A. The detailed procedure to construct local equilibrium state (LES) from scalar

time series

Here we present the detailed procedure of constructing local equilibrium state (LES)

from which one can evaluate its effective free energy landscape.

1. Short-time probability distribution function

Figure 1 illustrates how the short-time distribution function is constructed for a frag-
ment of time series. Suppose that we have ten points recorded every an equal interval Atg
as shown in Figure 1 (a). In the figure, each cross symbol denotes the observed value s; at
each time step t;. How can one construct the local distribution function from such a frag-
ment of time series s; ¢ The discrete time series one obtains in actual experiments can
be interpreted as a series of the observable s averaged over each time window Atg (which
corresponds to the resolution in the experiment). We transform {s;} to the “continuous”
time series s(t) by setting that s(¢) is constant within each Atg (as indicated by the red
line in Figure 1 (a)). As depicted in Figure 1 in the main text for the sake of brevity, one
may usually plot the histogram with respect to s by defining a certain bin size. However,
the histogram crucially depends on the chosen bin size. In our actual procedure we define
the local distribution function without determining the bin size: we first construct the
“probability density function” p(s) from s(¢) as shown in Figure 1 (b). Rigorously speak-
ing, this is called probability mass function (pmf) that gives the probability of finding the
discrete variable exactly equal to a certain value of s. The p(s) is defined for all s including
the cases that s could never take by assigning such values a probability of zero. In short,
p(s) corresponds to the histogram with an “infinitesimally” small bin size.

We define the short-time distribution function P(s) centered at time ¢ with a range of
(t —7/2,t+ 7/2] by probability distribution function (pdf) with respect to s given by

s
P(s) :/ p(s') 0(s") ds',  with  spim < 8 < Smax (1)
Smin
where f:::" P(s)ds = 1 and Spin and Spay, respectively, mean the minimum and maximum
values of s observed in (t — 7/2,t + 7/2] (see Figure 1 (¢)). The reason why Dirac delta

function 0 appears is that we simply ignored shot noise and any broadening effects not



dependent on the interdye distance. Here note that Eq. 1 does not require to specify any
bin size in defining the short-time pdf. Moreover, the time window Atg is not necessarily
the same along the time series and one can straightforwardly generalize the short-time pdf
for any variable time window.
Here we describe the mathematical representation of the pmf with a constant time
resolution Atg,
UER | it s=s(t),
p(s) = (1/ns) Y (2)
i=1 | 0 otherwise.
Here ng denotes the total number of data points, with which one constructs a pmf. The

probability density function f(s) corresponding to p(s) is given by

f(s) = (1/ns) Z o(s = s(t:))- (3)

Here the relationship f(s) = p(s) d(s) holds under the assumption of ignoring any broad-
ening effects. Eq. 3 corresponds to Eq. 6 in the main text. The probability distribution
function P(s) is obtained by the integration of f(s):

Smin

P(s) = / (),
— (1/ns) S 0(s - s(t)).

i=1
where © denotes the Heaviside function obtained by the integration of the  function.

Figure 1 (d) illustrates the Kantorovich metric dg(pi||p;) between two pmfs p;, and
pj. In the figure, the red, and blue lines correspond to the short-time pdf defined at
t = 5 and 7 = 10 (composed of all ten points), and that at ¢ = 1.5 and 7 = 3
(of the first three points), respectively. The Kantorovich metric dg(p;||p;), that is,
[ ds ‘f_soo ds' (pi(s") — p;(s")) 0(s")|, corresponds to the sum of all shaded areas enclosed
by these two pdfs.

2. The assignment procedure of local equilibrium state (LES) candidates

As described in the main text, conceptually, one could partition {p;} into a union of

‘clusters (subsets),” the candidates of LES, in the Kantorovich metric space by computing
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FIG. 1: The definition of the short-time distribution function and the Kantorovich metric. (a)
A time series segment of the observable s(¢). The ‘x’ symbol denotes each sampled point with
the time resolution of the observation Atg. (b) The pmf p(s) of the whole time series in (a). (c)
The pdf P(s) of the whole time series in (a). (d) The Kantorovich metric dk (p||p’) between the
pmf of the whole time series p(s) and the short-time pmf of the first three data points p’(s) whose
corresponding pdf are represented by red and blue lines, respectively. The sum of the shaded areas

enclosed by the two pdfs is equal to the Kantorovich metric dg (p||p’).

the metric for all possible pairs of short-time pmfs. However, this procedure requires n x n
distance matrix between short-time pmfs. Here n is the total number of short-time pmfs,
namely, roughly equal to the total time steps in the time series. In this section, we present
our actual clustering algorithm to partition the whole set of the short-time pmfs into a
union of clusters without such an elaborate computation of order n?.

In general, one does not know a priori the total number of states (more precisely, LES)

of the system at a given (experimental) condition with a chosen time scale. Therefore,

3



we chose a clustering algorithm which extracts each cluster or subset step by step from
the ensemble of short-time pmfs without fixing a priori the total number of LES candi-
dates. This algorithm is designed to assign sequentially from the largest LES candidate,
where the system resides with highest probability, to the smaller one with lower residential

probability.
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FIG. 2: The assignment procedure of the LES candidate from a given time series s(t). (a) A time
series s(t) taken from the end-to-end distance of the 46-bead BLN model protein at T'= 0.3¢. The
time resolution of the observation Atg corresponds to 1/1.8 of one vibrational period of the bond.
The o denotes the equilibrium bond length. (b) An initial guess frequency distribution of the first
LES candidate. The unit of the vertical axis is 10 2[—~]. The bin size is 0.010. Note that this
figure and figures (e) and (h) are solely for making easier to understand the procedure. (c) The
initial guess pdf P(s). (d) The frequency distribution PdlK of the Kantorovich metric dx between
the individual short-time pmfs and the initial guess pmf of the first LES candidate. The unit of
the horizontal axis and the vertical axis are 0! and 10~2[—], respectively. The vertical dotted line
denotes the threshold value chosen so as to cover the first peak from dxg = 0. The shaded area is

composed of an ensemble of the short-time pmfs close to the initial guess pmf.

Figure 2 illustrates our procedure to assign the first, largest LES candidate from a
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FIG. 2: (Continued) (e) The second guess frequency distribution of the first LES candidate con-
structed in terms of the set of the short-time pmfs belonging to the shaded area in (d). (f) The
second guess pdf of the first LES candidate. (g) The frequency distribution P[%K of the Kantorovich
metric dg between the individual short-time pmfs and the second guess pmf of the first LES can-
didate. (h) The converged frequency distribution of the first LES candidate through the iteration
process to reach the convergence (denoted by the bold line). All the other thin lines represent all
the transient frequency distributions obtained through the iteration. (i) The converged pdf of the
first LES. (j) The frequency distribution PéK of the Kantorovich metric dx between the individual
short-time pmfs and the converged pmf of the first LES candidate (denoted by the bold line). (k)
The time series fragments assigned as belonging to the first LES candidate is denoted by the blue
lines. The other residual fragments besides the blue lines are to be used for the next assignment

procedure of the second largest LES candidate.



given time series s(t). Provided that we have an ensemble of the short-time pmfs with
a 7, how do the short-time pmfs corresponding to one LES candidate distribute in the
Kantorovich metric space? Suppose that the system can move about “ergodically” faster
than the chosen 7 within a LES candidate. Then, all short-time pmfs centered at each
time ¢, denoted by g,gT) (s) hereinafter, taken from the time period when the system resides
in the LES candidate, are expected to be almost the same as the pmf with respect to s of
the LES candidate (in general, irrespective of discreteness of s, there exists no guarantee

that this is a Gaussian function). However, in practice, gET)(s) are constructed in terms of

a finite number of the sampled points ng and, hence, gET)(s) must, to some extent, deviate
from the pmf of the LES candidate. If one could have an “infinitely” large number of
sampled points within the same time interval 7(>> 7,,), all 9\ (s) belonging to that LES
candidate would fall into a single ‘pin point’ in the Kantorovich metric space. However,
due to the finiteness of sampled points within 7, the set of g,@(s) belonging to the same
LES candidate should be broaden or diffuse in that space to some extent dependent on ng
(and also due to the contamination of some noise in actual experiments).

How can one estimate or identify a union of the short-time pmfs gET)(s) which are
expected to belong to the same LES candidate ? Here we present our iterative clustering
procedure. First, we define an initial guess pmf of the first LES candidate with respect
to the observable s, to which we compute the Kantorovich distances di from all gET)(s)
extracted from the whole time series. Here, we chose the pmf of the whole time series
with respect to s as the initial guess. Figure 2 (¢) shows the corresponding probability
distribution function one can compute from the initial guess pmf of the first LES candidate
by integrating over s (Figure 2 (b) presents the frequency distribution with respect to s
of the whole time series with a bin size of 0.01c in order to make easier to capture the
procedure). In principle, irrespective of the detailed functional form of the initial guess,
one can expect that some peaks appear in the frequency distribution with respect to dg
between the chosen initial guess pmf of the LES candidate and all gET)(s), denoted by Py,
if several sets of g,@(s) are very close each other (in the sense of Kantorovich metric) in
their own subset. The reasons of our choice of this initial guess are: (1) a set of ggT)(s) to
form the most dominant and stable LES may be close to the pmf of the whole time series

and, if so, it results in a large peak around dx ~ 0 in P,,_ (see the shaded region in Figure

2 (d)). Namely, one can assign a (plausible) set of gET)(s) that mostly contribute to the



dominant state; (2) the computation of the probability distribution function of the whole
time series is most straightforward and simplest without determining the bin size.

As an initial guess, one can also use the most significant Gaussian function by fitting
the frequency distribution of the whole time series by a combination of Gaussian functions.
Especially, if distinct multi-modal peaks exist in the frequency distribution of the whole
time series, the most dominant Gaussian function should be a better initial guess. However,
at least, in our case study of 46-bead BLN model protein, both initial guesses gave rise to
almost the same consequence after we performed our iterative clustering scheme we will
describe below.

Now let us describe the iterative scheme to extract a set of gET)(s) to compose the
largest LES candidate from s(t) after choosing an initial guess pmf of the LES candidate.
We evaluate the frequency distribution of the Kantorovich metric dgx between the chosen
initial guess pmf and all g,gT)(s), denoted by PdlK (see Figure 2 (d)). Here, the superscript
“1” in P;_ emphasizes that the Py, is evaluated for the first, initial guess. One can see
three peaks in Figure 2 (d). What does the first, largest peak mean in the figure (i.e.,
the shaded peak in Figure 2 (d))? The first peak implies that there exists an ensemble
of ggT)(s) close to the chosen initial guess pmf of the LES candidate. Here, we define a
threshold of dx to cover the first peak (indicated by the dotted line in the figure). There
exist several criteria to define the threshold, e.g., a dx to correspond to the first minimum
which is expected to mostly cover the first peak (c.f., the computation of the delay time
in embedology [1, 2]). However, if one picks up the first minimum in a rigorous sense,
one might end up with an undesired value of dx not to cover the first peak because P,
is not necessarily smooth. Therefore, in the present article, for the sake of brevity, we
determined the threshold empirically in PjK at every i'" iteration process and confirmed
that the outcome was not so sensitive to the details of the chosen threshold (we will develop
an objective scheme to determine the threshold value in the future).

The second guess pmf of the largest LES candidate shown in Figure 2 (f) (c.f., Figure 2
(e)) is constructed in terms of a set of g,gT)(s) corresponding to the shaded area in Figure
2 (d). The shaded area corresponds to a union of ggT)(s) close to the initial guess pmf,
which can be regarded as the most plausible candidates ggT)(s), at this stage, to form the

most dominant LES candidate. Next we evaluate PfK between the second guess pmf of

the largest LES candidate and all g,@(s) in the whole time series (see Figure 2 (g)), and



determine the threshold to cover the new largest and sharper peak shifted closer to dx ~ 0.
Likewise, one can iteratively refine the pmf of the desired LES candidate.

Figures 2 (h) and (i) present the converged frequency distribution and pdf of the desired,
first LES candidate indicated by bold lines. It was found for the first LES candidate that
the convergence can be brought about by ~ 4 iterations. One can see a general trend of
how PjK evolves along the iteration process in Figure 2 (j). That is, along the process of
the iteration, the first peak appeared in PjK becomes sharper and closer to dg ~ 0, while
the other peaks slightly shift away from dx ~ 0. Finally, the converged pdf (shown by the
bold line in Figure 2 (i)) along the above procedure is considered as that of the desired,
first LES candidate. The time fragments in s(¢) depicted by blue color in Figure 2 (k)
indicate time regimes in which all g\ (s) defined at time ¢ were turned out to compose the
first LES candidate. We use the residual part of time series for identifying the next LES
candidate, after subtracting all fragments belonging to the first LES candidate. We can
assign all sets of gET)(s) to form their LES candidates by repeating the above procedure up
to the stage such that all time fragments to be used for extracting the next LES candidate
become shorter than the chosen 7.

The projection of the short-time probability density functions to a two-dimensional
plane such as Figure 1(b) in the main text is not required in our iterative clustering
algorithm. The visualization, however, sometimes helps us to capture the procedure. We
made the figure as follows: the positions of short-time probability distribution functions
on the two-dimensional plane was optimized the closeness centrality of Kantorovich metric
between every pair of the short-time distribution functions by using the software named
‘visone’ (http://www.visone.info). The initial positions are not randomly selected but
manually chosen because of the poor convergence of the default position supplied by the
software visone. We manually divided these short-time probability distribution functions
to several clusters by reflecting the consequence of the assignment of our LES analysis.

Clustering can be considered as NP-complete combinatorial optimization problem, for
which optimal solutions can be found by branch-and-bound technique but in exponential
time. For instance, the well-known k-means method of clustering algorithm requires the
total number of the clusters a priori [3]. The other methods such as an agglomerative
hierarchical clustering which constructs a dendrogram of the aggregation pathways from

all the isolated data points to the single merged group may be more efficient but more



complicated [4]. Our iterative clustering algorithm free from fixing the total number of
clusters provides the converged solution for each clustering within ~ 10 iterations (at least
in the current example of the end-to-end distance time series of 46-bead model protein).

We believe that our algorithm is simplest so that one can easily implement the algorithm.

3. The transition sequence between LES candidates, the escape time from LES candidates, and

the reaction rate between LES candidates

After the assignment of all LES candidates in the time series, the transitions between the
LES candidates are assigned as follows: as exemplified in the blue line in Figure 2 (k), one
can assign when the system visits each LES candidate obtained in our iterative clustering
algorithm by checking which LES candidate is the closest (in the sense of Kantorovich
metric) to the short-time pmf defined at the time ¢ in question. Then, we check if the
time window 7 is shorter than the escape time 7. (i) from the ith LES candidate. If a
LES candidate satisfies 7 < 7.5.(7) we assign the candidate of state as an LES, otherwise
as a non-LES at the chosen 7. The escape time 7.,.(7) is evaluated as follows: The survival
probability distribution of each LES candidate is estimated as a histogram of the residential
time in the corresponding LES candidate. We fit the survival probability distribution in
terms of a single exponential function oc e *7e() for a region such that ¢ > 7. The
reason why the escape time 7.4.(i) is estimated for fragments of longer residential times
than the time window 7 is the following: (1) When extracting a segment of time window,
(tm—7/2,t,+7/2], the time segments overlap from adjacent m. This is aimed at maximally
using the given time series with persisting the experimental time resolution Atg. This
should result in a certain apparent correlation within a time scale of 7. In elucidating
quantities relevant to the time evolution such as the computation of the escape time of
the system from the LES candidate and the identification of LES transition sequence, we
omitted the time domain shorter than 7.

The other condition of supporting the concept of LES, the equilibrium time 7.,(< 7),
was not tested explicitly. The state classified as an LES should, in principle, provide us
with a unique short-time distribution of the observable whenever the system revisits the
same state along the course of time evolution. However, when 7., is not fast enough to

result in the unique short-time distribution, compared with 7, the corresponding short-



time pmfs g/ (s) may much diffuse in the Kantorovich metric space. One can expect that
g7 (s) such that 7., 2 7 must not be assigned as the same cluster, i.e., the same LES
candidate.

One can evaluate the transition probabilities F;; from the ith, to the jth LES candidate,
that is, how often the system escapes or reacts from the ith, to the jth LES candidate per
unit time. From them, one can compute an effective free energy landscape with checking
if Pj; ~ Pj; is satisfied in a given time series. The reaction rate between the LESs are
elucidated by the average number of the reaction events per unit time. Here, because
of the same reason in computing the escape time, we count the reaction events between

different LESs after subtracting (from the time series) a piece of the time fragments in

which the system resides for a certain time duration shorter than 7.

B. Kantorovich metric in comparison with Kullback-Leibler divergence and

Hellinger distance

What is the most appropriate measure to describe the ‘distance’ between two probability
density functions evaluated for a short time window 77 In order to compare with the
actual distance between two superbasins composed of a number of protein conformations
we define the averaged distance Rg between all the pairs of the conformations belonging
to the ith and jth LES/non-LES in 3N-dimensional conformation space (N is the number

of particles):

M; Mj 3N

Rs(il) = 557 30 S (e = ran), (@)

I aeci Bej k=1
where M; and M, denote the number of (transient) configurations classified into the ith
and jth LES/non-LES, respectively. r,; means the kth Cartesian coordinate of the ath
configuration where McLachlan ’s ‘best fit’ prescription [5] was employed to remove the
total translational and rotational degrees of freedom to remove uncertainty in the definition
of the coordinate system. Figs. 3 and 4 reveal how the Kantorovich metric dg, and
Kullback-Leibler divergence (relative entropy) di and Hellinger distance dy can capture
the actual distances between the two LES/non-LES in 3N-dimensional conformation space.

In the Fig. 3, for the sake of comparison, the average of the end-to-end distance difference
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FIG. 3: The relationship between the structural distance Rg(i||j) and dg(i||j) in terms of
the end-to-end distance time series between the ith and jth LES/non-LES at 0.4e (7 = 100).
Here, the ‘x’ denotes the average of differences of the end-to-end distances R.. between the
(transient) configurations composed of the ith and jth LES/non-LES (AR (i||j)) defined by
1/(M;Mj) Zyé Zg/[ejj((Ree(a) - Ree(/B))Q)%. The degeneracies in (ARc.(i]|j)) among the pairs
of LES/non-LES denoted by red x are partially lifted in dx (7]|j) as shown by red (0. The dotted

and solid lines represent the least square fitted lines for (AR (i]|j)) and dk(i]|j), respectively.

(AR..) between all the pairs of the conformations belonging to the two LES/non-LES are
also plotted.

Figures manifestly demonstrate that the Kantorovich metric dx is much superior to
the others dx and dy in capturing the actual conformational distance. The most striking
consequence is this: in the region where the two LES probability density functions f;(s)
and f;(s) have some overlaps in shorter separations, dy partially lift degeneracy that
exists in (AR,.). This implies that the Kantorovich metric dx can more differentiate the
underlying (multidimensional) morphological feature associated with LES/non-LES than

(AR,.) in addition to Kullback-Leibler divergence and Hellinger distance.

It should be noted that Kullback-Leibler divergence (relative entropy) is not true metric
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FIG. 4: The relationship between the structural distance Rg(i||7) and Kullback-Leibler divergence
dxr,(i]lj) (x) and Hellinger distance dy(i||7) (O) for the end-to-end distance time series of BLN
model protein at 0.4 e. The ¢ and j stand for ith and jth LES/non-LES constructed from 7 =
100. The dotted and solid lines represent the least square fitted straight lines for dki, and dy,
respectively. The horizontal bottom and upper axes denote the scales of dky, and dy, respectively.
From the definitions of dky, and dy, dki, = [0, fi(s)logy(fi(s)/f;(s))ds and du = [ (fi(s)'/? —
£i(5)'/?)2ds (where f;(s) and f;(s) are the ith and jth probability density function), one can easily

see dkr, — oo and dg — 2 when the overlap between two probability density function diminishes.

although it has some properties of metric; it is always non-negative and is zero if and only
if fi(s) = f;(s). Hellinger distance satisfies the metric condition but the value of dy
converges to two for large separation of no-overlap between two distributions. Here we
show that dx (fi]| f;) is equal to the actual difference between the average values of s of the
individual f;(s) and f;(s) |(/=o ds s fi(s)) = ([Z2, ds s f;(s))] when they have no overlap

in the variable s, which neither the Kullback-Leibler divergence nor Hellinger distance is
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not so. The dx (Eq. [1]) satisfies the triangle inequality,

di (fill f;) < dr(fill fe) + dr(fell f;), (5)

which is one of the most important properties of metric [6]. In addition, this metric
di(fillf;) is simply equal to the Euclidean distance between the average values of s of
the individual probability density functions f;(s) and f;(s) if the following condition is
satisfied:

Vs € R; Pi(s) > Pj(s), (6)
In such cases,

beh5) = [ dsIP) - P

_ /oo ds (Py(s) — Py(s))
= RO+ [ dss i)

o0

Sl R [ dss
= (b= (3.

<s>i:/oo ds s fi(s). (7)

The second equality results from Eq. (6) (the order of i and j has no meaning because
this measure satisfies the symmetric property of metric, i.e., dx(fil|f;) = dx(f;]|fi)) and
the fourth equality from P;(—o0) = Pj(—o0) = 0, Pi(00) = Pj(00) = 1. One can easily see
that Eq. (6) is satisfied when the two probability density functions have no overlap in the

variable s.

C. The relation between the LES/non-LES vs TRDG basins

One can easily assign which LES/non-LES the system traces along the scalar time

series after the clusters (subsets) are extracted from a set of the short time distribution
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for time window 7. The TRDG basins were constructed in terms of a subset of 1.6x10*
inherent structures quenched along an isothermal MD trajectory of 2.2x108A¢. Thus
one can assign to which TRDG basins the system was quenched along the time series
of the full set of dimension [7]. Fig. 5 demonstrates the residential probabilities in each
LES/non-LES while the system is quenched in the lowest to tenth lowest TRDG basins
of the BLN model at 0.4 €. Figure tells us, for example, that the highest ratio in the
residential probabilities at TRDG basin 1, 2, 3, and 4 were 76.9% in LES 1, 89.8% in
LES 2, 55.5% in non-LES 3, and 58.2% in LES 4, respectively. This suggests that the
LES analysis fairly well captures the underlying multidimensional free energy landscape
because the most dominant contribution of LES to TRDG basin ¢ are ith LES for =1,2,4
(namely, the relative order of stability does not change). Note, however, that such one-to-
one correspondence starts to cease at higher than TRDG basin 5. For instance, although
the TRDG basin 3 is mainly composed of the non-LES 3, the non-LES 3 also contributes
in the TRDG basins 5 and 6. The most dominant contribution to the TRDG basin 5 is
not LES 5 but non-LES 3.

In principle, for any scalar finite time series, it is inevitable that some short-time distri-
bution functions with time window 7 (which should belong to distinct free energy basins)
still degenerate. One may conjecture that the discrepancy between LES/non-LES and
TRDG basins observed at TRDG basin ¢ (> 4) arise from such a degeneracy which could
not be ‘lifted’ by the short time distributions. It should be noted however that there exist
several implicit assumptions for the TRDG procedure: for example, it assumes transition
state theory (TST) based on the concept of local equilibrium (and no-return ansatz) for
the elucidation of the escape rates from all potential minima irrespective of kinds of po-
tential minima (e.g., passages through some shallow potential minima does not necessarily
guarantee the validity of TST). Therefore, there is no source to yield non-LES within the
framework of TST. In addition, the two TRDG basins are unified when both the evalu-
ated TST rate constants from one basin to another and vice versa are faster than a chosen
threshold [8]. It was turned out that, with a threshold larger than 7/2 (~22 oscillations
of the individual bond stretching in 46 bead model protein), all the TRDG free energy
basins are unified as the single LES at 0.4 € above the folding temperature. This might too
exaggerate the morphological change of multidimensional free energy landscape in time

scale of observation.
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FIG. 5: The ratio of the residential probabilities in each LES/non-LES at the system traversing
the ith lowest TRDG basins of the BLN model at 0.4 e. The inset is the same as Fig. 5 (b). The

red, blue, black, green and while color in the histogram corresponds, respectively, to the ratio of

LES 1, LES 2, non-LES 3, LES 4 and all LES/non-LES i (i > 4).

The TRDG is constructed from inherent structures obtained by being quenched along
the dynamical evolution. This treatment should be appropriate at least in a certain low
temperature regime where the system can actually trace the inherent structures. However,
in principle, there is no firm foundation of how much the system actually ‘experiences’ the
underlying inherent structures at higher temperature where the system starts to see lots

of hierarchical superbasins with higher-rank saddles.
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