positions for which SPA pre-can result in a significant loss in DNA binding affinitizim et al.,
dicts an amino acid that has been selected against in the naturd®94).
sequences. Inspection of the structural location of these positions We have assessed the ability of SPA to predict structurally pre-
indicates that a large fraction of them cluster to the functionalcise sequences by comparing the number of identities between the
interaction sites of the moleculg§able 2. Examples of such designed sequence and the native sequence of the structural tem-

Prediction of conserved interaction patterns

tructure vs. folding

“Prediction of structurally precise sequences

Structure vs. function



1112 K. Raha et al.

SH3

0.1

A random random HP native
009 _
008 -
007 MR o
0.06
g oo nl
i 004 | .
designed
0.03
002 4
001 4
0 ] ML Hﬂnnnn I 11 | I
-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35

score

HM

B  random random HP native

007 | )
006
085 I Ir
004 | i
08 _ M
002 designed
001

N -

B W

-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10 5 0 5 10 15 20 25 30

0.08

frequency

45 50

score

Fig. 4. Distributions of profile scores for random and natural sequeriéesSH3;(B) homeodomain{C) RNA recognition motif; and

(D) fibronectin type Ill. Log-odds profile scores based on the Pfam alignments were calculated using random, designed, or natural
sequences. For each structure, a simple hydrophobic-pdRr model was constructed and used as a constraint for generating the
random HP sequencésee Methods (Figure continues on facing page.

plate and between the designed sequence and all other native segned sequences are significantly more similar to the native se-
guences in the alignment. The results of this analysis, shown iguence of the backbone template than to most other members of
Figure 7, are intriguing. For the RRM and FNIII motifs, the de- the family, demonstrating that SPA is sensitive to the idiosyncra-
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sies of the template structure. In contrast, for the HM and SH3Parameterization of design algorithms using profile scores
families, the designed sequence shares similar levels of identity
with many members of the family. One possible explanation forA high profile score is generally taken as evidence that a protein
this is that the natural members of these families have generallgequence belongs to the protein family from which the profile was
more similar structures, leading to less distinctive pressure towarderived. In general, high profile scores for designed sequences are
thus desirable. Pursuing this notion, we can evaluate the influence

particular sequences.
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native designed

Fig. 5. Representative amino acids in a designed RRM sequéncklydrophobic core amino acids predicted by SPA and found
frequently in natural RRM sequences are highlighted in green. The core residues of the native protein are shown for comparison.

B: Prediction of the highly conserved amino acid Asn7. The orientation is similar to that observed in the native s€uétediction
of an infrequent but highly correlated amino acid pair of Lys22 and Asp64, suggestive of a potential salt-bridge interaction.

of scoring parameters on the performance of SPA by calculatingAlthough this is true, compositional analysis indicates that the
profile scores of sequences designed using different parameténclusion of these factors is important for generating reasonable
conditions. In fact, the solvation parameters used for the simulasequence compositions. For instance, although the profile score of
tions shown here were derived in part by a coarse search for thihe SH3 sequence designed in the absence of baseline corrections
combination of parameters that gave the best overall profile scorefactors is similar to that which includes them, it contains six Trp
for the four motifs. Although the analysis was incomplete due toresidues as opposed to the two found in the normal design and the
time constraints on the simulations, the removal of the current sehative sequence. The values of the baseline parameters were de-
of solvation parameters strongly affects the profile scores of theived in a separate studiK. Raha & J.R. Desjarlais, unpubl. data
resulting designed sequend@able 3. With the exception of the Perhaps the use of profile scores will be a constructive strategy for
FNIII design, removal of the solvation parameters results in afurther refinement of those parameters.
significant decrease in profile score. Future work will focus on a higher precision exploration of the
Surprisingly, the profile score appears to be relatively insensieffect of various parameter types and weights on the designed
tive to the removal of the amino acid baseline correction factorssequence profile scores. While the results shown here suggest that
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designed

designed

Fig. 6. Structure vs. function. Models of the replaced functional sites in designed profeivsew looking down into the peptide

binding site of the spectrin SH3 domain and the designed SH3 doBia®omparison of the complex of ULA-RNA and the designed

RRM protein. Residues shown in green are selected against in the natural sequences, corresponding to the highlighted bars in Figure 2
with negative log-odds values.

the parameters are reasonably well defined, some of our resultsinor effect on the profile score of the designed sequence, it could
suggest there is room for improvement. completely preclude formation of the target structure. Neverthe-
less, the use of the profile score strategy described here has greatly
facilitated our initial search for a well-balanced scoring function
for computational protein design.

We have demonstrated the ability of SPA to design amino acid One significant potential advantage of the use of profile scores
sequences that resemble natural members of protein families, usirigr preliminary evaluation of designed sequences relates to our
four representative superfamily motifs. For the SH3 and RRMsupposition that a profile score, in contrast to experimental stabil-
families, the designed protein sequences score better than a sigy measurements, is a comprehensive measure of the compatibility
nificant fraction of the native sequences making up the alignmentof a sequence with a structure. Profile scores are likely to reflect a
Although this is highly suggestive of an accurate design algorithmgcombination of protein traits, including stability, structural speci-

a more complete evaluation of the ability of SPA to design approAicity, solubility, and perhaps even foldability. Of course, from a
priate sequences for a structural motif will require experimentalpurely structural perspective, they also contain extraneous infor-
production and characterization of the designed proteins. We notmation: amino acids are often conserved because of functional
that while a single deleterious mutation would have a relativelyconstraints to which SPA is insensitive. In the cases studied here,

Discussion
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0.2 however, positions with a dominant role in the functional activities
0.18 1 SH3 - A of proteins are clearly demarked by their positions in structures of
8'1‘? 1 _ each template in complex with a cognate ligand.

012 The use of four distinct structural fold families in the evaluation
01| of SPA leads us to the preliminary conclusion that the ability of
0.08 SPA to properly design sequences for a structure is general. Given

0.06 | the historical difficulty of designingd-sheet versua-helical pro-

0.04 | teins (Hecht, 1994, the level of apparent success on fBich

0.02 ol H H H |’l o SH3 and RRM motifs is noteworthy. Interestingly, the success
0 L T ' does not depend on the use of any explicit secondary structure

1 3 5 7 9 11 13 15 17 19 21 23 25 propensity term.

001-§ The sizes of the designed motifs studied here, while modest

0.16 | HM M ¢ M B compared to many natural proteins, are significant when compared

0.14 1 to previously reported computationally designed proteins. This was

0.12 achieved using fairly modest computer resources, similar to those

0.1 - available to many modern laboratories, made possible by the use of
0.08 - a finely tuned genetic algorithm for the combinatorial optimiza-
g-gi | tion. Although the merits of various deterministic vs. stochastic
0.02 H |-| search methods such as a GA are often contraddedjarlais &

o ol i ‘ Clarke, 1998, the results shown here suggest that a genetic algo-
13 5 7 9 11 13 15 17 19 21 23 25 rithm approach is sufficient for arriving at reasonable sequences
for a defined target structure.
014 - Applications of the technology described here include its even-
o12| RRM ] C tual use for the design of novel proteins, or the modification of

0.1 I existing proteins for improved properties. As recently discussed by
0.08 Koehl and Levitt(1999h, such algorithms can also be used to
0.06 generate diverse sets of virtual sequences that would be useful for

protein fold recognition. Finally, application of SPA combined with
0.04 1 multiple sequence analysis might eventually be used to predict
0.02 ﬂ H H functional regions of proteins by virtue of its tendency to predict
0 ool ‘ ‘ 0_nn0 nonconserved amino acids at functional positions.
1 3 5 7 9 11 13 15 17 19 21 23 25
0.16 Methods
o1a | FNIII N0 D
0.12 M Description of the sequence prediction algorithm (SPA)

0.1
0.08 | Potential function and geometries
0.06 The Amber potential functiorfWeiner et al., 198/ with the
0.04 OPLS nonbonded parametéd®rgensen & Tirado-Rives, 1988
0.02 H H used as a basis for evaluation of the energies of protein models

0 ol H oo : with different sequences. Our form of the potential includes most
13 5 7 9 11 13 15 17 19 21 23 25 of the terms of the Amber potential: nonbonded, electrostatic, and

Fig. 7. Distribution of identities between designed and natural sequences,

torsional energies. Fixed bond lengths and an¢gesat the equi-

For each structural motif, the distribution of identities between the de_liprium Vglues described f'or.the. Amber force figldre used for _
signed and natural sequences is plotted. The position of the sequence of te&le-chain geometries, eliminating the need for bond stretching

template structure is shown with an arrow.

and angle bending terms. The energy of a model is therefore cal-
culated as follows:

v, o \12 o \6
E= Y —[1+cosny]+>Ddel|— ) —(—

torsions 2 ij=i I:ei,j Ri,j
Table 3. Influence of parameter removal
on log-odds profile scores g g 20

+—— + S SAA + S nB,
Motif Design score No solvation No baselines i, i x=1
SH3 12.9 —5.2 13.6 whereR; is the distance between atornandj; o ande are the
HM —22 —-9.9 —6.9 Lennard-Jones parameters related to the radii and well depth, re-
RRM 155 2.3 15.3 spectively. The first term is a sum over side-chain dihedral angles;
FNII 4.7 5.4 12.3

the second term is a sum of nonbondée&nnard—Jongsinter-

actions over all atom pairside chain—side chain and side chain—
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Table 4. Atomic solvation parameters Amino acid baseline corrections

We have recently generated a set of correction factors to account
for changes in amino acid sequence within the design praéess

Solvation parameter

Atom types (cal/mol/A?) e
Raha & J.R. Desjarlais, unpubl. ohsThese factors account for the
Buried C 120 absence of an explicit reference state in the calculation of the
Buried N,O —-120 energy of a designed sequence. We refer to the factors as amino
Exposed C +60 acid baseline corrections. Because the terms depend only on the
identity of amino acid at each position, the correction factors de-
pend on composition only. The application of these 20 factors is
straightforward and is of the following form:
backbong the third term is a sum of electrostatic interactions F= § nB
summed over all charged atom pairs. Scaling factors for the non- =

bonded and electrostatic terms, and combining rulesrfande,

are those defined for use of the OPLS parameter set. In the currenthereF is the total compositional correction term, is the num-

version of the algorithm, backbone geometries are fixed, so backser of times amino acid typr occurs in the designed sequence,

bone self-energy terms are not evaluated. andB, is the baseline correction factor for amino agjdjiven in

The fourth term(2;SAA;) is used to represent the solvation Table 5.

energetics of the systertEisenberg & MclLachlan, 1986 The

solvation free energy of a model structure is determined by sum- Side-chain sampling and optimization

ming the products of the atomic solvation parameter and the esti- A rotamer library of statistically prevalent combinations of side-

mated change in solvent accessible surface area for each atom dhain dihedral angle€Dunbrack & Cohen, 1997s used to guide

the model structure, where the change is relative to an estimate @ampling of side-chain identities and orientations in the combina-

the average exposure of that atom type in the unfolded state of th@rial search for low energy structuréall amino acids except Cys,

protein. The use of atomic solvation parameters is expected tgjis, and Met were used for sequence predidtidmiditional flex-

provide an approximation of the true solvation free energy and hagility is incorporated by adding discrete increments615° to

been used effectively for protein desig&ordon et al., 1999 each dihedral angle of each library rotamer.

Furthermore, recent theoretical results indicate that, despite its A genetic algorithm(Holland, 1992 is used for performing the

simplicity, it can largely reproduce the energetics calculated usingombinatorial search. An initial population of 300 members is

more sophisticated methodsiendsch & Tidor, 1999 Here we  generated by creating models with side chains at each position

use only three solvation parameters, corresponding to the burial @fampled randomly from the rotamer library. This sampling is bi-

polar atoms(N,0), the burial of nonpolar atomgC), and the  ased according to a Boltzmann probability of the rotamer, calcu-

exposure of nonpolar atom€). The first two terms represent |ated from its energy of interaction with the backbone structure and

conventional use of atomic solvation parameters, relating to they temperature of 2,000 K. The energy of each model in the popu-

free energy cost of desolvation of polar groups and the strength dhtion is calculated according to the scoring function described

the hydrophobic effect, respectively. The desolvation penalty forabove. Based on these energies, selective recombination between

the burial of polar atoms is only calculated when the atom is notmodels is performed using a uniform crossover scheme. Parent

participating in a hydrogen bond. This is assessed using the cofinodels are selected from a roulette wheel weighted according to

dition that the distance between the hydrogen atom and the accethe Boltzmann probability of the model, calculated from its energy

tor atom is<2.5 A, and if the following function has a value less and a temperature that is set at each round according to a pre-

than—0.3: defined diversity value. This value, defined as the informational
entropy of the population, is set to decay linearly from 5.5 to 3.0

(60, $) = cOL(Op, 1, 4)COY Dy A an) throughout the simulation. Finally a small amount of random mu-

tation at a frequency of 0.04 is used to modify the population

where D, H, and A refer to the donor, hydrogen, and acceptor generated by crossover of parent models. This cycle of energy

atoms, respectively, and theA refers to the acceptor antecedent

atom. If a polar atom is indeed involved in a hydrogen bond, we

use the approximation that there is no desolvation penalty associ- ) ) ) .

ated with that atom. The final term, a penalty factor for exposure!aPle 5. Amino acid baseline correction factors

of nonpolar surface, has been applied successfully for designing

proteins by Mayo and colleagué¢Bahiyat et al., 1997b; Gordon é 73:182 '\N/I 78'1313:
et al., 1999, and may be considered to be both an implicit fold- D —0.251 p —218
specificity constraint and a solubility constraint. E ~0.02 Q 0.175
The strengths of the three parameters for the simulations per- F 1.005 R 0.914
formed herein were derived from a coarse grid search over com- G 0 S —1.001
binations of the parameters. The values that appeared to give the H 0.771 T —0.971
best overall results in terms of designed sequence profile scores are | —0.864 v —2.385
shown in Table 4. The strengths of these parameters are within the K —0.002 W 2.823
range of similar parameters derived from other stutleffer et al., L 0.066 Y 0.975

1995.
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evaluation, selective recombination, and mutagenesis is repeatétP models for random sequence generation
200 times. The designed sequences reported here were deriv

from a two-stage process where five separate GA simulations wereydmphObiC'IOOI"JIr models for each structural template were con-
gep P structed using a procedure similar to that described by Micheletti

performed and the output of these runs was used to seed a fina al. (1998, with a cutoff value for the contact score of 5.5. Any

) . e
simulation. generic side-chain centroid with a contact score higher than 5.5

was assigned ahl. Lower scoring centroids were assignedP.a

Rotamer filtering ) ) o ~ Subsets of amino acids were definedras- {A,F,G,I,L,P,VW,Y}
Because of the enormous combinatorial complexity involved ing,qp = {A,D,E,K,N,Q,R,S T.

protein sequence optimization, we pre-filter the rotamer library for

a given structural template. Filtering is based on steric and solvent

effects. The steric filter is straightforward. For a given position, ocknowledgments
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