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Neuronal Correlates of Perceptual Detection

In the experiments of de Lafuente and Romo (2005), the stimuli were sinusoidal with a

fixed frequency of 20 Hz, and their amplitude varied from trial to trial. Stimulus-present

trials where intervaled with an equal number of stimulus-absent trials. Neural recordings

were obtained with an array of seven independent movable electrodes inserted into S1 and

MPC.

The trials were grouped depending on the animals’ perceptual report: hits and misses

in the stimulus-present condition and correct rejections and false alarms in the stimulus-

absent conditions. Using this classification, they found experimentally that the proportion of

“yes” responses increases as a function of stimulus amplitude (fig. 3f from de Lafuente and

Romo (2005)). But the main findings were observed in the neural recordings: the activity of

MPC neurons was only weakly modulated by the stimulus amplitude, and it covaried with

the monkeys’ trial-by-trial reports. On the contrary, S1 neurons did not covary with the

animals’ perceptual reports, but their firing rate did show a monotonically increasing graded

dependence with the stimulus amplitude. This is reflected in the Figure 3c of de Lafuente and

Romo (2005), where the averaged firing rates of 59 S1 neurons and 50 MPC neurons over hit

trials are plotted. The results suggest that S1 is primarily engaged with the encoding of the

sensory information, whereas the MPC is directly involved with the generation of a percept.

In particular, MPC neurons seem to reflect the core of the processing that links the encoding

of the sensory information with the generation of a percept and therefore, the perceptual

decision-making process itself. The fact that MPC neurons correlate with the behavioral
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performance, but show an all-or-none firing rate response, suggests an underlying bistable

dynamic in an attractor framework. The detailed investigation of these mechanisms are

fundamental for understanding the computational principles involved in perceptual detection,

hidden under the very specific type of responses of their neural correlates.

Network

The network contains NE = 800 (excitatory) pyramidal cells and NI = 200 inhibitory

inter-neurons, consistent with the neurophysiologically observed proportion of 80% pyramidal

cells versus 20% inter-neurons (Abeles (1991),Rolls and Deco (2002)). Each specific popula-

tion of excitatory cells contains rNE neurons (in our simulations r = 0.1). Neurons in the

networks are connected via three types of receptors that mediate the synaptic currents flow-

ing into them: AMPA, NMDA glutamate, and GABA receptors. The excitatory recurrent

post-synaptic currents (EPSCs) are considered to be mediated by AMPA (fast) and NMDA

(slow) receptors. The external background activity imposed onto the network from outside

is assumed to be driven only by AMPA receptors. Inhibitory post-synaptic currents (IPSCs)

to both excitatory and inhibitory neurons are mediated by GABA receptors.

We assume that the connections are already formed, e.g. by earlier Hebbian learning; the

coupling will be strong if the pair of neurons have correlated activity and weak if they are

activated in an uncorrelated way. It is reflected in the network in the connections between

cells. Neurons within a specific excitatory population are mutually coupled with a strong

weight ω+, whereas neurons between two different selective populations have anti-correlated

activity that results in weaker than average connections ω− between them, always smaller

than the strong connections weigths. The neurons in the inhibitory population are mutually

connected with an intermediate weight ω = 1. They are also connected with all excitatory

neurons with the same intermediate weight, which for excitatory-to-inhibitory connections
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is ω = 1, and for inhibitory-to-excitatory connections is denoted by a weight ωI. Neurons

in a specific excitatory population are connected to neurons in the nonselective population

with a feed-forward synaptic weight ω = 1 and a feedback synaptic connection of weight

ωNS. All the weights have to be computed in a way that the overall recurrent excitatory

synaptic drive in the spontaneous state remains constant (Brunel and Wang (2001)). In the

NCYNN, we accomplish this restriction by varying the ω− in relation to the ω+ according to

this formula ω− = 1 − r(w+ − 1)/(1 − r). In the CNYN, we fix the values of the ω+ (that

connects the “no” population with the “yes” population), the ω+′ (that connects the “yes”

population with the “no” population), and the ω−. In this case, we carry out the restriction

by varying the connections between the non-selective and the selective pools. We, then,

distinguish between the weigth that connects the non-selective population with the “yes”

population (ωnsY es = (r(ω+ − ω−))/0.8) and the one that connects the non-selective with

the “no” population (ωnsNo = (r(ω′

+ −ω−))/0.8), where 0.8 corresponds to the proportion of

pyramidal cells in the complete model.

In this model network, all neurons receive spontaneous background activity from outside

the module through Next = 800 external excitatory connections carrying each a Poisson spike

train at a spontaneous rate of 3 Hz, which is a typical value observed in the cerebral cortex. In

addition, neurons in selective populations receive external inputs encoding stimulus specific

information. They are assumed to originate from the somatosensory area, encoding the

frequency and amplitude strength of the external applied vibrotactile stimulus. As shown in

de Lafuente and Romo (2005), neurons in the somatosensory cortex are selective to a specific

vibrotactile frequency and their firing rates increase in a covariate manner with the amplitude

of the stimulation. Thus, when the stimulus is presented, the rate of the Poisson train to

the MPC neurons of the selective population sensitive to the specific applied vibrotactile
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frequency is increased by an extra value of λ = A, being A the amplitude of the vibrotactile

stimulation.

Spiking Dynamics

We used the mathematical formulation of integrate-and-fire (IF) neurons and synaptic

currents described in Brunel and Wang (2001). Here we provide a brief summary of this

framework, which we have extended to multiple interacting networks. The dynamics of the

sub-threshold membrane potential V of a neuron are given by the equation:

Cm
dV (t)

dt
= −gm(V (t) − VL) − Isyn(t),

where Cm is the membrane capacitance taken to be 0.5 nF for excitatory neurons and

0.2 nF for inhibitory neurons; gm is the membrane leak conductance taken to be 25 nS for

excitatory neurons and 20 nS for inhibitory neurons; VL is the resting potential of -70 mV,

and Isyn is the synaptic current. The firing threshold is taken to be Vthr = −50 mV, and the

reset potential Vreset = −55 mV (ref. D. McCormick and Prince (1985)).

The synaptic current is given by a sum of glutamatergic, AMPA (IAMPA,rec), and NMDA

(INMDA,rec) mediated, recurrent excitatory currents, one AMPA (IAMPA,ext) mediated external

excitatory current, and one inhibitory GABAergic current (IGABA):

Isyn(t) = IAMPA,ext(t) + IAMPA,rec(t) + INMDA,rec(t) + IGABA(t).
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The currents are defined by:

IAMPA,ext(t) = gAMPA,ext(V (t) − VE)

Next
∑

j=1

sAMPA,ext
j (t)

IAMPA,rec(t) = gAMPA,rec(V (t) − VE)

NE
∑

j=1

wjs
AMPA,rec
j (t)

INMDA,rec(t) =
gNMDA(V (t) − VE)

1 + [Mg++]exp(−0.062V (t))/3.57
×

NE
∑

j=1

wjs
NMDA
j (t)

IGABA(t) = gGABA(V (t) − VI)

NI
∑

j=1

sGABA
j (t)

where VE = 0 mV, VI = −70 mV, ωj are the synaptic weights, each receptor has its own

fraction sj of open channels and its own synaptic conductance g. The NMDA synaptic current

depends on the potential and controlled by the extracellular concentration of magnesium

([Mg++] = 1 mM) (Jahr and Stevens (1990)). The values for the synaptic conductances for

excitatory neurons are gAMPA,ext = 2.08 nS, gAMPA,rec = 0.104 nS, gNMDA = 0.327 nS and

gGABA = 1.287 nS; and for inhibitory neurons gAMPA,ext = 1.62 nS, gAMPA,rec = 0.081 nS,

gNMDA = 0.258 nS and gGABA = 1.002 nS. These values are obtained from the ones used in

Brunel and Wang (2001) by multiplication by a factor which corrects for the difference in

the number of neurons used in our model and Brunel and Wang’s model. In their work, the

conductances were calculated so that in an unstructured network the excitatory neurons have

a spontaneous spiking rate of 3 Hz and the inhibitory neurons a spontaneous rate of 9 Hz.
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The fractions of open channels are described by:

dsAMPA,ext
j (t)

dt
= −

sAMPA,ext
j (t)

τAMPA
+
∑

k

δ(t− tkj )

dsAMPA,rec
j (t)

dt
= −

sAMPA,rec
j (t)

τAMPA
+
∑

k

δ(t− tkj )

dsNMDA
j (t)

dt
= −

sNMDA
j (t)

τNMDA,decay
+ αxj(t)(1 − sNMDA

j (t))

dxj(t)

dt
= − xj(t)

τNMDA,rise
+
∑

k

δ(t− tkj )

dsGABA
j (t)

dt
= −

sGABA
j (t)

τGABA
+
∑

k

δ(t− tkj ),

where the rise time constant for NMDA synapses is τNMDA,rise = 2 ms (G. Spruston and

Sakmann (1995)S. Hestrin and Nicoll (1990)), the rise time constants for AMPA and GABA

are neglected because they are smaller than 1 ms, and α = 0.5 ms−1. All synapses have a delay

of 0.5 ms. The decay time constant for the AMPA synapses is τAMPA = 2 ms (G. Spruston

and Sakmann (1995),S. Hestrin and Nicoll (1990)), for NMDA synapses is τNMDA,decay = 100

ms (G. Spruston and Sakmann (1995)S. Hestrin and Nicoll (1990)), and for GABA synapses

τGABA = 10 ms (Salin and Prince (1996),Z. Xiang and Prince (1998)). The sums over k

represent a sum over spikes formulated as δ-Peaks (δ(t)) emitted by pre-synaptic neuron j at

time tkj .

In our simulations, we performed 200 trials for values of λ between 0 Hz and 100 Hz

in steps of 10 Hz. The constant input to the “no” population is of 50 Hz. Each trial was

structured in three different periods: a pre-stimulus period of 200 ms during which there was

no stimulus applied, a stimulus period of 500 ms during in which we applied the stimulus, and

a post-stimulus period of 1,000 ms during which we took off the stimulus. For the analysis of

the data, we adopted the same criteria used in Lafuente and Romo. For each trial we used a

500-ms window begining at the highest firing rate. According to the experimental data, this
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criterion was chosen to maximize the number of correct responses. In all simulations, we used

the following connectivity parameters (resulting from the mean field analysis): ω+ = 2.15

for the NCYN model and ω+ = 1.99, ω′

+ = 1.9 for the CYNN model. The probabilistic

character of the system results from the stochastic nature of the networks. The source of this

stochasticity is due to finite-size effects. Fluctuations due to the finite-size effects are due

to the fact that the populations are described by a finite number N of neurons. Therefore,

the level of fluctuations, i. e., the number of neurons N , is a free parameter that regulates

the level of noise and, consequently, the probabilistic behavior of the system. To keep the

analysis as simple as possible, we fixed this parameter.

Mean Field

Due to the nature of the activity shown by the recorded MPC neurons, we are especially

interested in the probabilistic type of activation of these all-or-none neurons observed across

trials that covary with the animals’ reported response. The simulation of this phenomenon

with an integrate-and-fire neuron network allows the study of the dynamical probabilistic

behavior of the neuronal spiking rates. However, these simulations are computationally ex-

pensive, which makes them rather unsuitable for systematic parameter explorations. In order

to solve this problem, we simplify the dynamics via the mean field approach (Brunel and

Wang (2001), Amit and Brunel (1997), B.Renart and Wang (2004)). With this approach, we

study the characteristics of the network in the stationary conditions, i.e. for periods after

the dynamical transients, and analyze the phase diagrams of the dynamics. In our particular

case, we are interested in determining the parameters such that the network operates in a

regime of bistability. This bistability corresponds to the two possible behavioral responses:

percept detected or not detected. This means that at least for the stationary conditions, two

different possible attractors are stable.
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The essence of the mean-field approximation is to simplify the integrate-and-fire dynamics

by replacing after the diffusion approximation (Tuckwell (1988)), the sums of the synaptic

components by the average DC component and a fluctuation term. The stationary dynamics

of each population can be described by the population transfer function, which provides the

average population rate as a function of the average input current. The set of stationary,

self-reproducing rates for the different populations in the network can be found by solving a

set of coupled self-consistency equations. This enables a posteriori selection of the parameter

region which shows in the bifurcation diagram the emergent behavior that we are looking for.

After that, with this set of parameters, we perform the full non-stationary simulations using

the true dynamics only described by the full integrate-and-fire scheme.

The mean-field approximation used in the present work was derived in Brunel and Wang

(2001), assuming that the network of integrate-and-fire neurons is in a stationary state. In

this formulation the potential of a neuron is calculated as:

τx
dV (t)

dt
= −V (t) + µx + σx

√
τxη(t),

where V (t) is the membrane potential, x labels the populations, τx is the effective membrane

time constant, µx is the mean value the membrane potential would have in the absence of

spiking and fluctuations, σx measures the magnitude of the fluctuations and η is a Gaussian

process with absolute exponentially decaying correlation function with time constant τAMPA.

The quantities µx and σ2
x are given by:

µx =
(Textνext + TAMPAn

AMPA
x + ρ1n

NMDA
x )VE + ρ2n

NMDA
x 〈V 〉 + TIn

GABA
x VI + VL

Sx
(1)

σ2
x =

g2
AMPA,ext(〈V 〉 − VE)2Nextνextτ

2
AMPAτx

g2
mτ

2
m

(2)

where νext Hz is the external incoming spiking rate, νI is the spiking rate of the inhibitory

population, τm = Cm/gm with the values for the excitatory or inhibitory neurons depending
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of the population considered and the other quantities are given by:

Sx = 1 + Textνext + TAMPAn
AMPA
x + (ρ1 + ρ2)n

NMDA
x + TIn

GABA
x (3)

τx =
Cm

gmSx
(4)

nAMPA
x =

p
∑

j=1

rjw
AMPA
jx νj (5)

nNMDA
x =

p
∑

j=1

rjw
NMDA
jx ψ(νj) (6)

nGABA
x =

p
∑

j=1

rjw
GABA
jx νj (7)

ψ(ν) =
ντNMDA

1 + ντNMDA

(

1 +
1

1 + ντNMDA

∞
∑

n=1

(−ατNMDA,rise)
nTn(ν)

(n+ 1)!

)

(8)

Tn(ν) =

n
∑

k=0

(−1)k
(

n

k

)

τNMDA,rise(1 + ντNMDA)

τNMDA,rise(1 + ντNMDA) + kτNMDA,decay
(9)

τNMDA = ατNMDA,riseτNMDA,decay (10)

Text =
gAMPA,extτAMPA

gm
(11)

TAMPA =
gAMPA,recNEτAMPA

gm
(12)

ρ1 =
gNMDANE

gmJ
(13)

ρ2 = β
gNMDANE(〈Vx〉 − VE)(J − 1)

gmJ2
(14)

J = 1 + γ exp(−β〈Vx〉) (15)

TI =
gGABANIτGABA

gm
(16)

〈Vx〉 = µx − (Vthr − Vreset)νxτx, (17)

where p is the number of excitatory populations, rx is the fraction of neurons in the excitatory

x population, ωj,x the weight of the connections from population x to population j, νx is the

spiking rate of the x excitatory population, γ = [Mg++]/3.57, β = 0.062, and the average

membrane potential 〈Vx〉 has a value between −55 mV and −50 mV.
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The spiking rate of a population as a function of the defined quantities is then given by:

νx = φ(µx, σx), (18)

where

φ(µx, σx) =

(

τrp + τx

∫ α(µx,σx)

β(µx,σx)
du

√
π exp(u2)[1 + erf(u)]

)

−1

(19)

α(µx, σx) =
(Vthr − µx)

σx

(

1 + 0.5
τAMPA

τx

)

+ 1.03

√

τAMPA

τx
− 0.5

τAMPA

τx
(20)

β(µx, σx) =
(Vreset − µx)

σx
(21)

with erf(u) the error function and τrp the refractory period which is considered to be 2 ms for

excitatory neurons and 1 ms for inhibitory neurons. To solve the equations defined by Eq.

18 for all x’s we integrate numerically Eq. 17 and the differential equation below, which has

fixed point solutions corresponding to Eq. 18:

τx
dνx

dt
= −νx + φ(µx, σx). (22)
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Parameters In this Appendix, we bring together the fixed parameters of the model in

Table 2 and then provide information about the values of further parameters used in the

simulations and how well the simulations fit the experimental data.

Table 1: Parameters used in the integrate-and-fire simulations for the NCYN-model

NE 800
NI 200
r 0.1
ω+ 2.15
ωI 1.015
Next 800
νext 2.4 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL -70 mV
Vthr -50 mV
Vreset -55 mV
VE 0 mV
VI -70 mV
gAMPA,ext (excitatory) 2.08 nS
gAMPA,rec (excitatory) 0.104 nS
gNMDA (excitatory) 0.327 nS
gGABA (excitatory) 1.25 nS
gAMPA,ext (inhibitory) 1.62 nS
gAMPA,rec (inhibitory) 0.081 nS
gNMDA (inhibitory) 0.258 nS
gGABA (inhibitory) 0.973 nS
τNMDA,decay 100 ms
τNMDA,rise 2 ms
τAMPA 2 ms
τGABA 10 ms
α 0.5 ms−1
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Table 2: Parameters used in the integrate-and-fire simulations for the CYNN-model

NE 800
NI 200
r 0.1
ω+ 1.99
ω′

+ 1.9
ω− 0.85
ωI 1.015
Next 800
νext 2.4 kHz
Cm (excitatory) 0.5 nF
Cm (inhibitory) 0.2 nF
gm (excitatory) 25 nS
gm (inhibitory) 20 nS
VL -70 mV
Vthr -50 mV
Vreset -55 mV
VE 0 mV
VI -70 mV
gAMPA,ext (excitatory) 2.08 nS
gAMPA,rec (excitatory) 0.104 nS
gNMDA (excitatory) 0.327 nS
gGABA (excitatory) 1.25 nS
gAMPA,ext (inhibitory) 1.62 nS
gAMPA,rec (inhibitory) 0.081 nS
gNMDA (inhibitory) 0.258 nS
gGABA (inhibitory) 0.973 nS
τNMDA,decay 100 ms
τNMDA,rise 2 ms
τAMPA 2 ms
τGABA 10 ms
α 0.5 ms−1
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