
Supporting Appendix 
 
Let hs(t) and fs denote the hit rate and false alarm rate (respectively) for detection of the contrast 
decrement probe as a function of its duration t, when s items have been pre-cued (s is the set size; 
by convention, we use s=0 for minimal attention). fs  is the probability of responding “probe 
present” in the absence of a probe (which is independent of t).  

This section describes how, using the psychometric functions for full attention (h1(t) and 
f1) and minimal attention (h0(t) and f0) as given, we compute predicted psychometric functions 
(hs(t) and fs) for divided attention (set size s=2, 3, or 4). 

The observed hit rate is itself subject to contamination by false alarms (i.e. correct 
detections are at least as likely as false alarms, even if detection always fails), so there must exist a 
“true” detection rate hs*(t) such that  
 

hs(t) =   fs + (1-fs) . hs*(t)    ∀ s ∈ Ν   (1) 
Thus: 

hs*(t) =   (hs(t)-fs) / (1-fs)    ∀ s ∈ Ν.   (2) 
 
Parallel Model. The parameter of the parallel model is the division cost c (c ∈ [0 ; 1]) incurred 
for each additional item to be attended. As the set size s increases, the true hit rate and the false 
alarm rate are assumed to converge geometrically (with a convergence factor (1-c)) from the “full 
attention” to the “minimal attention” performance values, at the same probe duration t. That is: 
 

hs*(t) =   (1-c)s-1 . h1*(t) + (1-(1-c)s-1) . h0*(t)   ∀ s ∈ Ν*   (3) 
 

fs =   (1-c)s-1 . f1 + (1-(1-c)s-1) . f0    ∀ s ∈ Ν*.  (4) 
 

Once hs*(t) is derived by using Eq. 3, the predicted hit rate hs(t) can be computed by using Eq. 1, 
and compared to the experimentally observed hit rate.  

 
Sample-When-Divided Model. The parameter of the sampling models is the sampling 
duration τ (τ ∈ R+ ; however, we will only explore a “plausible” range of parameter values, i.e. 
between 50 and 1,000 ms). The underlying assumption behind this model is that each of the s 
potential targets will be sampled in turn by attention for a duration τ, and will then be sampled 
again after a period of sτ. (We do not assume a particular sampling order in each trial, but only 
that this order remains constant throughout any given trial).  
 

In each trial, the first “attentional sample” of the element containing the probe may start 
with a different delay δ (δ ∈ [0 ; sτ]) with respect to trial onset. (Because there is no transient at 
trial onset, it is reasonable to assume that the ongoing sampling would not be systematically reset 
at the beginning of each trial.) 
 
We describe a probe stimulus of duration t as a “boxcar” function σ of trial time x (x ∈ R+): 
 

σ(d,t,x)  = 1  if d < x ≤ d+t,       (5) 
  = 0  otherwise 
 

where d is the delay before the probe onset. (The outcome of our calculations is not 
affected by whether d is assumed to be constant across trials, or to vary randomly. In the actual 
experiment, it did vary randomly from trial to trial). 
 
We describe the ith attentional sample (i ∈ Ν*) of the element containing the probe as a “boxcar” 
function αs  of trial time x: 
 
 



αs(i,δ,x) = 1  if δ + (i-1). sτ < x ≤ δ + (i-1). sτ + τ  ∀ s ∈ Ν*.  (6) 
= 0  otherwise 

 
Finally, we also describe the ith  period during which the element containing the probe is outside of 
the main focus of attention (i.e., attention is sampling the other elements) as a “boxcar” function 
βs  of trial time x: 
 

βs(i,δ,x) = 1  if δ + (i-1). sτ + τ < x ≤ δ + isτ  ∀ s ∈ Ν*.  (7) 
= 0  otherwise 

 
We derive the predicted hit rate hs(t) as: 
 

hs(t) = (1/sτ).∫0

sτ
1- (1-fs).∏i=1

∞

{(1-h1*(∫0

∞

σ(d,t,x) . αs(i,δ,x) dx)) . (1-h0*(∫0

∞

σ(d,t,x) . βs(i,δ,x) dx))} dδ  

      ∀ s ∈ Ν*.  (8) 
 
In the previous equation, all periods of attentional sampling αs  are checked against the probe 
stimulus function σ to determine how much of the probe was sampled by attention (if any). The 
probability of detecting the probe at this duration is given by the function h1*. By construction, 
this duration cannot be longer than τ. Similarly, the periods βs  are used to determine for how long 
at a time the probe was shown outside of the main focus of attention. The probability of detecting 
the probe at this duration is given by the function h0*. By construction, this duration cannot be 
longer than (s-1).τ. All these probabilities (as well as the probability of making a false alarm) are 
combined independently, yielding the final probe detection probability for a given trial. Lastly, 
these are integrated over all possible delays δ of the ongoing sampling, to predict the average 
probe detection probability hs(t) across trials. 
 
For the calculation of the false alarm rate within this model, we reason that the average number of 
attentional samples in a given trial is a constant, and so an observer employing this strategy 
would be as likely to make a false alarm on any given “probe-absent” trial, independent of set size. 
In other words: 
 

fs  = constant = f1      ∀ s ∈ Ν*   (9) 
 
Sample-Always Model. This model is identical to the previous one, except for the fact that the 
hit rate h1 (t) measured at set size 1 is already the result of a sampling process. In other words, 
there must exist a function θ(t) (with t ∈ [0 ; τ]), representing the probability of detecting the 
probe when attention actually samples it for a duration of t. From that function, we will be able to 
derive the predicted hit rates hs(t) as: 
 

hs(t) = (1/sτ).∫0

sτ
1- (1-fs).∏i=1

∞

{(1-θ(∫0

∞

σ(d,t,x) . αs(i,δ,x) dx)) . (1-h0*(∫0

∞

σ(d,t,x) . βs(i,δ,x) dx))} dδ  
      ∀ s ∈ Ν.   (10) 

 
In other words, θ(t) plays the role that h1*(t) was playing in the previous model. 
 
We derive θ from observing h1(t) in the following way. For s=1, all attentional samples are 
directed to the probe location (so β1  = 0, and the corresponding term in Eq. 10 disappears). 
 

- For t ∈ [0 ; τ], the probe will either be sampled by one or two consecutive attentional 
samples, depending on the sampling delay δ. Thus, we can write: 

 

 h1(t)  = 1-(1-f1).(1/τ).{∫0

t
(1-θ(x)) . (1-θ(t-x)) dx + ∫t

τ

1-θ(t) dx} 



  = 1-(1-f1).(1/τ).{∫0

t
(1-θ(x)) . (1-θ(t-x)) dx + (τ-t).(1-θ(t))} ∀ t ∈ [0; τ]. (11) 

 
The first and second terms in the curly braces correspond, respectively, to trials in which 2 
or 1 attentional sample(s) will contain the probe.  
 
- For probe durations t+nτ (t ∈ [0; τ], n ∈ Ν*) longer than one sampling period, the probe 
will either be sampled by (n+1) or (n+2) samples (all but 2 of which, the first and last, will 
be “full”), depending on the sampling delay δ. Thus, we can write: 
 

 h1(t+nτ)  = 1-(1-f1).(1/τ).{(1-θ(τ))n.∫0

t
(1-θ(x)) . (1-θ(t-x)) dx + (1-θ(τ))n-1.∫t

τ

(1-θ(x)) . (1-θ(τ+t-x)) dx } 

        ∀ t ∈ [0; τ],  ∀ n ∈ Ν*.  (12) 
 
We determined θ numerically by increments, using Eq. 11. Starting up with θ(0)=0, we 
considered the first data point t1  of the experimentally obtained function h1(t). Assuming a linear 
progression of θ between 0 and t1, we derived θ(t1) from h1 (t1) and Eq. 11 (because of the linear 
assumption, this amounts to solving a 2nd degree equation in θ(t1)). Then, assuming a linear 
progression of θ between t1  and the second data point t2, we derived θ(t2) from h1(t2) and Eq. 11 in 
a similar way, and so on until the derivation of θ(τ).  
 
Additionally, from Eq. 12 we can get: 
 
 1-h1(t+nτ) = (1-θ(τ))n-1 . (1-h1(t+τ))  
⇔ θ(τ) = 1-{(1- h1(t+nτ)) / (1- h1(t+τ))}1/(n-1)   ∀ t ∈ [0; τ],  ∀ n > 1 (13) 
 
This provides another way of computing θ(τ), using data points of h1  higher than 2τ (if any are 
available, i.e. for τ<0.5s). When possible, we applied both methods and took θ(τ) to be the mean 
of the two values hence obtained. 
 
We then used θ(t) (t ∈ [0; τ]) to compute, according to Eq. 10, the predicted hs(t) under 
conditions of divided attention (s≥2), which we finally compared with the experimentally 
observed data, as done for the other two models. 


