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The Isomerase E.~e~t 

Rhodopsin is synthesized by the combination of opsin with s cis isomer of 
retinene, called neo-b; and bleaches to a mixture of opsin and allotrans retinene 
(Hubbard and Wald, 1952-53). The latter must be re-isomerized to neo-b 
before it can contribute again to rhodopsin synthesis. For vision to go on, 
therefore, all-trans retinene--or the all°trans vitamin A with which it is in 
equilibrium--must be continuously isomerized to neo-b (~z. Fig. 1). This is 
the process with which the present paper is concerned. 

When a light-adapted animal is placed in the dark, the rhodopsin concen- 
tration rises immediately in an essentially linear fashion, and levels off gradu- 
ally, reaching the darkoadapted level in about 3 hours in the frog (Zewi, 1939) 
and in about 1 hour in man and the rabbit (Rushton e~ a/., 1955). A supply 
of neo-b retinene is therefore available. What is its source? 

There is as yet no indication that neo-b vitamin A occurs outside the eye. 1 
Large stores of it have, however, been found in the eyes of the lobster (Wald 
and Burg, 1955), and several workers in this laboratory have identified neo-b 
vitamin A in retinas and pigment layers of cattle and frogs. ~ I t  appears likely 
that  the eye itself possesses a mechanism for producing neo-b from all-trans 
retinene or vitamin A. 

There h'ave been indications that all-trans retinene or vitamin A can, at 

* This research was supported in part by grants to Professor George Wald from 
the United States Public Health Service (Grant Number B-568C), and The Rockefeller 
Foundation. An abstract has appeared elsewhere (Hubbard, 1955). I should like to 
thank Professor Wald for many helpful discussions. 

1 In a series of preliminary experiments on the distribution of neo-b vitamin A, 
Mrs. P. S. Brown in this laboratory has found it only in the eye (retina and pigment 
layers). We have previously reported the formation of "rhodopsin" using a fish liver 
concentrate as the source of vitamin A (Wald and Hubbard, 1950; Hubbard and Wald, 
1951). Reexamination of the data shows that we were in fact forming isorhedopsin 
(of. Hubbard and Wald, 1952-53). The liver concentrate therefore contained iso-a 
vitamin A, and not the neo-b isomer. 

Preliminary experiments show that the neo-b isomer constitutes at least 25 per 
cent of the total vitamin A in these tissues. 
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936 RETIEENE ISOMERASE 

least to some extent, act as rhodopsin precursors in vitro: (1) Bliss (1951 a) 
prepared saline extracts from frog pigment layers which promoted regenera- 
tion in solutions of bleached rhodopsin (containing therefore all-trans retinene 
and opsin); (2) Hubbard and Wald (1951) described a water-soluble factor 
from frog pigment layers which promotes regeneration in homogenates of 
bleached frog retinas; and (3) Collins and co-workers (1953,1954) have reported 
the regeneration of rh0dopsin from all-trans vitamin A in homogenates of rat 
or cattle retinas, and of frog retinas plus pigment layers. 

Rhodops ln  

Neoro~inone /~ ÷ op.sin . A / l - ~ r a n s  r e ~ / n e n e ÷  op~/n 

( o l ¢ o h o l  dehyc{fogenose , coz y m o s e  ) II 
Neov/~arn inA b " ~ A l l - f r o n s  v i~am/~A 

FIo. 1. The rhodopsin cycle. The bleaching of rhodopsin yields all-trans retinene 
and opsin; the synthesis of rhodopsin requires a cis isomer of retinene, neo-b. Both 
retinenes are in equilibrium with the corresponding isomers of vitamin A. Rod vision 
therefore depends on the isomerization of all-trans retinene or vitamin A to the neo-b 
isomer. 

We have therefore looked for an isomerizing enzyme which might convert 
all-trans retinene or vitamin A to the neo-b isomer. Preliminary experiments 8 
showed that buffer or saline extracts of cattle retinas or frog pigment layers 
promote rhodopsin synthesis in solution in a system containing either all- 
trans retinene and opsin, or all-trans vitamin A, alcohol dehydrogenase, DPN, 
and opsin. In both cases opsin must be present throughout the reaction to 
trap the neo-b retinene (cf. Hubbard and Wald, 1951). The activity of such 
extracts was destroyed by heating, and reduced in the presence of iodoaceta- 
mide. I t  is due to an enzyme which we have called retinene isomerase. Rho- 

The early experiments were carried out by Dr. R. I. Gregerman, whom we wish 
to thank also for many helpful discussions. 
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dopsin synthesis in the presence of the isomerase however, was slow; the 
yields were poor even after 15 hours of incubation, a n d  were not improved 
by  the addition of a number of possible cofactors such as ATP, Mg ++, glu- 
tathione, or cysteine. 
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FIG. 2. Regeneration of rhodopsin after bleaching. Rhodopsin was bleached alone 
and in the presence of isomerase, and then allowed to regenerate. The control re- 
generated 7 per cent of the rhodopsin, the experimental 24 per cent. Isomerase is 
effective only when present during bleaching. Addition of isomerase at the end of 
bleaching, did not raise the regeneration above the control level. Irradiation of 
isomerase by itself has no effect. 

In order to mimic the physiological situation more closely we decided to 
bleach rhodopsin in the presence of the isomemse. And the results here were 
more encouraging, as about one-fourth to one-third the all-tmns retlnene 
liberated on bleaching was converted to the neo-b isomer. Addition of isomemse 
to bleached rhodopsin resulted only in the slow synthesis of rhodopsin men- 
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tioned above. Irradiation of the isomerase alone did not enhance its effective- 
ness. Rhodopsin therefore must be bleached in the prese~e of the isomerase in 
order to yield appreciable amounts of neo-b retinene. Such an experiment is 
illustrated in Fig. 2. 

When rhodopsin is exposed to light at neutral pH, it is first converted to 
orange products (lumi- and meta-rhodopsin) and finally to all-trans retinene 
and opsin (Wald, 1937-38; Wald, Durell, and St. George, 1950). This reaction 
sequence is completed in about half an hour at room temperature. The experi- 
ments cited above do not distinguish whether the orange intermediates or all- 
trans retinene itself are the substrates for this photoisomerization. 

TABLE I 
Regeneration of Rhodopsin Irradiated in Presence of lsomeyase 

12.6 millimicromoles of bleached rhodopsin were irradiated for 4 minutes in the presence 
of isomersse at various times after bleaching (samples b, c, and d). Sample a was irradiated 
without the isomerase and served as control. All four were then incubated in the dark to  
aUow the opsin to combine with neo-b retinene formed during the irradiation. Time is reckoned 
from the beginning of the initial bleach. The amount of rhodopsin is given as miUimicromoles 
and as per cent of the rhodopsin content before bleaching. 

Sample Time of irradiation Isomemse Rhodopsin formed 

7th to 11th minute 
7th " 11th " 

16th " 20th " 
30th "34th " 

÷ 
-b 
÷ 

m~lllra~roraole$ per cer~ 

1.02 8.1 
1.74 13.8 
2.29 18.2 
2.79 22.2 

Table I shows the results of an experiment performed to settle this point. 
I t  is clear that irradiation in the presence of isomemse was less effective im- 
mediately following exposure to light than at later stages of bleaching. The 
extent of isomerization in fact parallels the release of all-tmns retinene, in- 
dicating that retinene is the substmte for the isomerase-catalyzed photo- 
isomerization. 

This is shown conclusively by irradiating all-tmns retinene in the presence 
of isomerase, and then incubating the mixture in the dark with excess opsin 
to test for the neo-b isomer. Fig. 3 shows the results of such an experiment 
performed in the presence of different amounts of isomerase. 

Experime~.--Seven samples of all-trans retinene containing 13 millimicromoles 
each, were mixed with varying amounts of isomerase---from 0.0012 ml. to 0.1 ml. of 
a stock solution--at pH 7. They were irradiated with orange light for 15 minutes, 
and incubated with 6.5 millimicromoles of opsin for about 3 hours. (We chose a 3 hour 
incubation with opsin since this allows sufficient time for opsin to combine with all 
the neo-b retinene formed during irradiation, but is too short for appreciable con- 
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tamination with rhodopsin formed as a result of the slow dark reaction discussed 
above.) Hydroxylamine was then added to each sample, and the difference spectra 
measured. These are shown in Fig. 3, together with a plot of the amount of rhodopsin 
formed as a function of the isomerase concentration. Isomerase is measured in arbi- 
trary units such that 0.001 ml. of the isomerase preparation is equivalent to 1 unit. 
Rhodopsin concentration is plotted as millimicromoles. I t  is equivalent, mole for mole, 
with the neo-b content of the samples, since one molecule of neo-b retinene yields one 
molecule of rhodopsin (el. Hubbard, 1953-54). 

As shown in Fig. 3 the yield of neo-b retinene increases with isomemse 
concentration up to about 20 units. Adding more isomerase has tittle effect. 
At this point about 37 per cent of the retinene has been converted to neo-b. 

Irradiation in the presence of the isomerase is effective also with vitamin 
A, provided that alcohol dehydrogenase and DPN are present. Under these 
circumstances, a very low concentration of retinene is maintained (of. Bliss, 
1951 b), and, what is more important, retinene is constantly turned over by 
the reaction: 

alcohol dehydrogenase 
Vitamin A -b DPN retinene -k DPN.H q- H +. 

We have irradiated such mixtures with orange light (i.e. tight absorbed by 
retinene, but not by vitamin A) and find that neo-b is formed only when iso- 
merase is present. This is shown in Table II. 

To summarize,  we have extracted from cattle retinas an enzyme, retinene 
isomerase, which catalyzes the slow isomerization of aU-trans retinene to the 
neo-b isomer, when incubated in the dark with opsin to trap the neo-b retinene. 
When all-trans retinene is irradi~ed in the presence of isomerase, about 32 
per cent is converted to neo-b; and for this process trapping by opsin is not 
required (of. Table III) .  

Mode of Action of the Isomerase 

The isomerase not only promotes the isomerization of all-trans to neo-b ret- 
inene in the light, but also catalyzes the reverse reaction in the dark. This 
was tested by incubating neo-b retinene with isomerase in the dark, and meas- 
uring the neo-b that remained by its capacity to form rhodopsin. In one ex- 
periment, this was halved in 10 minutes and reduced to less than 10 per cent 
in an hour, while the total retinene concentration--irrespective of coniigura- 
t ion--had fallen only slightly. Spectroscopic examination of the retinene ab- 
sorption band showed a rise in extinction and a slight shift of maximum toward 
longer wave lengths, indicating the isomerization of neo-b to all-trans. 

Table IV s-mmarizes seven experiments in which the dark reaction was 
allowed to come to equilibrium, starting with either all-trans or neo-b retinene 
and isomerase. The course of the reaction is illustrated in Fig. 4. Table V 
shows the rate of non-specific destruction of retinene during the incubation. 
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Experiment.--Fig. 4 illustrates an experiment in which neo-b and all-trans retinene, 
respectively, were incubated in neutral ~r/15 phosphate buffer at 36°C. by themselves, 
and in the presence of isomerase. Each sample contained 31.6 millimieromoles retinene 
per ml. The entire experiment was carried out in dim red light. Aliquots were removed 

TABLE II  

Formation of Neo-b during Irradiation of a Mixture of All-Trans Vitamin A, Isomerase, 
and the Alcohol Dehydrogenase System 

Three samples were irradiated with orange light for 1 hour. Each contained 28 milli- 
micromoles all-trans vitamin A in a total volume of 0.8 ml. neutral ~/15 phosphate buffer. 
One contained isomerase, alcohol dehydrogenase, and DPN (250/zg.). The others served 
as controls, omitting either the isomerase or the alcohol dehydrogenase-DPN mixture, as 
shown in the table. Following irradiation, all three were assayed for neo-b by incubation 
with opsin and addition of the component omitted during irradiation. Only irradiation of 
the complete system generated neo-b. 

Components present during irradiation 

All-trans vitamin A 

+ 
+ 
+ 

Isomerase 

+ 
+ 

Alcohol dehydrogenase 
+ DPN 

+ 

+ 

Rhodopsin formed 

milllmlcromoles 

1.42 
None  
None  

TABLE III  
lsomerase-Catalyzed Photoisomerization of A U-Trans Retinene 

All-trans retinene was irradiated in the presence of the isomerase and the amount of 
neo-b assayed with opsin at the end of the photoisomerization. The experiment of June 5, 
1954, is shown in detail in Fig. 3; the experiment of August 26, 1954, in Fig. 9. 

1 
Date I 

I954 

Apr. 10 
Apr. 26 
June 5 
June 8 
June 9 
July 13 
Aug. 26 

Time of irradiation Total amount 
of retlnene 

Amount of neo-b 
formed 

~dn. 

15 
60 
15 
20 
15 
15 

milllmlcromoles 

13.6 
22.7 
13.5 
11.9 
11.9 
14.9 
28.7 

millimicromole, s 

4.6 
6.8 
4.9 
4.4 
3.5 
4.1 
8 .1  64 and 128 

Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 

Isomerization 

34 
30 
36 
37 
30 
28 
28 

at the times shown in the figure, chilled on ice to stop the isomerization, and incubated 
with an excess of opsin for 3 hours at 20°C. The rate of isomerization of neo-b is neg- 
ligible at 0°C., and although it is measurable at 20°C., the condensation of neo-b with 
opsin is much more rapid than the isomerization, so that only a slight error is intro- 
duced by performing the opsin assay in presence of the isomerase. Comparison of the 



TABLE IV 

Isomerase-Catalyzed Equilibrium be~een All-Trans and Neo-b Rdinms 

AU-trans or neo-b retinene was incubated with isomerase in the dark. Initially, and at  
various times during the incubation, the neo-b content was determined by assay with opsin. 
The table shows the total  amount of retinene (whether aU-trans or neo-b) present at  the 
beginning of the incubation, and the amount of neo-b at  equilibrium. The composition of 
the equilibrium mixture is described also in terms of per cent neo-b. The experiments of 
January 17, 1955 and January 18, 1955 are shown also in Fig. 4. The two experiments of 
March 15, 1955, were performed at different levels of isomerase, one 5 times the other. Neither 
retinene nor isomerase concentration affects the composition of the equilibrium mixtures. 

Isomer incubated Duration of Total Nso-b content ]uilibrinm 
Date with isomerase incubation retinene mix~ 

1955 

Jan. 12 
Jan. 14 
Jan. 17 
Jan. 18 
Mar. 15 
Mar. 15 
Mar. 25 

Neo-b  

A]l-trans 
Neo-b 
All-trans 
Neo-b 
Neo-b 
Neo-b 

kf$° 

2 to 6 
6 
3 
3 
2 
3 
2 

m i ~ m i ~ o m o ~  

3.7 
32 
3.1 

12.6 
8.3 
8.3 
5 .4  

millimicromolea 

0.34 
1.8 
0.15 
0.3 
0.32 
0.28 
0.24 

per ¢¢r~ 

9.2 
5.6 
4.8 
2.4 
3.9 
3 .4  
4 .4  

Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 .6 

TABLE V 

Destruction of Retinene during Incubation u4th Isomerase 
The table lists total  retinene concentration as determined at  various times during the 

incubation. The rate of destruction is similar in all five experiments, three performed with 
neo-b, and two with neo-e. The two experiments of March 15, 1955, were run at  different 
enzyme concentrations, the second one-fifth of the first, and represent aliquots from the 
experiment of the same date shown in Table IV. 

Time of Retinene destroyed 
Date incubation during incubation 

1955 

Mar. 15 

Mar. 15 

Mar. 18 

Mar. 25 

Mar. 25 

Isomer 

m/n. 

Neo-b 0 
30 
6O 

120 

Neo-b 0 
6O 

120 
180 

Neo-a 0 
30 
6O 

Neo-b 0 
6O 

120 

Neo-a 0 
65 

125 

Total 
retinene 

#g. raicrograras 

12 
11 1 
10 2 
9 3 

12 
10 2 
9 3 
8.4 3 .6  

12.2 m 
10.2 2.0 
9.3 2.9 

0.55 
0.41 0.14 
0.40 0.15 

11.9 
9.8  2.1 
8.6 3.3 

~ef G£~ 

8 
17 
25 

m 

17 
25 
3O 

16 
24 

25 
27 

18 
28 

943 
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initial assays of neo-b in Fig. 4 shows that the assay is about 6 per cent lower when 
isomerase is present. The ordinate in Fig. 4 is expressed as miUimicromoles neo-b 
retinene per milliliter of sample. These values were calculated from the rhodopsin 
difference spectra obtained after addition of hydroxylamine. 

Neo-b retinene constitutes about  5 per cent of the equilibrium mixture 
calculated on the basis of initial retinene concentration (v/z. Table IV and Fig. 

i ~ o m e r a ~ e  
neo-b ~-- ~ ~ran3 

(57.5 rn;l|;/.~mole,~ ref;nene ) pH  7 j  36 °C.) 

-£1 

c 

~D 
L • n e o - b  con' l :nol -- 
0 

o neo-b + ]aomera~e 

20 + fran~ control -- 

o 

• ~ 7 0  - 

o - ,,f + ,', I;" F 

i I i I I f f I I i I I 
0 6O 17.0 180 

T i m e  o f  i n c u b a t i o n  .--- min~'+es 

FIG. 4. The isomerase-catalyzed equilibrium between aU-trans and neo-b retinene. 
Either isomer (31.5 millimicromoles) was incubated with isomerase in the dark and 
periodically assayed with opsin for neo-b retinene. The two experimental samples came 
to equilibrium when they contained 0.74 and 1.5 miUimicromoles neo-b, respectively; 
i.e., 2 to 5 per cent of the total retinene concentration. 
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4). Since about 25 per cent of the retinene is destroyed during the incubation 
(Table V), the actual neo-b content of the isomerate is slightly higher. All 
these reactions were allowed to come to equilibrium in the dark, without an 
external supply of energy. I t  is therefore likely that this is the thermodynamic 
equilibrium, in contrast With the pseudoequilibrium mixtures produced in 
the light. 4 

Some Properties of the Isoraerase Reaction 

pH Dependence.--The p i t  activity curve of the enzymatic isomerization of 
neo-b retinene is shown in Fig. S. The isomerase activity rises gradually up 
to pH 10, then levels off. By pH 1'1, it  has not begun to drop. The high pH 
itself does not isomerize neo-b, as shown by the control curve. Our experi- 
ments are usually performed near p i t  7, far from the pH optimum. This was 
done so that we could study the isomerase-catalyzed ligkt reaction at  a physio- 
logical pH, and compare it with the dark isomerization under identical condi- 
tions of pH and enzyme concentration. 

Experiment.--Aliquots of isomerase in neutral 5/15 phosphate buffer were brought 
to various pH's. All operations were performed in dim red light. The isomerase samples 
were mixed with neo-b retinene (24 millimicromoles) and incubated for 7 minutes at 
36.5°C. A 7 minute incubation yields an approximate measure of the rate of reaction, 
since the rate up to this time is roughtly constant (of. Fig. 4). The samples were then 
chilled on ice to stop the reaction, and neutralized when necessary. Aliquots of each 
sample containing 8 mfllimieromoles of retinene were now mixed with 11 millimicro- 
moles of opsin, and the assay mixtures incubated in the dark for 3 hours at 20°C. 
Fig. 5 shows the results of three sets of experiments, each covering the entire pH range; 
the individual points represent data from single samples. 

Dependence of Rate on the Concentration of Neo-b Retinene and Isomerase.-- 
Fig. 6 shows the results of a series of experiments performed at  different levels 
of enzyme and substrate, and plotted in terms of the rate of reaction against 
substrate concentration. By "rate"  we mean the amount of neo-b retinene 
isomerized in 10 minutes. This is a rough estimate of the initial rate at low 
levels of enzyme (cf. Fig. 4). At the higher enzyme concentrations, a 10 minute 
incubation is too long for a determination of initial rate, and therefore yields 
less sharp substrate~saturation curves. All four curves show an initial increase 
in rate with substrate concentration; but  only in the experiments performed 
with 5 and 10 units of enzyme does the rate level off at the highest substrate 

* Mixtures of isomers produced by irradiation of carotenoids have sometimes been 
referred to as isomer "equilibria." The production of isomerates by light or heat, how- 
ever, can involve a gain in the free energy of the system. These mixtures therefore are 
not states of thermodynamic equilibrium, but "pseudoequilibria" which can vary 
in composition. 
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concentrations employed in these experiments. From the two complete satura- 
tion curves, we can calculate approximate values of the Michaelis constant 
(K~) of the isomerase: the initial rate (as defined above) was half maximal at  

c. 6 -  ~P 
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pH 
FIG. 5. Effect of pH on isomerase activity. Rate of isomerization of neo-b plotted 

as a function of pH. The isomerase activity increases with pH up topH 10, then levels 
off. At pH 11, it has not yet begun to decline. The high pH itself does not isomerize 
neo-b, as shown by the control. 

substrate concentrations of about 6 millimicromoles per 0.3 ml. sample. This 
is equivalent to a K~ of about 2 X 10 -5 mole per liter. 5 

5 Not enough is known about the kinetics of the isomerase system to decide whether 
the Michaelis-Menten treatment is applicable. This K~ therefore is only a quantitative 
expression of the fact that the isomerase can be saturated with neo-b retinene. 
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E, xperiment.--Neo-b retinene and isomerase were mixed in the proportions shown 
in Fig. 6. The isomerase concentration is expressed again in arbitrary units such that 
0.001 ml. of an isomerase solution is defined as containing 1 unit. The isomerase was 
dissolved in neutral 5/15 phosphate buffer; the neo-b in 1 per cent digitonin. Samples 
were prepared in dim red light and incubated at 37°C. The reaction was stopped 10 
minutes after mixing by chilling the samples on ice and then adding an excess of opsin 

FIG.J6. Rate of isomerization of neo-b retinene as a function of the concentration 
of neo-b and isomerase. The rate increases linearly with substrate concentration, then 
levels off. At the higher enzyme concentrations, the rate only begins to level off within 
the range of substrate concentrations employed in this experiment. 

to assay for neo-b retinene. The opsin assays were performed in the dark at 20°C. 
After 3 hours the rhodopsin concentration was determined in the usual way. 

Temperature Quotient (Q10).wThe initial rates of the enzyme-catalyzed 
isomerization of neo-b to all-trans retinene in the dark, and of all-trans to neo-b 
retinene in orange light (under conditions in which the rate was limited by 
light intensity) have been measured at two temperatures: 26 and 36°C. The 
rate of isomerization in the dark v~as roughly doubled at the higher tempera- 
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ture (Q10 = about 2), but the rate of isomerization in the light was not changed 
(Q1o = 1). 

Recapitulatio..--We have extracted from cattle retinas an enzyme, retinene 
isomerase, which interconverts all-tmns and neo-b retinene. When the enzyme 

.c  o [ I I I I I I I I I 
• ~ ~,somer.a,se cor~ cen'/-r'cx'/" ~o n v,s. 

"~ r'a, fe ,s  o f  isomeriza'~ion 
~ 8  

6 Z27miI1iAxmole~ n e o - b  
9 

0 

t I I I 
0 20 4 0  

16.7 milliy.~moles frcxn.~ ÷ l i9hf 
, I  

i I I I i 
60 80  

I~omer'c~e cor lcen ' / ' ra '~ /on 
[arbi~'nary ~nH:~) 

FIG. 7. Rates of the isomerase-catalyzed isomerization of neo-b retinene in the 
dark, and all-tram retinene in the light, as functions of the isomerase concentration. 
The rates increase with isomerase concentration up to a saturating value. Further 
increase in isomerase has no effect on the rate of reaction. Either method is used as 
routine to assay the activity of isomerase preparations (of. Table VII). 

is incubated with either isomer in the dark, an equilibrium mixture is formed 
containing about 5 per cent neo-b. I f  opsin is added during the incubation, it 
traps the neo-b retinene and forms rhodopsin. The enzyme can therefore 
catalyze the slow synthesis of rhodopsin from all-trans retinene in the dark. 
If  all-trans retlnene is incubated with the isomerase in the light, a pseudo- 
equilibrium is formed which contains about 32 per cent neo-b. 
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These two types of reaction are summarized in Fig. 7 which shows the rates 
of the enzyme-catalyzed isomerization of neo-b retinene in the dark, and of 
all-trans retinene in the light, as functions of the isomerase concentration. 
The rate of either reaction increases with enzyme concentration up to a satu- 
rating concentration, and then levels off. At this point the rate is no longer 
limited by  the availability of enzyme, but  by  the substrate concentration, or 
in the case of the photoisomerization, by substrate and light intensity. I t  may 
be significant that  in both experiments the ratio of substrate to enzyme at  
half-saturation is of the same order of magnitude--1.5 to 2.5 millimicr0moles 
retinene per unit of enzyme. Both reactions therefore appear to have approxi- 
mately the same Michaelis constant. 

Experimen~.--Various amounts of isomerase were incubated either with 7.27 milli- 
micromoles neo-b or 16.7 millimicromoles all-trans retinene. The neo-b experiment 
was carried out in dim red light. The samples were incubated in ~r/15 phosphate buffer, 
pH 6.9, at a temperature of 36°C. The incubation was stopped after I0 minutes by 
chilling, followed by addition of opsin. For the photoisomerization experiment, the 
mixtures of all-trans retinene and isomerase were also made up in M/15 phosphate 
buffer, pH 6.9, and the samples irradiated for 10 minutes with an orange light. (The 
conditions of irradiation were the same as in the experiment shown in Fig. 3.) Opsin 
was added immediately following irradiation, and the mixtures were left in the dark 
for 2 ~  hours at 20°C. Hydroxylamine was then added and the difference spectra 
measured. The amount of neo-b retinene present at the end of the 10 minute incuba- 
tions is plotted in Fig. 7 as a function of the isomerase concentration, which is again 
expressed in arbitrary units such that 0.001 ml. of an isomerase preparation contains 
1 unit. This type of experiment is performed as routine to assay the isomerase ac- 
tivity of various preparations (of. Table VII). 

Substrate Specificity of the Isomerase 

Isomers of Retinene.--We have presented evidence that  the isomerase 
catalyzes the interconversion of all-trans and neo-b retinene. Retinene, how- 
ever, occurs also in several other isomeric forms (of. Hubbard, Gregerman, 
and Wald, 1952-53; Robeson et al., 1955). These are summarized in Fig. 8. 6 
The question therefore arises whether the isomerase is specific for neo-b or 
whether it catalyzes also the interconversion of all-trans retinene and other 
cis forms. 

The only isomer of retinene for which we have a convenient assay aside 
from neo-b, is iso-a, the precursor of isorhodopsin. The absorption spectra of 

6 We have previously assigned the 7-cis configuration to the neo-b isomer of retinene 
and vitamin A (Wald, Brown, Hubbard, and Oroshnik, 1935). The argument was 
based in part on the synthesis of an 11-cis isomer of vitamin A (neo-c) believed to be 
mono-cls. Reexamination, however, has shown that neo-c is in fact the 11,13-dl-cis 
isomer. The ll-mono-cis isomer has now been synthesized and is indistinguishable in 
its properties from neo-b (Oroshnik, 1956). 
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rhodopsin and isorhodopsin are sufficiently different to be readily distinguish- 
able, and mixtures of the two can be analyzed from the shape of the differ- 
ence spectrum. This method allows accurate determination of millimicromole 
quantities of either isomer in the presence of a fiftyfold excess of the other 
(for details, see Appendix). 

Fig. 9 shows the effect of the isomerase on the rates of formation of iso-a 
and neo-b from all-trans retinene. In this experiment all-trans retinene was 
irradiated with a white light of sufficient intensity to yield an easi ly meas- 
urable rate of ~wn-enzymaHc photoisomerization, allowing us to compare 
quantitatively the rates of photoisomerization in the presence and absence 
of the enzyme. Without isomerase neo-b was formed about 8 times as fast as 

neo-b neo- c 

I I ,~ / I ! 
C C C ¢ ~C.. ~ C 

T °T i\, o ,'2 i ( , :  " 

re 'inene 
Fro. 8. The structure of retinene. The structure as drawn has the aU-trans con- 

figuration. Arrows indicate the double bonds which are in cis linkage in the various 
cis isomers. 6 

iso-a and reached a pseudoequilibrium concentration of 15 per cent. The con- 
centration of iso-a continued to increase until the experiment was discontinued 
after 2 hours. This discrepancy in the rates of formation of neo-b and iso-a is 
encountered in all experiments involving photoisomerization. 

The addition of isomerase increased the rate of formation of neo-b about 5 
times, and a new pseudoequilibrium was established containing 28 per cent 
neo-b. The rate of formation of iso-a, however, was not affected by the iso- 
merase, and both sets of data lie on the same line. The isomerase therefore 
increases the rate of formation of neo-b from all-trans retinene without exert- 
ing any effect on the simultaneous formation of iso-a. 

Experiment.--Two samples of all-tram retinene in buffered digitonin (pH 6.7) 
were irradiated with the standard light source shielded by a neutral filter of optical 
density 1.0. The brightness at the samples was about 200 foot-candles. One sample 
served as control, the other contained enough isomerase to catalyze the maximal rate 
of isomerization. Aliquots containing 28.7 millimicromoles of retinene were withdrawn 
at the times shown in Fig. 9, and each was immediately mixed with an excess of opsin 
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FIG. 9. Formation of neo-b and iso-a retinenes during the irradiation of all-trans 

retinene. Without isomerase, neo-b retinene is formed about 8 times as fast as iso-a. 
The isomerase increases the initial rate of formation of neo-b about 5 times, without 
exerting any effect on the simultaneous formation of iso-a. The pseudoequilibrinm 
concentration of neo-b is doubled in the presence of the isomerase. 
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m 

and incubated in the dark for about 3 hours. Hydroxylamine was then added, and the 
difference spectra measured. The amounts of rhodopsin and isorhodopsin contained 
in each were calculated by the method described in the Appendix. These values are 
plotted along the ordinate and expressed as miU~micromoles of neo-b or iso-a retineneJ 

I should like to acknowledge the assistance of Mr. Thomas Bibring with the de- 
sign and execution of this experiment. 

m 
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Can the isomerase catalyze the interconversion of iso-a and alI-trans retinene 
in the dark? We incubated iso-a refinene with isomerase in the dark and as- 
sayed the amount of iso-a present at various times. In parallel, we performed 
the identical experiment with neo-b retinene. The results are shown in Fig. 10 
(open circles). While the neo-b concentration showed the usual hyperbolic 
decay curve falling from an initial concentration of 3.83 millimicromoles to 
0.57 millimicromole, a decrease of 85 per cent in 40 minutes, the iso-a concen- 
tration dropped by only about 9 per cent from an initial value of 9.81 milli- 
micromoles to 8.91 rnillindcromoles. In the absence of the isomerase, the iso-a 
control sample lost 2 per cent iso-a retinene during the same period. The iso- 
merase may therefore catalyze a very slow isomerizafion of iso-a, but by com- 
parison with the isomerization of neo-b---which in this experiment is half- 
complete in 8 minutes--the effect on iso-a retinene is almost negligible. 

Does the presence of iso-a affect the isomerizatlon of neo-b? In parallel with 
the above experiments, we prepared a mixture of neo-b and iso-a retinenes 
keeping all other conditions the same. The results are also plotted in Fig. I0 
(filled circles). The results from the mixed sample are identical with the ones 
described above. Iso-a retinene therefore is neither an effective substrate for 
the isomerase, nor does it interfere with the isomerizafion of neo-b. 

1~xperiment.--Three samples were prepared containing an excess of isomerase (i.e. 
an amount which was not rate-]hniting) in neutral phosphate buffer, and (I) 12.8 
millimicromoles neo-b retinene per ml.) (2) 32.8 millimicromoles iso-a per ml., and 
(3) 12.8 millimicromoles neo-b -}- 32.8 miIlimicromoles iso-a per ml. The controls 
contained the same amounts of retinene without the isomerase. All six samples (three 
experimental and three control) were prepared in dim red light and incubated at 37°C. 
At the times shown in Fig. i0, aliquots were withdrawn, chilled) and incubated with 
excess opsin at 20°C. After 4 hours, hydroxylamine was added and the difference 
spectra measured. The method for calculating the amounts of neo-b and iso-a retinene 
is described in the Appendix. 

A number of years ago, a cis isomer of vitamin A (now called neo-a) was 
isolated from liver oils (Robeson and Baxter, 1947). When the corresponding 
isomer of retinene is incubated with the isomerase in the dark, virtually no 
neo-b is formed. Some of the neo-a retinene is converted to all-trans, but  the 
extent of the conversion at "equiUbrium" varies with the isomerase concen- 
tration. The isomerization is therefore probably non-specific, owing to the 
fact that the neo-a and all-trans isomers of retinene equilibrate rather easily 
(of. Ames et al., 1955; Hubbard, 1956). 

All-Trans and Neo-b V i~min  A.--We mentioned above that mixtures of 
all-trans vitamin A, alcohol dehydrogenase, DPN, and opsin in the dark 
slowly synthesize rhodopsin in the presence of the isomerase. Such experi- 
ments, however, cannot distinguish whether the isomerase acts directly on 
all-tmns vitamin A, or on the all-trans retinene which is formed as a result of 
the oxidation of vitamin A by DPN and alcohol dehydrogenase. 
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Since the  all,trans--neo-b equilibrium strongly favors the all-trans isomer, 
direct spectroscopic examination of the ultraviolet absorption spectrum of 
neo-b vitamin A in presence and absence of the isomerase should reveal whether 
the isomerase catalyzes the interconversion of these two isomers of vitamin 
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FIa. 10. Isomer specificity of the isomerase. A 40 minute incubation of isomerase 
with neo-b retinene isomerizes 85 per cent to all-trans; in a comparable incubation with 
iso-a retinene, only 9 per cent is isomerized. The rates are unchanged when the 
isomerase acts on a mixture of neo-b and iso-a. The isomerase is therefore specific 
for neo-b retinene: iso-a does not participate as substrate or inhibitor. 

A. The specific extinction of all-trans vitamin A is about 50 per cent higher 
than that  of the neo-b isomer (Wald et al., 1955; Brown and Wald, 1956), and 
its absorption maximum lies a t  about 328 m~, while neo-b vitamin A absorbs 
maximally at  about 320 m~. The isomerization of neo-b to all-trans vitamin A 
therefore involves a rise in extinction and a shift of the absorption band to- 
wards longer wave lengths. 

When neo-b vitamin A was incubated with isomerase, neither of these 



954 I~ETI~ENE ISOMERASE 

changes was observed. The data from such an experiment are shown in Table 
VI. The extinction of the control sample fell by  about 18 per cent during the 
incubation. The extinctions of the experimental samples remained essentially 
constant. The shape and position of the absorption spectrum were unchanged 
in control and experimental samples. The fall in extinction of the control 
sample is probably caused by destruction of vitamin A, and can be prevented 
by addition of non-specific proteins, such as serum albumin. ~ The isomerase 
apparently performs the same function in the above experiment. This spec- 
troscopic method is not as sensitive as the opsin assay, and a 10 to 15 per cent 
~somerization could probably have gone undetected. When the lower of the 

TABLE VI 
Action of lsomerase on Neo-b Vitamin A 

Change in extinction at 320 m/~ (the absorption maximum of neo-b vitamin A) of three 
samples containing 4.6 micrograms neo-b vitamin A per ml., during incubation for 1 hour 
at 36.5°C. All samples in neutral M/15 phosphate buffer containing 0.0025 per cent tween 80. 
In addition, samples b and ¢ contained isomerase, c at twice the concentration of b. The 
data for sample a are uncorrected, those for b and r have been corrected for the extinction 
of the isomerase preparation at 320 In# (0.291 and 0.552, respectively). 

Time of incubation 

mln. 

0 
15 
30 
60 

without isomerase 

0.552 
0.478 
0.459 
0.450 

Extinction at 320 m/~ 

b 
with isomerase 

0.552 
0.552 
0.550 
0.548 

$ 

with isomerase (twice b) 

0.552 
0.553 
0.554 
0.551 

two isomerase concentrations, however, was tested with neo-b relinene, the 
reaction came to equilibrium in an hour, and was half-complete in about 8 
minutes. The isomerase therefore essentially does not catalyze the isomeriza- 
tion of neo-b and all-trans vitamin A. 

Recapitulation.--A study of the isomer specificity of the isomerase has 
shown that it is essentially specific for all-trans and neo-b retinene. I t  does 
not act on iso-a retinene, and probably not on neo-a rethaene, or on neo-b 
and all-trans vitamin A. 

DISCUSSION 

Energeli~s.--When considering the equilibrium between cis and trans 
isomers of such molecules as retinene and vitamin A, one must bear in mind 
that the trans compound is thermodynamically the most stable form and there- 

s This effect was first observed by Dr. N. I. Krinsky in this laboratory. 
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fore most prevalent in the equilibrium mixture. The relative instability of 
cis compounds is due to the fact that the cis linkage introduces a slight aplan- 
arity into the molecule (cf. Pauling 1939, 1949). Neo-b is a hindered cis isomer 
(Robeson et al., 1955; Wald et al., 1955) in which steric hindrance causes a 
large twist in the molecule in addition to the bending introduced by the cis 
linkage. Such isomers are energetically even less probable than the unhindered 
cis forms. In fact, it was believed until recently that they are too unstable 
to occur in isomerates. One would therefore expect the thermodynamic equi- 
librium between all-tmns and neo-b retinene to favor the all-trans isomer. 

The equilibrium which the isomemse catalyzes in the dark contains about 
5 per cent neo-b retinene. We have shown that probably no other isomer is 
involved, so that to a first approximation all-trans retinene constitutes the 
remaining 95 per cent. An equilibrium mixture of 95 per cent all-tmns and 5 
per cent neo-b implies a difference in free energy (AF) of about 2 kcal. per 
mole between the two isomers, neo-b having the higher energy content. 

In the light, the isomerase-catalyzed equilibrium is shifted to a ratio of 
about 68 parts all-trans to 32 parts neo-b retinene. Light is clearly supplying 
free energy to the system. It  is also lending activation energy, as the Q10 of 
the enzyme-catalyzed isomerization is shifted from a value of about 2 in the 
dark to about 1 in the light. 

Opsin as an Isomerase.---Opsin also acts as a cis-trans isomerase: it combines 
with neo-b retinene to form rhodopsin, but releases aU-trans retinene on bleach- 
ing (of. Wald and Brown, 1956). Its specificity, however, is not as rigid as 
that of the isomerase described above, for opsin combines also with iso-a 
retinene to form isorhodopsin, which on bleaching releases the all-trans isomer 
(Hubbard, Gregerman, and Wald, 1952-53). Opsin therefore isomerizes both 
neo-b and iso-a to all-trans retinene. 

The retinenes have their absorption maxima (~ . . . .  ) at about 385 m~ in 
aqueous solution; quanta of this wave length contain 74 kcal. per mole. Rho- 
dopsin and isorhodopsin have their absorption maxima at 500 and 486 mu, 
respectively, corresponding to a quantum energy of about 58 kcal. per mole. 
Opsin therefore lowers the activation energy for photoisomerization by shift- 
ing the absorption spectrum of retinene to longer wave lengths, bringing the 
action into the visible. In this sense it is comparable with iodine which also 
catalyzes photoisomerization by rendering smaller quanta effective (cf. Zech- 
meister, 1944). During iodine catalysis, however, the iodine itself absorbs 
the light, whereas with opsin, retinene still acts as chromophore. 

If opsin is an isomerase, then rhodopsin and isorhodopsin are analogous to 
enzyme-substrate complexes. So regarded, they have the peculiarity that the 
complex is separated from the reaction product (all-trans retinene) by an 
activation barrier of about 48 kcal. per mole (v/z. St. George, 1951-52). 

Physiological Correlations.'Rhodopsin synthesis in vlvo starts as soon as 
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an animal is replaced in the dark. In the frog, it is complete in about 3 hours 
(Zewi, 1939); in mammals and man, it is half-complete in about 10 minutes, 
and complete in an hour (Rushton et al., 1955; Campbell and Rushton, 1955). 
Can the isomerase reaction account for these phenomena? 

We know of three ways of obtaining neo-b for dark adaptation: (1) The 
isomemse-catalyzed photoisomerization of all-trans retinene; (2) the slow but 
steady trapping of neo-b by opsin working against the gradient of the iso- 
merase equilibrium in the dark; and (3) the stores of neo-b vitamin A (alcohol 
and ester) in the pigment layers3 These stores presumably have to be filled 
during light adaptation by the isomerase-catalyzed photoisomerization of all- 
trans to neo-b retinene, followed by its reduction to vitamin A. 

Two factors mediate against the photoisomerization of retinene in the eye: 
(1) retinene is isomerized only by light which it can absorb, i.e. blue, violet, 
and ultraviolet; the lens of the eye, however, transmits little light at these 
wave lengths (Wald, 1945, 1949; Milkman and Kennedy, 1955). Light which 
reaches the retina therefore is not efficient for the isomerization of retinene2 
(2) There is very little retinene in the eye: under steady state conditions, 
retinene is either combined with opsin, as rhodopsin, or reduced to vitamin A 
by the alcohol dehydrogenase system. It therefore must be isomerized either 
as it is released from rhodopsin, or during the turn-over of the vitamin A--  
retinene equilibrium (v/z. Table II). The isomerase should increase the phys- 
iological importance of photoisomerization since it accelerates the rate of 
isomerization and shifts the equilibrium between aU-trans and neo-b refinene 
to a pseudoequilibrium which is considerably more favorable to the neo-b 
isomer. 

Granit and coworkers (1938) have performed a series of experiments which 
support the notion that photoisomerization plays a significant part in dark 
adaptation. Recording the electroretinogram of the frog after adaptation to 
colored lights, they found that adaptation with blue or violet caused a smaller 
lowering of the b-wave and a faster recovery than adaptation with green, 
yellow, or orange lights which had been matched to bleach the same amount 
of rhodopsin. They concluded that "during adaptation with these wavelengths 
(i.e. blue and violet) a process tending to increase the size of the response to 
the test light is likewise activated." The spectral sensitivity of this "process" 
suggests that they were in fact isomerizing retinene. 

It is impossible at present to decide whether the isomerase can supply 
sufficient neo-b for dark adaptation. We should like to stress, however, that 
the rhodopsin cycle is a dynamic system in which the rates of bleaching and 
synthesizing rhodopsin, and of isomerizing and reducing retinene are balanced 
against one another, and in which the storage of neo-b vitamin A in the pig- 

9 This situation has been exaggerated in the in vitro experiments by using yellow 
or orange light for the isomerase-catalyzed photoisomerization. 
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merit epithelium m a y  act  as a buffer, taking up slack when an excess of neo-b 
is being produced during light adaptation, and giving up its stores as the de- 
mand increases during dark adaptation. 

Needless to say, there may  be alternative mechanisms for producing neo-b 
retinene or vi tamin A. There may  also be ways of shifting the isomerase- 
catalyzed equilibrium in the dark by  supplying energy in chemical form with 
an effect analogous to tha t  of light. There is as ye t  no evidence of such mecha- 
nisms, bu t  they would greatly simplify our problem. 

APPENDIX 

Preparation, Purification, and Assay of the Isomerase.--The extraction and puri- 
fication of isomerase are carried out in the cold (4°C.). Cattle retinas are dissected on 
ice and frozen. They can thus be stored for many weeks. For extraction, they are 

TABLE VII 
Purification of Isomerase. Steps in the Purification of Isomerase Preparations 

and Rdative Purity of tke Various Fractions 
Total protein is measured by the extinction at 280 nag, assuming an E (1 per cent, 1 era.) 

of 12. Activity is measured by the rate of isomerization of neo-b to all-trans retinene, and 
expressed in arbitrary units, such that 1 ml. of fraction 4 contains 1000 units. 

Fm~tlon Description 

Crude extract 
0 to 35 per cent (N'H4),.SO4 precipitate 
0 to 20 per cent (NHa)2SO4 precipitate 
20 to 35 per cent (NI-I4)iSO4 precipitate 

Total 
protein 

3.7 
0.6 
0.04 
0.2 

Total 
activity 

unlts 

46,000 
15,000 
2,000 

12,500 

Specific 
activity 

u~ts p~ mg 

12.5 
25 
5O 
62.5 

thawed, homogenized with neutral M/15 phosphate buffer (about 2 ml. buffer per 
retina), and extracted for ~ hour. The suspension is centrifuged at 45,000 to 80,000 
times gravity (Spinco preparative ultracentrifuge, Model L, No. 21 or 30 rotors). The 
supernatant contains the activity (fraction 1, Table VII). I t  is brought to 35 per cent 
saturation with ammonium sulfate, and the precipitate separated, dissolved in a small 
volume of neutral M/15 phosphate buffer, and dialyzed. This solution (fraction 2, 
Table VII) is refractionated with ammonium sulfate, and the precipitates accumulated 
between 0 and 20 per cent and between 20 and 35 per cent saturation collected (frac- 
tions 3 and 4, Table VII). The precipitates are dissolved in minimum amounts of 
neutral phosphate buffer and dialyzed. They are centrifuged at 100,000 times gravity 
(Spinco centrifuge, No. 40 rotor) and the clear solutions drawn off. Fraction 4 has the 
highest activity and is the fraction used in our experiments. When frozen, the prepara- 
tion can be stored for many weeks; at 4°C. it slowly loses activity; at 50°C. about two- 
thirds of the activity is lost in 12 minutes. 

The isomerase is assayed by measuring either the rate of isomerization of neo-b to 
all-trans retinene in the dark, or the rate of the reverse reaction in orange light. The 
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isomerization of neo-b to all-trans is carried out at 36-37°C. The photoisomerization 
is achieved with a 150 watt tungsten filament microscope lamp shielded by Coming 
filters 3965 and 3484. The brightness of the unfiltered source is about 2000 foot- 
candles. Both types of assay are illustrated in Fig. 7. To compare the activities of 
various fractions, we select one as the standard and arbitrarily assign to it an activity 
of 1000 units per ml. For the fractionation summarized in Table VII, fraction 4 served 
as standard. A rate curve is constructed with this fraction, plotting rate of isomeriza- 
tion of neo-b retinene as a function of isomerase concentration. The other fractions 
are then assayed at two or three dilutions and the results entered on the rate curve. 
Each dilution thus yields an estimate of the isomerase concentration; these estimates 
are averaged. For example, the assays for fraction 1 using 0.0067 ml., 0.0134 ml., and 
0.0267 ml. per assay, gave estimates of 194, 172, and 161 units per ml.: an average of 
176 units. From the extinction at  280 m#, we estimated that  this fraction contained 
about 14 rag. of protein per ml. I t  therefore had a specific activity of 12.5 units per 
rag. of protein. 

Opsin and rhodopsin were prepared by a method similar to the one described by 
Wald and Brown (1951-52). The retinas are ground with 40 per cent sucrose in neutral 
~/15 phosphate buffer (1 ml. of sucrose solution per retina) and layered in a plastic 
centrifuge tube under ~/15 neutral phosphate buffer. The suspension is centrifuged 
at 100,000 times gravity (Spinco preparative centrifug6 with No. 40 rotor) for about 
15 minutes. The rods float to the sucrose-buffer interface, the retinal debris sediments. 
The rods are drawn off, and sedimented from buffer. They are then washed with dis- 
tilled water, hardened in 4 per cent alum (potassium aluminum sulfate) for 10 to 15 
minutes, and washed twice with distilled water and once with neutral phosphate buffer. 
They are now lyophilized and extracted with low boiling petroleum ether. The petro- 
leum ether is evaporated off at room temperature, and the rods are extracted with 
2 per cent aqueous digitonin. For rhodopsin, the entire procedure is carried out in 
dim red light. For opsin, the retinas are dissected under a bright white light and al- 
lowed to fade to colorlessness. The fractionation and extraction are then carried out 
in the light, at about 4°C. 

Only crystalline isomers of retinene were used. AU-trans retinene was prepared by 
the oxidation of crystalline synthetic all-trans vitamin A on manganese dioxide (cf. 
Wald, 1947--48; Wald and Brown, 1953-54). The vitamin A was a gift from Dr. N. 
Embree of Distillation Products Industries in Rochester, New York. Neo-b and neo-a 
retinene were prepared by Mr. P. K. Brown from the all-trans isomer (cf. Brown and 
Wald, 1956). Iso-a retinene was a gift from I)r. Baxter of Distillation Products In- 
dustries, and was prepared by the method of Robeson et al. (1955). To dissolve ret- 
inene in aqueous digitonin, a drop of retinene concentrate in ethyl alcohol is added 
to an appropriate volume of 1 per cent digitonin. A voluminous precipitate usually 
forms, most of which disappears after an hour at 4°C. The solution can then be clari- 
fied further by drawing it through a sintered glass filter. This procedure yields aqueous 
solutions with extinctions of 30 to 40 (containing about 1 micromole retinene per ml.). 

Neo-b vitamin A was prepared by reducing crystalline neo-b retinene with potas- 
sium borohydride (KBI-t4) (Brown and Wald, 1956). The vitamins A (all-trans and 
neo-b) were brought into aqueous solution by mixing chloroform solutions of vitamin 
A and tween 80, removing chloroform under suction, and dissolving the residue in 
distilled water (cf. Bliss, !951 b). 
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Assays for Neo-b and Iso-a Rainene.--The condensation of neo-b retinene with 
opsin provides a sensitive assay method (of. Hubbard, Gregerman, and Wald, 1952- 
53). Excess opsin is added to a retinene sample and the mixture incubated in the dark 
for about 2 hours. Hydroxylamine is then added at  a final concentration of 0.15 to 
0.2 M, and the absorption spectrum measured before and after bleaching. The change 
in extinction at  500 m/z yields a measure of the amount of rhodopsin. Rhodopsin has 
a molar extinction (E(1 ~r, 1 cm., 500 m#)) of 40,600 (Wald and Brown, 1953-54), 
and contains one molecule of retinene (Hubbard, 1953-54). The neo-b content of a 
solution is therefore equivalent on a molar basis to the amount of rhodopsin formed 
on incubation with excess opsin. 

When iso-a retinene is also present, the neo-b assay is complicated by the fact that 
iso-a condenses with opsin, forming a second photosensitive pigment, isothodopsin 
(Hubbard and Wald, 1952-53). Isorhodopsin has its absorption maximum at 486 m/z 
and a molar extinction (E (1 x~, 1 can., 486 m/z)) of 43,000. ~° 

The composition of a mixture of isorhodopsin and rhodopsin can be analyzed from 
the shape of the difference spectrum. With pure rhodopsin, the ratio of extinctions 
at  the absorption maximum and at four other wave lengths (540, 530, 470, and 460 
m/z) is as fo l lows : -  

Kin K4~0 K460 Kao 0.585, 0.756, - -  == 0.798, and -- 0.675. 

The corresponding ratios for isorhodopsin are: 

KM.____o ---- 0.335, Kao = 0.493, ~= 0.921, and 0.815. 

From these one can derive two sets of equations, each of which yields the extinction 
of isorhodopsin (K~)  or rhodopsin (K~)  as a function of the extinctions of the mix- 
ture at  a pair of wave lengths: for instance, 540 and 460 m/z, or 530 and 470 m/z. Thus 
for isothodopsin, 

K4, = 2.32 K~60 -- 2.68 Ku0, or alternatively, 
K4se - 2.51 Ka0 -- 2.65 K,0. 

And for rhodopsin, 

Ks00 -- 3.24 Ku0 - 1.33 K460, or 
K600 = 3.05 K,0 -- 1.63 Ka0. 

The two sets of values usually agree within a few per cent and are averaged. In  the 
presence of a fiffyfold excess of either isomer, the results axe accurate to within about 
5 per cent. 

Alcohol dehydrogmase was prepared by extracting retinas with buffer and coUect- 
ing the fraction which precipitates between 50 and 80 per cent saturation with am- 
monium sulfate. This was dissolved in the minimum amount of buffer and dialyzed. 

~0 The extinction of isorhodopsin is 6 per cent higher than that  of rhodopsin (Hub- 
bard and Wald, 1952-53). Since rhodopsin has a molar extinction (E (1 ~, 1 cm., 500 
m/z)) of 40,600 (Wald and Brown, 1953-54), the corresponding value for isorhodopsin 
(E (1 M, 1 cm., 486 m/z)) is 43,000. 
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If the tissues are fresh, the extract contains no hemoglobin, a great advantage for 
spectrophotometry over similarly crude preparations from liver. 

DPN was obtained from Schwarz Laboratories, and digitanin from Hoffmann- 
La Roche, Inc. Solutions of hydroxylamine (1 •) were prepared by dissolving the 
hydrochloride in distilled water and neutralizing to pH 6.3 with sodium hydroxide. 

All solutions were prepared in glass-distilled water. 

SUMMARY 

Rhodopsin is formed by the condensation of opsin with a cis isomer of 
retinene, called neo-b. The bleaching of rhodopsin releases all-trans retinene 
which must be isomerized back to neo-b in order for rhodopsin to regenerate. 
Both retinene isomers are in equilibrium with the corresponding isomers of 
vitamin A, through the alcohol dehydrogenase system. 

An enzyme is found in cattle retinas and frog pigment layers which catalyzes 
the interconversion of all-trans and neo-b retinene. We call it "retinene iso- 
merase." I t  is soluble in neutral phosphate buffer, and precipitates between 
20 and 35 per cent saturation with ammonium sulfate. 

In the dark, the isomerase converts all-trans and neo-b retinene to an equi- 
librium mixture of 5 parts neo-b and 95 parts all-trans. With opsin present to 
trap neo-b, the isomerase catalyzes the synthesis of rhodopsin from all-trans 
retinene. This reaction, however, is too slow to account for dark adaptation. 

Retinene is isomerized by light, but too slowly to supply the retina with 
neo-b. In aqueous solution the pseudoequilibrium mixture contains about 15 
per cent neo-b. 

When all-trans retinene is irradiated in the presence of isomerase, the rate 
of formation of neo-b is increased about 5 times, and the pseudoequilibrium 
shifted so that the mixture now contains about 32 per cent neo-b. 

The isomerase is specific for all-trans and neo-b retinene. I t  does not act 
on two other cis isomers of retinene, nor on all-trans or neo-b vitamin A. 

The role of the isomerase in vision appears to be as follows: in the light, as 
rhodopsin is bleached to opsin and all-trans retinene, the latter is in part 
converted to the neo-b isomer and stored in the pigment epithelium as neo-b 
vitamin A. During dark adaptation, the dominant process is the trapping by 
opsin of neo-b retinene supplied from stores of neo-b vitamin A, and the 
slow isomerase-catalyzed "dark" conversion of all-trans to neo-b retinene. 
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