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Abstract

Comparative protein structure prediction is limited mostly by the errors in alignment and loop modeling. We describe
here a new automated modeling technique that significantly improves the accuracy of loop predictions in protein
structures. The positions of all nonhydrogen atoms of the loop are optimized in a fixed environment with respect to a
pseudo energy function. The energy is a sum of many spatial restraints that include the bond length, bond angle, and
improper dihedral angle terms from the CHARMM-22 force field, statistical preferences for the main-chain and
side-chain dihedral angles, and statistical preferences for nonbonded atomic contacts that depend on the two atom types,
their distance through space, and separation in sequence. The energy function is optimized with the method of conjugate
gradients combined with molecular dynamics and simulated annealing. Typically, the predicted loop conformation
corresponds to the lowest energy conformation among 500 independent optimizations. Predictions were made for
40 loops of known structure at each length from 1 to 14 residues. The accuracy of loop predictions is evaluated as a
function of thoroughness of conformational sampling, loop length, and structural properties of native loops. When
accuracy is measured by local superposition of the model on the native loop, 100, 90, and 30% of 4-, 8-, and 12-residue
loop predictions, respectively, had2 A RMSD error for the mainchain N, G C, and O atoms; the average accuracies

were 0.59+ 0.05, 1.16+ 0.10, and 2.61 0.16 A, respectively. To simulate real comparative modeling problems, the
method was also evaluated by predicting loops of known structure in only approximately correct environments with
errors typical of comparative modeling without misalignment. When the RMSD distortion of the main-chain stem atoms
is 2.5 A, the average loop prediction error increased by 180, 25, and 3% for 4-, 8-, and 12-residue loops, respectively.
The accuracy of the lowest energy prediction for a given loop can be estimated from the structural variability among
a number of low energy predictions. The relative value of the present method is gaugBdcbynparing it with one

of the most successful previously described methods,(2ndescribing its accuracy in recent blind predictions of
protein structure. Finally, it is shown that the average accuracy of prediction is limited primarily by the accuracy of the
energy function rather than by the extent of conformational sampling.

Keywords: comparative or homology protein structure modeling; loop modeling

Functional characterization of a protein sequence is one of th&on, as well as by the conformational changes induced by ligand
most frequent and challenging problems in biology. This task isbinding (Wang et al., 1999 In the absence of an induced fit, the
usually facilitated by accurate three-dimensiaf®®) structures of  function of a protein is generally determined by shape, dynamics,
the studied protein and corresponding ligand complexes. In theand physiochemical properties of its solvent exposed molecular
absence of an experimentally determined structure, comparative aurface. Likewise, functional differences between the members of
homology modeling can sometimes provide a useful 3D model fothe same protein family are usually a consequence of the structural
a protein (targej that is related to at least one known protein differences on the protein surface. In a given fold family, structural
structure(template (Browne et al., 1969; Blundell et al., 1987; variability is a result of substitutions, insertions, and deletions of
Marti-Renom et al., 2000 residues between members of the family. Such changes frequently
Comparative modeling is limited in functional studies by its correspond to exposed loop regions that connect elements of sec-
ability to predict accurately structural determinants of protein func-ondary structure in the protein fold. Thus, loops often determine
the functional specificity of a given protein framework. They con-
tribute to active and binding sites. Examples include binding of
Reprint requests to: Andreja8, Laboratories of Molecular Biophysics, metal ions by metal-binding proteifilsu & Valentine, 1997, small
Pels Family Center for Biochemistry and Structural Biology, The Rock- protein toxins by their receptot&Vu & Dean, 1996, antigens by

efeller University, 1230 York Ave., New York, New York 10021; e-mail: . . . . .
sali@rockefeller.edu. immunoglobulins(Bajorath & Sheriff, 1995 mononucleotides

Abbreviations: 3D, three-dimensional: DRMS, distance root-mean- DY @ variety of proteingKinoshita et al., 1998 protein substrates
square; PDB, Protein Data Bank; RMSD, root-mean-square deviation. by serine proteasg$erona & Craik, 1996 and DNA by DNA-
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binding proteing(Jones et al., 1999Consequently, the accuracy minimization by mapping a trajectory of local mininjRudek &
of loop modeling is a major factor determining the usefulness ofScheraga, 1990; Dudek et al., 199&portance sampling by local
comparative models in studying interactions between the proteiminimization of randomly generated conformatiofiambert &
and its ligands. This includes the use of models for recognizingScheraga, 1989a, 1989b, 1989ocal energy minimizatiotiMat-
ligand binding sitegJones & Thornton, 1997; Fetrow et al., 1998; tos et al., 1994 molecular dynamics simulatior®ruccoleri &
Russell et al., 1998; Kleywegt, 1999; Wei et al., 1999; Kasuya &Karplus, 1990; Tanner et al., 1992; Rao & Teeter, 1993; Nakajima
Thornton, 1999and for ligand docking computatioiiKick et al., et al., 2000, genetic algorithmgMcGarrah & Judson, 1993; Ring
1997). Unfortunately, as was concluded at the meetings on Criticalk Cohen, 1994, biased probability Monte Carlo searthbagyan
Assessment of Techniques for Protein Structure Predi¢B&SP), & Totrov, 1994; Evans et al., 1995; Thanki et al., 199¥onte
no generally reliable method is available for constructing loopsCarlo with simulated annealingHigo et al., 1992; Carlacci &
longer than five residueéMosimann et al., 1995; Martin et al., Englander, 1993, 1996; Collura et al., 1993; Vasmatzis et al.,)1994
1997, although recently some progress has been m@liva Monte Carlo and molecular dynami¢Rapp & Friesner, 1999
et al., 1997; Rufino et al., 1997; van Vlijmen & Karplus, 1997; extended-scaled-collective-variable Monte Caiadera, 1993,
Samudrala & Moult, 1998; Rapp & Friesner, 1999 scaling relaxation and multiple copy samplifigosenfeld et al.,
The impact of an accurate loop modeling method would bel993; Zheng et al., 1993a, 1993b, 1994; Zheng & Kyle, 1994,
large. Currently~40% of all protein sequences can have at leastl996; Rosenbach & Rosenfeld, 1995earching through discrete
one domain modeled on a related, known protein strudiRyeh- conformations by dynamic programmiryajda & DelLisi, 1990;
lewski et al., 1998; Huynen et al., 1998; Jones, 1999; Sanchez &inkelstein & Reva, 1992 random sampling of conformations
Sali, 1999. At least two-thirds of the comparative modeling casesrelying on dimers from known protein structur@idarsanam et al.,
are based on less than 40% sequence identity between the tarded95, self-consistent field optimizatiofKoehl & Delarue, 1995
and the templates, and thus generally require loop mod@itigchez  and an enumeration based on the graph thé®aynudrala & Moult,
& Sali, 1998. Since there are over 500,000 protein sequenced998. A variety of representations were used, such as unified
deposited in GENBANK and only-12,000 protein structures atoms, all nonhydrogen atoms, nonhydrogen and “polar” hydrogen
in the Protein Data BanKPDB) (Abola et al., 1987; http: atoms, all atoms, as well as implicit and explicit solvent models.
//www.rcsh.orgpdb), the number of proteins whose structure can The optimized degrees of freedom include Cartesian coordinates
be modeled by comparative modeling is more than an order oénd internal coordinates, such as dihedral angles, optimized in
magnitude larger than the number of currently known proteincontinuous or discrete spaces.
structures(Sali, 1999. This gap is likely to increase because the The second, database approach to loop prediction consists of
genome sequencing projects are producing a few hundred thodinding a segment of main chain that fits the two stem regions of
sand protein sequences each year, while only a few thousand af loop (Greer, 1980; Cohen et al., 1986; Jones & Thirup, 1986;
them have their structures determined by X-ray crystallography oChothia & Lesk, 1987; Chothia et al., 1989; Tramontano et al.,
NMR spectroscopy. 1989; Summers & Karplus, 1990; Levitt, 1992; Tramontano &
Loop modeling can be seen as a mini protein folding problem.Lesk, 1992; Topham et al., 1993; Lessel & Schomburg, 1994;
The correct conformation of a given segment of a polypeptideFechteler et al., 1995; Koehl & Delarue, 1995; Reczko et al., 1995;
chain has to be calculated mainly from the sequence of the seddonate et al., 1996; Kwasigroch et al., 1996; Mandal et al., 1996;
ment itself. However, loops are generally too short to provideMartin & Thornton, 1996; Wintjens et al., 1996; Debnath, 1997;
sufficient information about their local fold. Segments of up to Oliva et al., 1997; Pellequer & Chen, 1997; Rufino et al., 1997;
nine residues sometimes have entirely unrelated conformations iShepherd et al., 1999; Wojcik et al., 1999; Deane & Blundell,
different proteingSander & Schneider, 1991; Cohen et al., 1993;2000. The stems are defined as the main-chain atoms that precede
Mezei, 1998. Thus, the conformation of a given segment is alsoand follow the loop, but are not part of it. They span the loop and
influenced by the core stem regions that span the loop and by thare part of the core of the fold. The search is performed through a
structure of the rest of a protein that cradles the loop. database of many known protein structures, not only homologs of
Many loop modeling procedures have been described. Similarlghe modeled protein. Usually, many different alternative segments
to the prediction of whole protein structures, there are bottathe that fit the stem residues are obtained, and possibly sorted accord-
initio methodgFine et al., 1986; Moult & James, 1986; Bruccoleri ing to geometric criteria or sequence similarity between the tem-
& Karplus, 1987 and the database search techniq@®er, 1980; plate and target loop sequences. The selected segments are then
Jones & Thirup, 1986; Chothia & Lesk, 1987There are also superposed and annealed on the stem regions. These initial crude
procedures that combine the two basic approa¢Besthia et al., models are often refined by optimization of some energy function.
1986; Martin et al., 1989; Mas et al., 1992; van Vlijmen & Kar-  The database search approach to loop modeling is accurate and
plus, 1997. efficient when a specific set of loops is created to address the
Theab initio loop prediction is based on a conformational searchmodeling of that class of loops, such@dairpins(Sibanda et al.,
or enumeration of conformations in a given environment, guidedl989 and the hypervariable regions in immunoglobuli@hothia
by a scoring or energy function. There are many such methodst. Lesk, 1987; Chothia et al., 1989For immunoglobulins, an
exploiting different protein representations, energy function termsanalysis of the hypervariable regions in known immunoglobulin
and optimization or enumeration algorithms. The search algostructures resulted in rules with high prediction accuracy for other
rithms include sampling of main-chain dihedral angles biased bymembers of the family. These rules are possible because of the
their distributions in known protein structurédoult & James, relatively small number of conformations for each loop and be-
1986, minimum perturbation random tweak meth@ene et al.,  cause of the dependence of loop conformation on loop length and
1986; Shenkin et al., 1987; Smith & Honig, 1994ystematic  certain key residues. The accuracy of the approach was demon-
conformational searckBruccoleri & Karplus, 1987; Bruccoleri strated by a blind, validated prediction of most BR96 antibody
et al., 1988; Brower et al., 1993; Bruccoleri, 199@lobal energy  residues involved in antigen bindif@ajorath & Sheriff, 1998
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There are attempts to classify loop conformations into more genmational sampling, loop length, environment distortion, and

eral categories, thus extending the impressive performance of th&ructural properties of native loops. Evaluation is based on the

key residues approach to more cagBing et al., 1992; Oliva modeling of 40 loops of known structure at each length from 1 to

et al., 1997; Rufino et al., 1997; Wojcik et al., 1999 14 residues. A way to predict the accuracy of the best loop pre-
The database methods are limited by the exponential increase hiction is also described. This is followed by an evaluation of the

the number of geometrically possible conformations as a functioomodeling method byl) comparing its predictions with those by a

of loop length. Consequently, only segments of seven residues aecently published, extensively evaluated and successful loop

less had most of their conceivable conformations present in thenodeling method(van Vlijmen & Karplus, 1997, and (2) by

database of known protein structuréSidelis et al., 1994 In summarizing its performance in recent blind predictions of protein

contrast, 8- and 9-residue segments occurred more than once $tructure at CASP3. Next, it is showed that the method is limited

less than 70 and 40% of the cases, respectively. These estimate®stly by the accuracy of the energy function rather than the

depend strongly on the criteria for selecting matching conformathoroughness of the optimizer. Finally, the implications for future

tions. When slightly stricter criteria are used, only segments of upvork are discussetsee Conclusion

to four residues have most of their conformations defined in a

database of known protein structufégssel & Schomburg, 1994

This limits the applicability of the database search methods. Thdheory and algorithms

limitation is made worse by the requirement for an overlap be-

tween at least one residue in each stem and the database segmentlodeling of a loop

used for loop modeling. Thus, the completeness of the database for The method for modeling a loop in a given environment is

7-residue segments allows the modeling of only up to 5-residugescriped here by specifying its three main componefsthe
insertions(Claessens et al., 1989Vhile only few insertions in a representation of a proteiti2) the restraints that define the ob-
family of homologous proteins are longer than nine residues, thergsctive or “energy” function; and3) the method for optimizing
are many insertions that are longer than five resid@escarella&  the energy function. The modeling method is entirely automated
Argos, 1992; Benner et al., 1993; Flores et al., 1993 and is implemented in the program MODELLER(BRL http:

The problem of database completeness has recently been ameqyyjitar.rockefeller.edu While the most frequent application of
liorated by restrained energy minimization of the candidate l00pshe method is to predict single loops, it is also technically suitable
obtained from a database seafwan Vijmen & Karplus, 1997.  for modeling any set of contiguous or noncontiguous residues or
Both the internal conformation and global orientation relative 0 atoms(e.g., several loops, a loop with a ligand, a cluster of side
the rest of the protein were optimized. It was concluded that the:haing in the fixed environment created by the rest of the protein.
candidate segments from a database were suitable starting points
for modeling loops up to nine residues long, but extensive opti- Representation of a protein
mization was required for loops longer than four residues. o

In this paper, we take the optimization-based approach to loop .T.he protein is represented by all nonhydrogen gtoms. An ex-
modeling. The main reasons are the generality and conceptuglIICIt treatment of all hydrogen atoms as encodgd n C_HARMM
simplicity of energy minimization, as well as the limitations on the (MagKgrelI et al., 1_99)3 was also tested,_ _b“t did not improve
database approach imposed by a relatively small number of knoWHredlctlon accuracy in our hands. No explicit solvent molecules or
protein structures. Loop prediction by optimization is in principle '92nds are included in general, although they could be added in

applicable to simultaneous modeling of several loops and Ioopéﬁec'all cases. The _degrees% c": frleedom in model optlmlzath‘n ar:a
interacting with ligands, which is not straightforward for the data- € Cartesian coordinates of the loop atoms. The loop atoms “feel

base search approaches. Also, the optimization approach in prifit® Other atoms in the protein, but the atoms in the “environment’
ciple allows for an improvement based on the physics of proteinOf the loop do not move during optimization.
structure, rather than on the growth of the database. Moreover,
even the database approach requires both a scoring function to sift Energy function
through the many alternative loop conformations fitting the stems The main aim was to maximize the accuracy of loop prediction,
(Tramontano & Lesk, 1992and an optimization procedure for not to describe the physics of loop structures in proteins. Thus, the
relaxing the annealed database segments. Thus, loop predicti@mphasis during development of the “energy” or scoring function
may as well rely solely on optimization of an energy function, was on statistical preferences of atoms for different geometries as
without any dependence on loop segments from a database. obtained from the database of known protein structures, rather than
We describe and extensively evaluate a loop modeling protocobn a reductionist model of physical interactions. The stereochem-
that optimizes the positions of all nonhydrogen atoms of a loop inical featuregi.e., chemical bonds, bond angles, gtre captured
a fixed environment. The optimization relies on conjugate gradi-through the use of the CHARMM molecular mechanics force field
ents and molecular dynamics with simulated annealing. The opti¢{MacKerell et al., 1998 The nonbonded interactions and solva-
mized pseudo energy function is a sum of many terms, includindgion are approximated by a statistical potential of mean force for
some terms from the CHARMM-22 molecular mechanics forcepairs of protein atomsSippl, 1990. In addition, the accuracy of
field (MacKerell et al., 1998 and spatial restraints based on dis- the scoring function is improved by using statistical preferences
tributions of distance$Sippl, 1990, and dihedral angle€Cheng  for the main-chain and side-chain dihedral angf&si & Blundell,
etal., 1996in known protein structures. The paper is organized asl993. The formalism for combining and using these diverse types
follows. In Theory and algorithms, the technique is described inof information from both physics and statistics is provided by
detail, as are the loops and criteria selected for testing the methogrotein structure modeling by satisfaction of spatial restraints, where
The Results and discussion section begins by evaluating the acceach individual energy term or a statistical preference is repre-
racy of loop predictions as a function of thoroughness of confor-sented by a conditional probability density function for a restrained
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spatial feature, such as a distance between two at&@als &
Blundell, 1993.

A. Fiser et al.

Similarly, the restraints on the main-chain dihedral argl@,,,
were represented by a single Gaussian function centered én 180

The energy function for loop modeling is a sum of simple re- with the standard deviation of 5The cis-proline states have not
straints or pseudo-energy terms, each one of which depends onbeen modeled. In the set of 40 test loops of eight residues, there are
distance, angle, dihedral angle, improper dihedral angle, or a pa and 13cis- andtrans-proline residues, respectively.

of dihedral angles defined by two, three, four, or eight atoms.

For each loop residue, the restraint on the main-chain dihedral

Many combinations of different restraint types were evaluated forangles® and ¥ is
their performance in loop modeling. The best energy function so

far is described in detail below. The energy function is
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wherem is the number of main-chain conformation classes in the
Ramachandran pl@Fig. 1A), w is the weight of the corresponding
conformation clas$Fig. 1B), the bar indicates the averageand

¥ values,o is the standard deviation, andl is the correlation
coefficient betweer and¥ (—1 < p = 1). The parameters, @,

¥, o, and p were obtained from a representative set of 1,000

distance between them; is the difference between the corre- ] ) )
sponding residue indices, andndr’ are the atomic van der Waals Protein structures that shared less than 60% sequence identity to
radii (Sali & Blundell, 1993. The sums run over all bonds, angles, €ach other and were determined by X-ray crystallography at res-
dihedral angles, improper dihedral angles, and nonbonded diglution of 2.3 A or better. The total number of residues was 217,807.
tances that involve at least one of the loop atoms. The nonbondelh® Ramachandran plot spanned by dhand ¥ dlheodrgl angles
atom pairs at a distance larger than 4A are ignored. The forcéRamachandran et al., 196@as divided into § X 5° bins. The
constantsk, and mean valueg for bondsb, anglese, dihedral frequency of residues in each bin was obtained separately for each
anglesa, and improper dihedral angléswere obtained from the of the 20 standard residue types. The peaks and valleys in the
May 1993 version of the CHARMM-22 force fiel®Brooks et al., Ramachandran plots guided the partitioning of each plot into a few
1983; MacKerell et al., 1998as were the phase shitand the ~ conformation classe-5 classes again separately for each res-
periodicity parameten for dihedral anglesp. The improper di-  1due type; the residue types differ mostly in the boundary between
hedral angles are used to restrain the planarity of peptide bondé® two ‘B classes with the negative values and positive’ val-
and side-chain rings, as well as the chirality of chiral and pro-chirall€S- The weighte correspond to the relative frequencies of each
centers(e.g., G, atoms of all residues but Gly, Catoms of Val residue in each of its classes. Next, the analytic model in Equation
and Th. (3) was fitted to the Ramachandran plots by a least-squares method
The probability distributions for all side-chain dihedral angles (Press et al., 1992resulting into the optimal values fdr, ¥, o,
(up to four per residue ps(x/R), depend on the residue type @ndp.A comparison betwegn the. Ramachaqdran plot.and.afltted
(Ponder & Richards, 1987and were obtained from a nonredun- Model for four representative residue types is shown in Figure 2.

dant set of known protein structuréiali & Blundell, 1993. They ~ Thevalues of all parameters can be obtained from the MODELLER
are modeled by a weighted sum of Gaussian functions as describdg@rary f!les mnch.lib, mnch1.lib, and af__mnchdef.llb.
previously(Equation 26 and Table 5 ina8 & Blundell, 1993 The first part of the nonbonded terinis taken from Melo and
Feytmang1997), where it was derived as described by Sid890.
_ E is an atomistic, distance-dependent statistical potential of mean
1 1/A(xx)\?2 ) . ) ) .
Ps(X/R) = D 0, —— exp[—— < > ] ) force. Atoms in amino acid residues are classified into one of 40
[ o\ 27 2 Oi atom type groups. The potential was obtained from those atom
pairs in known protein structures that were separated by 11 or
wherew; is the probability that the restrained side-chain dihedralmore residues in sequence. The original potential in the histogram
angle is in class (2 w; = 1) andA(X,y) is the shortest path around form (Melo & Feytmans, 1997was converted into cubic splines
the 360 circle from anglex to angley. Most side-chain dihedral (Press et al., 19920 allow the use of first derivatives in optimi-
angles can be in up to three classes, depending on the residue typation (Sali et al., 1999. The second part of the nonbonded term
Some residues, however, have a smaller number of possible class&sis a harmonic lower bound on nonbonded atom—atom distances
for example,y, in His has only two classes. (Equation 22 in &li & Blundell, 1993:
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A 1807 i TTTREE 5 lowest value of the energy function. A good compromise between
. efficiency and performance is achieved by 50-500 independent
1201 E optimizations(Results and discussipn

It is tempting to generate initial conformations for loop atoms
: that are more protein-like and not random. However, the accuracy
Tty of the loop models obtained from random initial conformations is

1 ! limited mostly by the accuracy of the scoring function, not the
B 0; B power of the optimizefFig. 12). Thus, starting a loop prediction
ms 1 b with random positions for loop atoms does not decrease the final
-60 — accuracy of the loop models. Nevertheless, more realistic starting
5 He conformations may increase the efficiency of the loop modeling
-120 11T L - method by decreasing the need for exhaustive optimization of each
starting conformation.

b The procedure for optimizing a single initial conformation be-
-180+ Tt T T T gins with a conjugate gradients minimization, continues with mo-
-180 -120 -60 O 60 120 180 lecular dynamics with simulated annealing, and finishes by conjugate

0] gradients agaifFigure 3. The details about the optimization sched-
ule can be found in the MODELLER file __loop.top. Briefly, the
0.84 first conjugate gradients phase is designed to relax the system and
consists of five successive minimizations of up to 200 steps each,
0.52 gradually increasing the scaling factafsfor the nonbonded re-
straints from 0, 0.01, 0.1, 0.5, to 1.0, respectively. In this phase, the
atoms are allowed to pass very near each other without having to
surmount large energy barriers. This stage is followed by a rela-
tively fast heating up of the system consisting of two hundred 4 fs
0.26 steps of “molecular dynamics” at 150, 250, 400, 700, and 1,000 K.
The heating stage is followed by the main optimization stage that
0.13 consists of gradual cooling by molecular dynamics of six hundred
4 fs steps at 1,000, 800, 600, 500, 400, and 300 K. Finally, the
& optimization is completed by a conjugate gradients relaxation con-
A P L E 0.00 sisting of up to 1,000 steps. There are in fact two cycles of the
Mainchain class (®,%) conjugate gradients, molecular dynamics with simulated anneal-
ing, and conjugate gradients phases: In the first cycle, only those
Fig. 1. Weights for the main-chain conformation classésThe five pos-  nonbonded atom pairs are considered that contain loop atoms alone
sible main-chain conformation classes are defined as areas A, B, E, P, ar(qe_’ the loop does not “feel” its environmenin the second cycle,

L in the Ramachandran plot spanned by ¢hand¥ main-chain dihedral . . .
angles. The plot shows the distribution for all 217,807 residues in the 1,00 he atom pairs that contain up to one environment atom are aiso

representative protein structuree Theory and algorithmsSlightly dit-  included in the energy functiofi.e., the loop does “feel” its en-
ferent borders between B and P classes are used for the different residvéonmeny. It was found empirically that neglecting the environ-
types; the borders shown are approxim&eThe probability that a given  ment in the first cycle results in lower final energy values than
residue type occurs in any one of the five possible main-chain conformaincjyding the environment from the beginning of the optimization.
tion classese (Equation 3. . . C L2 .

Five hundred independent optimizations of an 8-residue loop
takes from 8 to 30 h of CPU time on an R10000-190 SGI work-
station. Predictions for many loops under many different condi-

Ko[d— y(r +1)]2 d=y(r+17) tions were pe_rformed. This was made possible by running the
S(r,r',d) = (4 computations in parallel on a cluster of SGI and PC Linux com-
0; d>y(r+r’) puters. An efficient and robust use of the cluster of processors was
made possible by the program CLUSTORurboLinux, San Fran-
whered is the distance between the two atorkg,is the force  cisco; http//www.turbolinux.com. With 30 processors, a single
constanfusually 59 kcalmol), andy is a constantusually 0.83. 8-residue loop prediction involving 500 independent optimizations
Sis used to compensate for noisefirat short distances 6£3 A. takes<1 h.

o

Residue type, R

POOMMOT-_RrE=Z T0DN—<=<

Optimization of the energy function Test loop sets

Optimization begins by generating an initial loop conformation  Protein structures that share less than 60% sequence identity to
(Fig. 3). The atoms of the loop are positioned with uniform spac-each other and were determined by X-ray crystallography at res-
ing on the line that connects the main-chain carbonyl oxygen analution of 2.0 A or better were extracted from PDB. Helices and
amide nitrogen atoms of the N- and C-terminal anchor regionsstrands were assigned by the DSSP progf&mbsch & Sander,
respectively. Next, the atomic positions are randomized by addind983. The regions outside helices and strands were defined as
a random number distributed uniformly fromb to 5 A toeach of  loops (Fig. 4). These loops were filtered to obtain 14 test sets of
the Cartesian coordinates. One loop prediction consists of optitoops. Each test set contained 40 loops of the same length, span-
mizing independently a number of such randomized initial struc-ning the range from 1 to 14 residues. The test sets were obtained
tures, and picking as the final model the conformation that has théy random selection applying the following criterid:) no two
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R=Asn

R=Pro

R=Gly

R=Ala
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Frequency of loops

0
1 3 5 7 9 1113 15 17 19
Length of a loop [residues]

Fig. 4. Distribution of loop length. Secondary structure segments in the

B 800 " N 1500 1,000 representative structuresee Theory and algorithmsvere defined
t-oop only With environment by the program DSSHabsch & Sander, 1983gray and white bajsAll
600 - 1200 13,444 segments that span helices @astrands were defined as loops.
Helices were defined as contiguous segments of at least four residues in the
§ 900 < H, G, or | conformation. Strands were defined as contiguous segments of
@ 4001 | = at least three residues in the E or B conformation. The bars are divided into
by - 600 - two parts to indicate the fraction of predictions expected to be in the good
and medium classdgray) and in the bad clas@vhite), according to the
2001 L 300 evaluation based on 50 independent optimizations in the correct environ-
ment(Table 1. The results are similar for 500 independent optimizations
0 . . . . . 0 in the environments with the RMSRe ng.co (Stem,NGCO ) error be-
0 2000 4000 6000 8000 10000 tween 1.75 and 2.75 A.

Step of optimization

Fig. 3. Modeling of a loop.A: Sample model. The backbone trace of the

native structure of N-carbomoylsarcosine amidohydrol&&8B code 1nba

is light blue, the native loop of eight residu¢@9-106 is dark blue, the  test sets of 40 loops for each length from 1 to 14 residues, resulting
distorted environment in which the loop is generally modeled is red, anq, 560 test loops in total. The average and standard deviation of the

the initial loop conformation for optimization, before atomic coordinates for 40 | f th | h h i
are shifted randomly for up to 5 A, is yelloB: Sample optimization. The accuracy tor test loops of the same length are the most fre-

energy(thick line) and temperaturéhin line) during conjugate gradients quently used measures of the method accuracy in this paper.
and molecular dynamics with simulated annealing are sh@ea Theory The accuracy of a single loop prediction is evaluated by com-
and algorithms The initial value of the energy is very high-10°). paring it with the native conformation. A large variety of reason-
able criteria for comparing loop conformations exist. They include
RMSD and DRMS measurdé.evitt, 1983 for different sets of
atoms, such as /G main chain, and all atoms. The RMSD error can
loops in the test set for a given length are from the same structurgje calculated from the superposition of the whole structures ex-
(2) there are no overlaps between any two loops from any two setssluding the loop“global” superpositiohor from the superposition
(3) the N- and C-termini are not used as test loops; @dlso  of the compared loop atoms onl§local” superposition. In addi-
excluded are loops that span morerti8aA between their terminal  tion to Cartesian coordinates, dihedral angles, dihedral angle classes,
C, atoms. The last criterion was applied to maximize the numbeiand main-chain conformation classes can also be compared. It is
of geometrically feasible conformations for each test I@pan &  not practical to use all of these criteria. Fortunately, it is also
Dill, 1989), thus maximizing the difficulty of loop modeling. The ynnecessary because there is a statistical correlation between rea-
distribution of the end-to-end &C, distance for all 8-residue sonable loop comparison measu(sse below Thus, a statistical
loops is approximately Gaussian with the mean of 13 A and stangescription of the accuracy by one measure and the statistical
dard deviation of 4 A. Only 1% of 8-residue loop—loop alignments re|ationship between that measure and all other interesting mea-
have more than two positions with the same residue type in botures provides a description of the accuracy for all the measures.

loops in our test set. We calculate RMSD for Cartesian coordinates only, and anno-
o o tate the symbol by subscripts and arguments for exact definition,
Criteria for accuracy of loop predictions RMSDpart atom_ypeePart,atom_types The two subscripts indicate

There will generally be a wide spread in the accuracy of thethe part of the protein structure and the atom types that were used
predictions for different loops. Thus, it is necessary to evaluate théor least-squares superposition, and the two arguments indicate
accuracy of a method by testing it on many different loops. We uséhe part of the structure and the atom types that were compared

Fig. 2 (facing page. Actual Ramachandran plotieft side and fitted model surfacdsight side for four representative residue types.

The actual Ramachandran plots are the natural logarithm of the observed frequency of a given pair of the main-chain dihedral angles
@ andW¥ in the 1,000 representative protein structuigse Theory and algorithmhsThe modeled Ramachandran plots correspond to

the restraints used in modeling,pR(®,¥/R) (Equation 3. R = Asn (9,767 residues R = Pro(9,759; R = Gly (16,650; R = Ala

(17,459.
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Table 1. The fraction of loop predictions in the three accuracy RMSD, for C, atoms is almost the same as that for all the
classes, as a function of the number of residues in the3oop main-chain atoms. The RMSJ, for N, C,, and C is always

slightly smaller than that for all the main-chain atoms. These cor-
Accuracy class relations were obtained from a comparison of the loop modeling
predictions with the corresponding native loop structures. Thus,

Loop length Good Medium Bad
the correlations can be used to asses the present méftiod
1 100.0 0.0 0.0 8-residue long loopsby all the criteria plotted in Figure 5, even
2 97.5 25 0.0  when only the RMSR., numbers are available.
3 100.0 0.0 0.0 Loop modeling errors can be approximately deconvoluted into
4 82.5 17.5 0.0 two contributions:(1) errors in conformation and2) errors in
ig:g é?g 8:8 orientation of the Igop relative to the rest of_ the protellna_rtin
5 70.0 275 o5 et al., 1997; van Vlijmen & Karplus, 1997While RMSD is a
6 575 275 150 9ood measure of the accuracy of conformation, it does not depend
7 525 250 225 onthe relative orientation of the loop. On the other hand, Rig
8 30.0 475 225 depends on both the conformational and orientational accuracies.
50.0 40.0 10.0 However, the choice of the superposed atoms before the RM3D
14.1 59.4 26.5 calculation is generally arbitrary. For example, when a small do-
9 20.0 35.0 45.0  main containing the loop is shifted relative to the rest of the pro-
10 7.5 40.0 52.5  tein, the RMSQoba Of the loop will indicate a large error even
11 2.5 27.5 725 \when the loop is modeled perfectly in the context of the small
12 ?55 21555 ?8'8 domain: For this reason, RM{J, was (;hosen as.the primary
0:0 6_'9 93_'1 evaluation measure, although the main evaluation results are
13 5.0 10.0 goo also reported using RMS3ya (Figs. 8-11; Table 2 In practical
14 24 24 951 terms, for the present method applied to 8-residue long loops in

their native environments, the RMGBha is ~1.5 times the

aThe accuracy classes are defined in Figure 6. The standard aIgorithnﬁMSDoca" . .
with 50 random initial conformationésee Theory and algorithmsvas Another useful characterization of accuracy of a method is the

applied to 40 test loops of each length. For 4-, 8-, and 12-residue loops, thisaction of loop predictions that fall in the good, medium, and bad
numbers in the second line give the results for 500 random initial confor-accuracy clas§Fig. 6). A good prediction has RMSR, smaller
mations in the native e_n\_/i_ronment; the_numpers in the_ third line give thethan 1A, abad prediction has RMSR, larger than 2 A, and a
results for 50 random initial conformations in the environment distorted . .
from 1.75 to 2.75 A(Fig. 10. medium _predlctlon falls bt_etween these two extremes. Examples qf
an 8-residue loop model in each of the three classes are shown in
Figure 6. In the good class, the main-chain carbonyl oxygen atoms
almost invariably point in the correct direction and most of the
residue main-chain conformation classes are predicted correctly.
to calculate the RMSD. For example, the “global” RMSD for The error approaches that in the medium resolution X-ray analysis.
the loop main-chain atomé&N, C,, C, O) after superposition of In the medium class, there are occasional flips of the main-chain
the main-chain atoms in the stem residues on each side of thexygen atoms as well as errors in the residue main-chain confor-
loop (usually three residugsis indicated by RMSIgopa = mation classes. However, the error is not larger than the dynamic
RMSDstem, nc,col100p,NC,CO). The “local” RMSD for the main-  fluctuations of most loops at room temperatFishman et al.,
chain loop atoms superposed on themselves is indicated b%997. Both good and medium loop predictions are informative
RMSDjgcai = RMSDigop,nc,co(loop,NC,CO). Distortion of the  when using comparative protein structure models.
two stems is indicated by the global and local superposition of the N
main-chain atoms in the stems, RMSR nc.co(stem,NGCO) Data deposition
and RMSDiem ne,co(Stem,NGCO), respectively. “Core” refers to The modeling program MODELLER as well as the list of the
the whole protein excluding the loop, the stems, and the distortetbops in each of the test sets are available at the URLMtpitar.
environment. RMSR,pa for a loop in the native structure is ob- rockefeller.edy. The test sets contain 40 loops each. There are 14
viously the same for the superposition of either the stem atomdest sets corresponding to the loop lengths from 1 to 14 residues.
core atoms, or all nonloop atoms. However, in the case of evalu-
ating loop models in the context of approximate structures, thﬁ?esults and discussion
choice of the “core” influences the RMGJa,a value. In this paper,
the superposition of the loop stem residues is used to obtailn Theory and algorithms, we describe a technique for modeling of
RMSDyobal loops in protein structures. The method predicts the positions of all
The RMSDQ,., Was picked as the primary measure of loop ac- nonhydrogen atoms of a given loop in a fixed environment by
curacy. Its correlation with a number of other measures is strongpptimizing a scoring or “energy” function. Many different energy
corresponding to Pearson correlation coefficients larger than 0.8inctions and optimization schedules were explored. The current
(Fig. 5. The RMSDy, for local superposition of all atoms in an energy function contains terms from a molecular mechanics force
8-residue loop is approximately twice that for the superposition offield as well as restraints based on statistical distributions derived
the main-chain atoms only. The RM§R), for the main-chain  from known protein structure&Sippl, 1990; Cheng et al., 1986
atoms is about 1.5 times the RM@R,. The DRMS for the  Bonds, angles, some dihedral angles, and improper dihedral angles
main-chain atoms is approximately 0.8 times the RNM)Sp The  are restrained by the corresponding terms in the CHARMM-22
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Fig. 5. Correlation of RMS[Ro With other measures of accuracy of a loop model. The three lines are shown to facilitate interpreting
the correlation; they have slopes of 0.5, 1.0, and 2.0.

potential function(MacKerell et al., 1998 The main-chain and misalignment. Next, the accuracy of the lowest energy prediction
side-chain dihedral angles as well as nonbonded atom pairs afer a given loop is estimated from the structural variability among
restrained by statistical potentials. The energy function is opti-a number of low energy predictions. The relative value of the
mized by a combination of conjugate gradients and moleculapresent method is gauged ) comparing it with one of the most
dynamics with simulated annealing. successful previously described methods, @&ddescribing its

This section begins by a description of the average accuracy daccuracy in recent blind predictions of protein structures. The latter
the method as a function of degree of conformational samplingevaluation also revealed limitations in practical loop modeling,
loop length from 1 to 14 residues, and properties of the native looporiginating from problems other than those of the loop modeling
such as the mobility and compactness. To simulate real comparanethod itself. Finally, to indicate future developments, it is shown
tive modeling problems, the method was also evaluated by prethat the average accuracy of prediction is limited primarily by the
dicting loops of known structure in only approximately correct accuracy of the energy function rather than by the extent of con-
environments with errors typical of comparative modeling without formational sampling.
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Table 2. Comparison of predictions for 14 test loops by a recent successful method
(Tables 8 and 9 in van Vlijmen & Karplus, 1997) and the present méthod

Present method

Reference Lowest energy prediction Lowest RMSD prediction
Loop Global* Global*  Global Local Score Rank  Global Local Score Rank
2apr_76-838) 5.16 1.31 1.35 0.73 —48.39 5 0.94 0.50 —44.23 2
8abp_203-2086) 0.28 0.38 0.37 0.24 -—35.34 75 0.24 0.17 —29.25 32
2act_198-2058) 1.58 2.04 221 1.60 -10.47 62 1.93 1.09 13.95 392
8tln_E32-E38(7) 3.70 2.03 2.26 1.82 —49.45 435 0.93 0.65 —13.30 314
3grs_83-897) 4.55 0.42 0.58 0.47 2.77 6 0.43 0.31 8.71 6
5cpa_231-2377) 2.14 0.95 1.23 1.06 —-5.32 18 1.00 0.89 11.83 244
2fb4_H26-H32(7) 1.62 4.20 4.25 2.06 3.54 282 0.52* 0.41 15.98 148
2fbj_H100-H106(7) 0.49 0.84 1.31 1.08 3.27 48 1.03* 0.83 47.17 532
8tln_E248-E2558) 1.83 0.87 0.98 0.84 —26.04 182 0.70 0.61 —10.80 246
3sgb_E199-E2119) 1.79 0.28 0.36 0.28 —53.36 4 0.29*% 0.24 —49.14 3
3dfr_20-23(4) 2.64 1.15 1.59 151 29.70 676 0.35 0.20 47.88 844
3dfr_89-93(5) 1.62 1.02 1.14 0.85 —0.06 21 0.87 0.78 16.98 690
3dfr_120-124(5) 0.47 0.26 0.28 0.20 0.71 217 0.23 0.15 9.96 484
3blm_131-1355) 0.82 0.16 0.22 0.14 —-32.55 103 0.16 0.11 —26.57 75

aThe modeled loop segment is indicated after the four character PDB code and its length is given in parentheses. Since the reference
study was performed, structure 3tln was replaced by 8tin in PDB; thus, 8tIn had to be used here. Predictions by the present method
were obtained from 1,000 independent optimizations, using the nonbonded distance cutoff of 7 A. The “Global” and “Local” column
headers stand for RMSvaand RMSDQyca, respectively. The “Global*” column lists RMSRm nac (loop, NG,C). The ranks of the
predictions sorted by the energy and RMSD are shown for the RMSD and energy columns, respectively. If the lowest local and global
RMSD conformations are the same, the global RMSD value is indicated by an asterisk. The energy and rank of the conformation with
the lowest local RMSD are given. The CPU times for predicting one loop by the reference and present methods are approximately the
same, 30 h on an R10000-190 SGI workstation.

Accuracy of loop predictions as a function of ple the 14 test sets of 40 loops each, it was necessary to limit
thoroughness of conformational sampling most subsequent evaluations of the method accuracy to 50 inde-

As described in Theory and algorithms, loop modeling consists Opendent optimizations.
independent energy optimizations of many random initial loop
conformations. The final loop prediction is the optimized confor-
mation that has the lowest energy among all the independent lo
optimizations. The scatter plots of the energy and the RM&D
error (Theory and algorithmsfor independent optimizations in a The difficulty of the loop modeling problem increases with loop
successful and unsuccessful prediction are shown in Figures 7kength. For longer loops, there are more incorrect conformations
and 7B, respectively. The success corresponds to a strong corrthat increase the demands on the optimizer to generate a good model
lation between the energy and RMSD. In such cases, most of thend on the energy function to identify it. The average RSP
low energy predictions are accurate. On the other hand, the failurerror and its standard deviation rise almost linearly with loop length
corresponds to a lack of a positive correlation between the energ§Fig. 9). For 50 independent optimizations, the average RMSD
and RMSD. Most of the low energy predictions are different noterror is 0.59, 1.40, and 2.96 A for 4-, 8-, and 12-residue loops,
only from the native loop, but also from each other. Even if arespectively. All predictions of 4-residue loops fall into either the
geometrically good conformation is encountered during samplinggood or medium accuracy clas$able 1; Fig. 4. For 8-residue
its energy is high and is thus not predicted to be the native looploops, 50, 40, and 10% of models are in the good, medium, and bad
An important methodological consideration is the amount ofclass, respectively, when 500 independent optimizations are per-
conformational sampling performed for each loop prediction. Thisformed. For 12-residue loops, only 30% of predictions are in the
is directly proportional to the number of independent loop opti-good or medium class when 500 independent optimizations are
mizations. The larger the number of loop optimizations, the betperformed. In conclusion, it makes sense to model even loops 12
ter is the average accuracyFig. 8). For 4-residue loops, residues long, if the environment error is small and 30% chance of
improvement beyond 50 independent optimizations is negligibleobtaining either a good or a medium loop model is acceptable.
(Fig. 8A). On the other hand, for 8-residue loops, the average During the course of this project, the optimization method and
RMSDigca €fror decreases from 1.400.12 A to 1.16+ 0.10 A the energy function were improved iteratively by relying on the
when the number of independent optimizations is increased frontest set of forty 8-residue loops. Thus, it could be that the final
50 to 500. The average accuracy of loops longer than approxireported results for these loops are misleadingly favorable. To
mately six residues is likely to improve marginally even beyondcheck for such bias, additional forty 8-residue loops were selected
500 independent optimization&igs. 8B,Q. To be able to sam- as described in Theory and algorithms and predicted by the final

c)Accuracy of loop predictions as
R function of loop length
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RMSD = 0.61A

RMSD =2.05 A RMSD =1.12 A
RMSD =7.63 A ﬁ

Fig. 6. Definition of three levels of accuracy in loop modeling. Sample main chains(8f) @ood, (B) medium, andC) bad loop
model are shown. The defining RM$R, ranges are<1, 1-2, and>2 A, respectively. Models for residues 28—35 in NAD-dependent
formate dehydrogenas®DB code 2nacare shown. The RMS[ ¢ nc,co (Stem,NGCO) for 3-residue stems on each side of the loop
is 1.2 A. The left and right figures in each panel correspond to the RMSPand RMSDQyc. superposition, respectively.

A

RMSD = 1.51A

version of the method only. The average accuracy for 50 indeperfectly correct environment. At best, only an approximately correct
dent optimizations differed from the first test set only in the secondenvironment is available. This complication in loop modeling
decimal place. Also, the accuracy for 8-residue loops is not ammimics the situation in side-chain modeling, which needs to be
outlier relative to other lengthd=ig. 9). Further confidence in the performed on an approximate, not exact backbone. In the case of
statistical robustness of the presented results is provided by conside-chain modeling, the accuracy of the predicted side-chain
paring our method with another methodan Vlijmen & Karplus,  packing drops rapidly when the core backbone distortion increases
1997 and by the accuracy of the loop models submitted to CASPDeyond 1 A(Chung & Subbiah, 1996 Thus, it was expected
(see below. In both cases, the accuracy of the method is consistenthat the average accuracy of the loop modeling method would
with the evaluation based on the test loops. also be worse than indicated by the evaluations in the native en-
vironment described in the preceding section. To quantify the im-
pact of the environment errors on the accuracy of loop modeling,
we prepared test sets for 4-, 8-, and 12-residue loops in distorted
environments. Each set contained the 40 test loops in five distorted
In real comparative modeling when the native structure of theenvironments each. The environment of a loop is defined in this
target sequence is not known, loops are not modeled in the pesection to include six stem residues on each side of the loop as well

Accuracy of loop predictions as a function
of environment distortion
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Fig. 7. Two sample loop predictions. On the left, the energy of the final conformations from 500 independent optimizations is plotted
as a function of the RMSR error. On the right, the Ctraces of the 17 lowest energy conformations are sh@wrSuccessful
modeling of residues 45-52 in 5p21; the RMSD error of the conformation with the lowest energy is B25Borrect modeling of
residues 34—41 in lalc; the RMSD error of the conformation with the lowest energy is 3.17 A.

as all the atoms that are within 15 A of at least one loopracy of the loop modelg§data not shown It appears that the
or stem atom in the native structure. The size of the distortionoptimization algorithm antbr the energy function are overwhelmed
RMSDeore, ng,co(Stem,NGCO) was up to almost 3 AFig. 10. by the large number of degrees of freedom corresponding to the
Environment errors 0&3 A are typical of comparative models of loop combined with its environment. For example, even when a
exposed regions based on alignments without errors. The test sethort distancefo A is used to define the loop environment, there
were obtained by subjecting the environment atoms in the nativare from 17 to 36 environment residues for the forty 8-residue
structure to a molecular dynamics simulation at 600 K guided byloops. This might correspond in difficulty at least to the standard
the energy function in Equation 1 and restrained by the rest of th&5 residue “loop” modeling problen8 + 17), far beyond the
native protein structure. range of reliable performance for any modeling metkidable 1;

For 8-residue loops in an environment with the stem main-chairfFig. 4).
RMSD distortion of 2.5 A, the average error of loop prediction
increases for 25% from 1.40 to 1.75 A, as measured by the leas
squares line through the data poifEsg. 10. Nevertheless, 75%
of the predictions remain in the good and medium classes, evehoops usually occur on the surface of a protein globule and have
when only 50 independent optimizations are perforriBable 1;  relatively few contacts with the rest of the fold. Consequently,
Fig. 4). The impact of environment errors is smaller for long loops some of the loops are structurally least well-defined parts of the
than it is for short loops, presumably because the prediction acprotein main chain. Conformational heterogeneity of loops in-
curacy for long loops is already low in the native environment. Forcludes multiple local minima with rare transitions between the
example, for 12-residue loops, almost no decrease in predictiominima (static disorder as well as large fluctuations around a
accuracy occurs with environment distortion. On the other handsingle minimum(dynamic disorder Both of these phenomena are
for 4-residue loops, the increase in the error is large, from 0.43 taeflected in relatively high crystallographic isotropic temperature
1.21 A. However, all the 4-residue loop predictions are still in thefactorsB;s.. The atomidB;s, are generally determined accurately in
good and medium accuracy classes, presumably due to a relativeprotein structures refined at resolutioh®A or better, such as the
small number of different conformations for such short loops.  structures from which the test loops were collected. It was ex-

The negative impact of the environment errors on the looppected that a loop with a high averagg, will tend to be predicted
accuracy might be decreased by optimizing the positions of théess accurately than a loop with a low averdg. However, no
environment atoms as well as the loop atoms. However, our presuch correlation is observed in a comparison of the normalized
liminary attempts to do so have not improved the average accuaverageBis, values for different loops as a function of the predic-

kccuracy of loop predictions as a function of loop properties
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Fig. 8. Accuracy of loop modeling as a function of thoroughness of optimization. For each of the 40 test lg@psdofesidues,

(B) 8 residues, andC) 12 residues, 500 independent optimizations were performed. Each independent optimization started with a
different random initial loop conformation in the native environmésge Theory and algorithmsFour different average RMSD
measures for the main-chain loop atoms, calculated over the 40 test loops, are plotted as a function of the number of independent
optimizations. Average RMSfp error for the models with the lowest energy, open circles and thick line. Average RMSiPror

for the models with the lowest energy, filled circles and thin line. Average minimal R)§Rerror, open diamonds and thick dashed

line. Average minimal RMS[, error, filled diamonds and thin dashed line. The standard error of the mean is generally less than 0.1 A
(not shown. The curves are the least-squares fits of the average RMSD to the number of independent optimizafimnexample,

for the 8-residue I00pSRMSDoca) = —6.28 + exp(2.00+ 0.2593, 0-8045),

tion accuracyFig. 11A). One possible explanation is that most of with the conformation preferred by the environmé@t & Abe,

the loops with high average temperature factors fluctuate around984.

their equilibrium conformations, not between several different lo- The number of contacts between the loop atoms and the neigh-
cal minima. Thus, the average structure determined by crystallogsoring molecules in the crystal also does not have a significant
raphy and the equilibrium structure approximated by the predictioimpact on the prediction accura¢lig. 110. This was a surprise:

will tend to correspond to the same conformation, eliminating theLoops with a higher number of intermolecular contacts were ex-
correlation between prediction accuracy and high mobility. pected to be predicted less accurately because the intermolecular

There is also no correlation between the prediction error and theontacts are completely ignored in loop modeling. It appears that
number of atomic contacts within the logpig. 11B. The com-  the native loop conformations tend to be consistent with the inter-
pact loops are predicted equally well as the noncompact loopsnolecular packingGé & Abe, 1984.

This might indicate problems with the nonbonded terms in the
energy function.

It was expected that the prediction accuracy will increase with
the number of atomic contacts between the loop atoms and thi the absence of a perfect loop modeling method, it is useful to
environment in the native conformation, due to the moulding of thehave an estimate of the error of a given loop prediction. Methods
loop by the fixed environment. However, there is almost no suchor detecting errors in protein structure models have been reviewed
correlation (Fig. 110). This indicates problems with the non- (Sanchez & &li, 1997h. One popular approach is based on energy
bonded terms in the energy function, resulting in relatively little profiles(Luthy et al., 1992; Sippl, 1993In this approach, a region
useful information provided by the environment. Another expla-is predicted to be in error when its energy is above a certain cutoff.
nation, not mutually exclusive with the first one, is that the internal This rule is not expected to work well in the case of our loop
mainchain preferences of the loop residues tend to be consistenmodeling method since the best available energy function is opti-

Estimating the accuracy of a loop prediction



1766 A. Fiser et al.

S
°
>

w
o

RMSDo0, NCaco(l00p,NCaCO) (A]

i

- N
o o
a el
4 —e—
——
<RMSDyoe, NGaco(loop.NCaCO)> [A]

0.0+t e —
0 2 4 6 8 10 12 14 0.0 . . ——
Loop length [residues] 0.0 0.5 1.0 1.5 2.0 25
RMSD,,, Ncoco(stem,NCaCO) [A]
10
z 1B .
3 ° 2 60 1 }
] n $
-3 61 g 5.01 I i
g 5 4.0
§ 4 g™ ¢
£ § 3.01 ;
g 2] } %2.0- ¢
o-—:!ii.,.. ————r 2 1.0
0 2 4 6 8 10 12 14 T B

: Q-+ T r T T T
Loop length [residuee] 00 05 10 15 20 25
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of loop length. Models were calculated for 40 loops at each length from 1
to 14 residues, as described in Theory and algorithms. Fifty independerftig. 10. Accuracy of loop modeling as a function of environment error.
optimizations were used to make each prediction. Average accuracy and thiée average RMSD error and the standard error of the mean are plotted as
standard deviation of the accuracy are shown for each lengithjdocal @ function of the error in the loop environment. Although many atoms
and(B) global superposition. around the loop were distortddee Results and discussjperrors in the
environment are measured only by the main-chain RMSD of the three stem
residues on each side of the loop, upon superposition of the nondistorted
atoms of the native and model structu(esy. 3). Each of the 40 test loops
of four residuegopen diamonds eight residuescircles, and 12 residues
mized to obtain the model in the first place. There is an additionalfilled diamonds have been distorted five times, resulting in 200 loop

concern about the theoretical validity of the energy profiles forpredictions in a distorted environment. Each individual loop prediction
detecting regional errors in models. It is likely that the contribu- consisted of 50 independent optimizations. Upper plot shows the local,
. e . . _while the one below the evaluation by global superposition.
tions of the individual residues to the overall free energy of folding
vary widely, even when normalized by the number of atoms or
interactions made. If this is correct, the correlation between the
prediction errors and energy peaks is greatly weakened, resulting a dominant free energy minimum, the loop modeling method
in the loss of predictive power of the energy profile. Despite thesgroduces similar low energy conformations if the optimizer works
concerns, error profiles have been useful in some applicationgell. Conversely, the more similar are the lowest energy confor-
(Guenther et al., 1997; Sanchez &l 1997a. mations, the more pronounced must the corresponding minimum
The following rational is used here to estimate an error of abe, and the less likely it is that the best prediction has a large error.
given loop prediction. We take a case of a loop with one dominanfThe more different are the lowest energy conformations, the more
native conformation. In such a case, there are degrees of freedomgged is the modeling energy surface and the less confidence one
for which the true energy function has a deep, global free energyas in the lowest energy solution.
minimum, in addition to many local minima. The global free en-  This idea was tested by analyzing the “ensembles” of 500 in-
ergy minimum is the native conformation. The energy function anddependent optimizations of forty 8-residue loops. The structural
degrees of freedom that are explored in modeling are only arwvariation among the lowest energy solutions was defined as the
approximation of the true energy function and its degrees of freeaverage RMSR., for all pairs of the 20 lowest energy confor-
dom. However, it is plausible that the more pronounced is the freenations, out of the 500 conformations in total. Similar results are
energy minimum in the modeling function, the less likely it is that obtained when the best 5 to 50 conformations are (dath not
the errors in the function moved the minimum away from that inshowr). The scatter plot of the RMSR, error of the lowest
the true energy function. In other words, a given fractional error inenergy prediction and the structural variation of the lowest energy
the energy surface may not move a deep minimum, while it issolutions is shown for the 40 test loops in Figure 12. When the
likely to move a shallow minimum. The many independently op- structural variation among the lowest energy models is low, the
timized loop conformations in a single loop prediction make it error of the lowest energy prediction is indeed small. When the
possible to estimate how pronounced the lowest free energy minvariation is large, the error can be either small or large. In this case,
imum is. If the free energy surface has multiple comparable minit is not possible to distinguish between the failure of the optimizer,
ima without a dominant minimum, the loop modeling method will errors in the energy function, or a truly promiscuous loop. There
result in multiple, significantly different conformations. When there are no cases of low variation and large error, indicating that the
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Fig. 11. Accuracy of loop modeling as a function of loop properties. The RMSD of the lowest energy model from 500 independent
optimizations is plotted against several loop properti®s.Normalized average atomic isotropic temperature factor of the loop
((BisoMoop — {Biso)pratein)- Normalization was performed to improve direct comparison of isotropic temperature factors from independent
structure determinationdRinge & Petsko, 1985 B: Number of nonbonded atomic contacts within the loGp.Number of intra-
molecular atomic loop-environment contadis. Number of intermolecular atomic loop-environment contacts. The symmetry-related
protein structures were calculated by program CRYSPATihin & Rodier, 199§ relying on the information in the PDB atom files.

An atomic, nonbonded contact occurs when two atoms are at a distarge®A and are separated by more than three covalent bonds.
The data are shown for 40 loops of eight residues each. The Pearson correlation coefficient is also given in each panel.

optimizer does not often get trapped into a local minimum. Forenergy function without electrostatics, applied to the main-chain
8-residue loops, a good upper bound on the error of loop predictiomtoms N, G, C, and the first side-chain atom;ds supplemented

is the variation among the lowest energy models multiplied by two by strong main-chain dihedral angle restraints to focus minimiza-
tion on the conformations relatively close to the template seg-
ments. Optimization results in both the global movement of the
loop relative to the rest of the protein and local relaxation of the
The accuracy of any new prediction method has to be comparelbop conformation. The VK method compared favorably with sev-
with previous results. There are a great many existing loop moderal other optimization and database approa¢hMmult & James,
eling methods, and it is not practical to consider all of them. Thus,1986; Fidelis et al., 1994; Zheng & Kyle, 1996

we chose to compare the present results with only one, but care- Fourteen loops from 4 to 9 residues long were predicted by the
fully selected previous study. The requirements were that the ref¥K method in a manner that is appropriate for comparison with the
erence method be recent, well documented, automated, tested ungeesent methodTable 2. Because the original evaluation of the
realistic conditions, evaluated with a reasonable number of tes¥K method was given in terms of RMSRq ncc(loop,NG,C),
loops of varying length, and that it compared favorably with otherthe comparison here also had to rely on this measure, not RMaD
prior methods. One such method is that of van Vlijmen and Kar-or RMSDgcq,. In any case, RMSRm nc,c(loop,NG,C) tends to
plus (1997 (the “VK” method). The VK method first selects ap- be only slightly smaller than RMS[Rpa (Fig. 5F; Table 2 For 3
proximately 1,000 loop candidates from PDB, based on stem fittingput of 14 loops(2act, 2fb4, 2fhj, the VK method produced a
and then subjects these candidates to independent energy mininmore accurate model than the present method. For two loops
zationsin vacuoto obtain the final prediction. The CHARMM-19 (8abp and 3dfr_120-124both methods produced indistinguish-

Comparison with previous results
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olakc (Jones & Kleywegt, 1999 Protein modelers are challenged to
model sequences with unknown 3D structure and to submit their
predictions to the organizers before the meeting. In parallel, the 3D
structures of the prediction targets are being determined by X-ray
crystallography or NMR methods. They only become available
after the models are calculated and submitted. Thus, a bona fide
evaluation of protein structure modeling methods is possible.
One major limitation of comparative modeling is that it is fre-
quently not possible to lower the main-chain RMSD error of a
i ®2cmd model below the RMSD between the template and target structures
(Sanchez & &li, 1997a. There are several ways to overcome this
limitation in some cases. The first way is to use more than one
e1cic template structuréSanchez & &li, 1997a. The second way of
“moving” the model closer from the template to the actual target

@
o

g
»

RMSD error of lowest E model [A]
a2 @

004 . . , . . structure is to calculate good models for inserti¢is., loops.
00 04 08 12 16 20 The third, ambitious way is to rely on a loop modeling method to
<RMSD> among 20 lowest E models [A] predict relatively small shifts and distortions in a segment that is

aligned to the template structure. Even in correct alignments, the
Fig. 12. Prediction of the accuracy of the lowest energy loop model. ThEaligned regions can have an RM&QaI of ~3 A '|'husl a good

RMSDyc4 error of the best loop model correlates well with the structural : : ;
variability of the 20 lowest energy models, out of the 500 independently!00p modeling method applied to such segments is expected to

calculated models. The variability of the lowest energy models is measureProve the model relative to the template..For our loop modelin.g
by the average of the 26 19/2 pairwise RMSR, differences. The  method, for example, 90% of loops of 8 residues are modeled with

correlation is shown for 40 loops of eight residues each. For reference, &2 A RMSD,.y error when the environment is correct. The ap-
line is drawn that corresponds to RMSD2 (RMSD). plication of a loop modeling method to a fully aligned segment is
referred to as “distortion” modeling, rather than loop modeling.
A precursor of the present loop prediction method was used to
model both insertions and fully aligned segments in our submis-
ably good models. For the remaining nine loops, the presengions to CASP3. A detailed description of our experience will be
method produced more accurate models than the VK method. IBublished elsewher@. Fiser, R. Sanchez, F. Melo, & A.a8, in

the three cases where the VK method produced a better mod%fep). Here, we only summarize the main lessons as they pertain
a good model was sampled by the present method, but was ng the modeling of loops and distortions.
recognized as such by the energy function. This comparison may The method applied to insertions performed according to the
not be entirely fair to the VK method. The reason is that the VK eyaluation in this paper, when errors in the loop environment were
method would probab|y pel’fOI’m better at this pOint in time than re|ative|y Sma”(i.e_’ not caused by the alignment ermpg suc-
it did a few years ago because the database of known proteigessful prediction of an 8-residue loop is shown in Figure 13A.
Stl‘uctures, on which the VK method relies, is now Significantly However‘ for most of the CASP3 targetsy the a”gnment was the
larger. On the other hand, as the authors themselves pointed ohain challenge, frequently resulting in misaligned stem residues or
the published results of the VK method were perhaps a littlepjeces of protein structure occupying loop’s space. Even a perfect
better than would be obtained in realistic applications becausqbop modeling method will fail in such circumstances. The impli-
the candidate loops for energy minimization were 50 loops withcation for comparative modeling users is that loop modeling meth-
minimal RMSDoop,nc,c(l00p,NG,C) from the target conforma-  ods are currently most valuable for modeling insertions in the easy
tion, not 1,000 loops with best fitting stems. and medium difficulty cases, corresponding to target—template se-
It is informative to examine the rank of the lowest RM&R quence identity of at least 30%.
conformation in the list of 500 independently optimized confor- The method applied to distortion modeling also performed as
mations sorted by energy, as well as the rank of the lowest energ¥valuated in this paper. A “successful” prediction of a 6-residue
conformation in the list of conformations sorted by RM&R  segment is shown in Figure 13B. It was modeled with the RIMSD
(Table 2. Conformational sampling almost always generates arerror of 1.09 A. However, although the prediction was accurate by
extremely good solution. In only one of the 14 cases is the lowesthe |0op modeling standards, it was a failure by the CASP3 stan-
RMSDyona Significantly larger than 1 A2ac. The lowest energy  dards. The reason was that the template segment was in fact not
prediction is frequentlyi.e., in 8 out 14 casesvithin 10% of the  djvergent structurally, but closer to the actual target structure than
geometrically best conformations. Even when the lowest energyyr prediction, despite a large difference between their sequences
structure has a low rank in the list of structures sorted by R)I (Fig. 13B. Thus, the risk taken to move the model from the
it can still be a good predictiofe.g., 3dfr_20-28 indicating that  template structure closer to the target structure backfired, even
most independent optimizations ended in the vicinity of the native[hough a good model of the segment was produced. Clearly, dis-
structure. tortion modeling is useful only if aligned segments that diverged
beyond the error of the loop modeling method can be identified.
This is currently an unsolved probleAbagyan et al., 1997 It
may be as difficult to predict that a region is in error as it is to
Protein structure modeling methods, including comparative mode€alculate its correct model. The implication for comparative mod-
eling, are tested at the bi-annual CASP meetifigoult et al.,  eling users is that distortion modeling is probably not worth the
1999. The last meeting, CASP3, was held in December of 199&isk at this time.

Loop modeling at CASP3
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A

Fig. 13. Examples of loop and distortion modeling for CASP3. The native conformations are in blue, the models are in red. All
the main-chain atoms are shown for the loops, only the backbone trace is plotted for the three stem residues on each side of the loops.
A: Loop prediction for residues 46-53 in target TO076. No template loop of the same length was available from the structurally
defined members of the family. The RM@R, error is 1.37 A while the stem residues superpose on the native structure with
RMSDsem,neco (stem,NGCO) of 1.52 A.B: Distortion modeling of residues 80-85 in T0058. The closest template stry&tDi@

code lakz, shown in yellomhad a segment aligned with the modeled segment without gaps, but their sequences were so different that
the target segment was modeled as a loop. The template and target sequences are RPGIAI and QRPVPP, respectivelydhe RMSD
RMSDyca, and RMSRiem, ng,col(stem,NGCO) errors for the model are 1.57, 1.09, and 0.29 A, respectively. The corresponding
deviations between the template and the actual target structure are 0.99, 0.75, and 0.27 A.

Is accuracy limited by the optimizer or the energy function? trast, there is no correlation between energy and error in the case
of an incorrect predictiofFig. 7B). Many conformations different
Any protein structure prediction at least conceptually consists ofrom each other and from the native loop have an equally low
two main parts. The first part is generation of candidate structuressnergy score. Even though a conformation that is close to the
either by enumeration or conformational sampling. The secondative structurd RMSDyyca = 0.84 A) was sampled, the lowest
part is selection of the best candidate structure based on sonemergy model had one of the largest errors among the sampled
scoring function. In protein structure prediction based on “energy’models(3.17 A).
minimization, which includes the present loop modeling method, The second indication of a reasonable performance of the opti-
structure generation and selection are intertwined because the emizer is the data on its convergence propertEg. 8). Loop
ergy function partly determines what conformations are samplednodels were predicted from 1 to 500 independent optimizations
by the optimization algorithm. In principle, such optimization meth- for sets of forty 4-, 8-, and 12-residue loops each. There is essen-
ods can fail for one or both of the following reasori4) the tially no improvement in the average accuracy of loop prediction
optimizer samples the conformational space inadequately and nevethen more than 50 independent optimizations are performed for
generates a correct conformation;(@y the energy function does 4-residue loops. For 8- and 12-residue loops, there is a small
not identify a correct conformation even if it is generated by theimprovement in the average accuracy from 100 to 500 optimiza-
optimizer. In the case of our loop modeling method, the optimizertions. This indicates that conformational sampling is essentially
was expected to contribute significantly to the modeling errors; itcomplete. Thus, it is likely that the failure of loop prediction is due
is the stochastic behavior of the optimizer that results in the neetb the energy function, not the optimizer.
for many independent optimizations of the same loop, each one The most direct evidence that loop prediction is limited primar-
starting with a different initial conformation. We show here, how- ily by the energy function is provided by the data on how close to
ever, that the present loop modeling method is limited primarily bythe native structure are the closest encountered conformations,
the accuracy of the energy function rather than the robustness afrespective of their energ§fFig. 8). These data were obtained for
the optimizer. the three different loop lengths by calculating the average over 40
The first indication of an inadequate energy function is providedloops of the minimal RMSR., error among the independently
by examples of a successful and unsuccessful loop predictiooptimized conformations of the same loop. This average minimal
(Fig. 7). For the 500 independent optimizations used to make theRMSD,.4 error is of course always lower than the average
correct prediction in Figure 7A, the correlation between the energyRMSDy,, error for the lowest energy predictions. Moreover, the
and the RMSR, error is strong. Any of the approximately 30 average minimal RMS[., error is very low indeed. For example,
lowest energy conformations are close to the native loop. In conitis <1.0 and 2.0 A for 8- and 12-residue loops, respectively, even
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when only 50 independent optimizations are performed. The corWhile the insertions have to fall into this category, there are gen-
responding average RMSR, errors are 1.40 and 2.92 A. If only erally additional regions that are aligned with templates but could
were the energy function able to recognize the geometrically bedtenefit from an accurate “loop” modeling. These regions cannot be
sampled conformation, the loop modeling problem would be esteliably identified at the present.
sentially solved for loops up to 12 residues long. It was shown that the accuracy of the predictions is limited
The weakness of the scoring function is also illustrated by theprimarily by the accuracy of the energy function, not the thorough-
fact that the energies of the native loop and a relaxed native loopess of the optimizer. The improvements of the energy function
within 0.2 A RMSD,., Of the native conformation, are always that are most likely to result in better predictions include explicit
higher than that of the lowest energy mod@hta not shown modeling of thecis-peptide states, a more accurate representation
The final indication that the optimizer performs reasonably well of the ®,¥ angles, as well as more accurate nonbonded terms.
is provided by the lack of frequent trapping into the same bad locaBetter ®,¥ restraints might be obtained by expressing them with
minimum (Fig. 12. 2D cubic splines instead of bivariate Gaussian functions, and by
Although we have emphasized inadequacy of our energy funcexplicitly taking into account the dependence of the main-chain
tion, the current optimizer is not perfect. There is some improve-conformation of a residue on the preceding and subsequent resi-
ment in the average prediction accuracy for loops longer thardues in the sequence. The nonbonded terms would probably ben-
approximately six residues even when 500 independent optimizaefit from a description of hydrogen bonds and solvent that is more
tions are performedFig. 8. Thus, there is a need for a faster physical than the current statistical potential. For example, an all-
optimizer with a greater radius of convergence. This would operhydrogen atom and solvent representations, such as the generalized
new applications for loop modeling, such as loop modeling on aBorn model(Dominy & Brooks, 1999; Rapp & Friesner, 1999
genomic scaléSanchez & &li, 1998. A better optimizer might may be necessary. To test some of these suggestions, we plan to
also be needed to optimize new, improved, and possibly morevaluate the latest generation of molecular mechanics force fields
complex energy functions. (Cornell et al., 1995; MacKerell et al., 199&r loop modeling.
We will begin by a detailed analysis of the correlations of the
prediction accuracy with the properties of and interactions in the
predicted and native loops.
We described a completely automated loop modeling algorithm The differences in length and conformation of loop regions in a
that consists of an optimization of a defined segment of proteirfamily of related proteins are frequently responsible for the spec-
structure in a fixed environment, guided by a pseudo energy funciicity of ligand binding. Thus, accurate modeling of loops is es-
tion. The method was tested on a statistically meaningful numbesential for structure-based prediction of function from sequence.
of loops of known structure, both in the native and near-nativeFor example, a comparative model can sometimes be used with
environments. The evaluation indicated that loops of eight residuesomputational ligand docking to find a putative ligand or resolve
predicted in the native environment have 90% chance to be modsreferences within a limited set of ligan@Ring et al., 1993; Xu
eled with useful accuracfRMSDcey < 2 A). Even 12-residue et al., 1996. A serious complication is that the ligand may induce
loops are modeled with useful accuracy in 30% of the cases. Wheconformational changes in loops with which it interacts. Thus, it is
the RMSD distortion of the main-chain stem atoms is 2.5 A, thenot always sufficient to be able to model loops on their own, as
average loop prediction error increased by 180, 25 and 3% for 4-addressed in this paper. Instead, the protein and the ligand should
8-, and 12-residue loops, respectively. It is not anymore too optiideally be modeled simultaneously. Nevertheless, induced fit is
mistic to expect useful models for loops as long as 12 residues, ifrequently small. As a result, modeling of ligand binding loops in
the environment of the loop is at least approximately correct. It istheapostate can still be useful for studying functional differences
possible to estimate whether or not a given loop prediction iswithin a family of proteins, as well as for thab initio” prediction
correct, based on the structural variability of the independentlyof protein function by recognition of ligand binding sitefones &
derived lowest energy loop conformations. Thornton, 1997; Fetrow et al., 1998; Russell et al., 1998; Kley-
The method is flexible and can model any subset of atoms. It isvegt, 1999; Wei et al., 1999; Kasuya & Thornton, 129%he
technically applicable to modeling of loops with bound ligands andcurrent method presents a significant improvement in the modeling
several interacting loops, although it has not been evaluated iof loops in protein structures.
such contexts yet. Moreover, the method can incorporate addi-
tional structural information, such as restraints implied by disulfide
bonds and metal binding sites. Acknowledgments
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