Uptake Hydrogenase Activity in Denitrifying Azospirillum brasilense Grown Anaerobically with Nitrous Oxide or Nitrate

KARL H. TIBELIUS AND ROGER KNOWLES*

Department of Microbiology, Macdonald Campus of McGill University, Ste. Anne de Bellevue, Quebec, Canada H9X 1C0

Received 20 June 1983/Accepted 10 October 1983

Azospirillum brasilense Sp7 was grown anaerobically with N₂O as the terminal electron acceptor and NH₄Cl as the nitrogen source. Hydrogen uptake activity (O₂-dependent H³H oxidation) was expressed in the presence and absence of 5% H₂; it reached its maximum in late logarithmic phase as the malate became limiting. This activity was very stable in stationary phase, even in the absence of exogenous H₂, compared with microaerobically grown cultures; this supports the hypothesis that the exclusion of O₂ is critical for maintaining the integrity of the H₂ uptake system in this organism. Oxygen, as well as methylene blue and N₂O, supported H₂ uptake, indicating the presence of electron transport components leading to O₂ in anaerobically grown A. brasilense. Nitrite (0.5 mM) inhibited H₂ uptake. In cultures grown with NO₃⁻ as the terminal electron acceptor and NH₄Cl as the nitrogen source, in the presence and absence of exogenous H₂, only low H₂ uptake activity was observed. Methylene blue, O₂, N₂O, NO₃⁻, and NO₂⁻ were all capable of acting as the electron acceptor for H₂ oxidation. Nitrite (0.5 mM) did not inhibit H₂ uptake in NO₃⁻- grown cells, as it did in N₂O-grown cells. A. brasilense appears to be one of the few organisms capable of expressing the H₂ uptake system under denitrifying conditions in the absence of molecular H₂.

Azospirillum brasilense, formerly Spirillum lipoferum (23), is a widespread soil organism in tropical regions (8) and may be the major bacterium responsible for nitrogenase activity in several tropical grass associations (7). It possesses a respiratory type of metabolism and participates in several major nitrogen transformations. A. brasilense fixes N₂ under microaerobic conditions (6, 15, 19), denitrifies under anaerobic conditions (9, 15, 16), and assimilates NH_4^+ , NO_3^- (6), or NO_2^- (16).

Nelson and Knowles (15) established anaerobic, denitrifying steady-state continuous cultures with NO_3^- as the electron acceptor and sole nitrogen source for growth. Bothe et al. (1) observed growth in NO_3^- -containing batch cultures but were unable to observe substantial growth with NO_2^- . Recently, R. Lalande and R. Knowles (Abstr. Annu. Meet. Am. Soc. Microbiol. 1982, N66, p. 189) demonstrated that A. *brasilense* could grow anaerobically with NO_3^- , NO_2^- , or N_2O as the terminal electron acceptor and NH_4Cl as the nitrogen source. In NO_3^- -grown cultures, NO_2^- and N_2O were sequentially produced and reduced. The presence of NO_3^- (0.18 mM) in the medium was necessary for subsequent growth on NO_2^- and shortened the lag phase in N_2O grown cultures by several hours.

A. brasilense has an uptake hydrogenase with more than sufficient activity to recycle nitrogenase-produced H₂ (5) and is capable of H₂-dependent C₂H₂ reduction (20). The H₂dependent respiration is very O₂-sensitive (20), but the O₂ optimum for the H₂ uptake system is significantly higher than that for nitrogenase activity (23a), suggesting that H₂ uptake may have a limited ability to aid in the protection of nitrogenase against inactivation by O₂. In A. brasilense hydrogenase derepression requires microaerobic conditions, is independent of nitrogenase derepression since it is expressed in NH₄Cl-grown cultures, does not require exogenous H₂, and may be enhanced by electron donor limitation (23a). Since organisms such as *Paracoccus denitrificans*, *Rhizobium japonicum*, and *Alcaligenes eutrophus* possess hydrogenase activity under denitrifying conditions (11, 13, 21) and because *A. brasilense* shows both hydrogenase activity and the ability to denitrify, it was our objective to determine whether hydrogenase was expressed under denitrifying conditions in *A. brasilense*. We report the presence of high levels of H₂ uptake in N₂O-grown cultures but only low levels in NO₃⁻-grown cultures.

MATERIALS AND METHODS

Bacterial strain, growth medium, and culture conditions. A. brasilense Sp7 (ATCC 29145) was grown in the defined medium previously described (15) and modified (23a). The medium was supplemented with 7.2 mg liter⁻¹ of KNO₃ (71 μ M) and 50 mg liter⁻¹ of KNO₃ (0.5 mM) for N₂O-grown and NO₃⁻-grown cultures, respectively. Stock cultures and culture conditions were as previously described (23a), except that the batch cultures were sparged at 240 ml min⁻¹, and the gas mixtures were 10% N₂O in N₂ (Liquid Carbonic Canada, St. Laurent, Quebec) with or without 5% H₂ and N₂ with or without H₂ for N₂O-grown and NO₃⁻-grown cultures, respectively.

Uptake hydrogenase assay. Oxygen-dependent H₂ uptake was measured by the H³H oxidation method, as previously described (23a), in 50-ml Erlenmeyer flasks with 5-ml culture samples. Unless otherwise indicated, 1% O₂, 2.6% H₂, and 0.4% H³H were added to start the 15-min assays. One percent O₂ (11.8 μ M) was chosen for the standard assay because it is near the optimum for H₂ uptake in most phases of growth (23a). This was verified for N₂O-grown and NO₃⁻⁻grown cultures. When alternative electron acceptors were used, methylene blue, KNO₃, and KNO₂ solutions were kept in serum-stoppered containers and made anaerobic by evacuating and refilling them with N₂ to 1 atm (101.3 kPa) three times. Aliquots were transferred to assay flasks by syringe. The H³H (specific activity, 17.5 μ Ci ml⁻¹) was obtained and stored in a lecture bottle (Matheson Canada,

^{*} Corresponding author.

Whitby, Ontario). Air-incubated cells were used as blanks, and these values were subtracted from those obtained from other treatments. The small amount of H^3H uptake by cells incubated under air cannot be lowered by first autoclaving the cells, and the inhibition due to the O₂ present in air is irreversible (23a). Since there is no significant difference between the rates of H^3H and H_2 uptake by *A*. brasilense when using O₂ (23a) or methylene blue (unpublished data) as the electron acceptor, H^3H uptake appears to be a valid measure of H₂ oxidation in this organism.

Oxidized methylene blue is assumed to accept electrons directly from hydrogenase and has been used to measure hydrogenase activity specifically (20), whereas O2-dependent H₂ uptake measures the activity of the H₂ oxidation system as a whole. Results to be presented, and unpublished data, show that there is usually no more than a twofold difference between the activities with 5 mM methylene blue and those obtained with 1% O₂. Since methylene bluedependent H₂ uptake has an optimum for methylene blue (5 mM) and higher concentrations inhibit the activity (data not shown), this method shows some of the same problems as are found with the use of O_2 . Therefore, for A. brasilense we have used O₂-dependent H₂ uptake as a means of estimating hydrogenase activity, since at an optimal concentration of O_2 it closely approximates the results obtained with methylene blue.

Analyses. Oxygen, N₂O, and H₂ were measured by gas chromatography as previously described (2, 4, 23a). Culture samples were taken at specified times for absorbance readings at 430 nm with a Bausch & Lomb Spectronic 20 and then frozen. The samples were thawed and used for Lowry protein estimation and the enzymatic determination of Lmalic acid as described previously (23a). Cells were removed by membrane filtration (0.22- μ m pore size), and NO₃⁻ and NO₂⁻ levels were determined by the Griess-Ilosvay method (by using sulfanilamide reagent with and without hydrazinecopper reduction) with an automated analysis system (ChemLab Instruments, Hornchurch, Essex, England). Spot tests for NO_3^- and NO_2^- (by using drops of sulfanilamide reagent with and without zinc reduction) were carried out on 0.5-ml culture samples. Ostwald coefficients (26) were used to calculate the concentrations of gases in solution. All data are expressed as the means of duplicate samples except for H³H uptake assays, which are the means of triplicate flasks.

RESULTS

Uptake hydrogenase in N₂O-grown cultures. A. brasilense was grown anaerobically with N₂O (10% vol/vol in the gas phase, 2 mM in solution) as the terminal electron acceptor and NH₄Cl as the nitrogen source (Fig. 1). A small amount of NO₃⁻, present initially to shorten the lag phase, was reduced to NO_2^- , and this in turn was completely used within 6 h. After this initial period, N₂O alone supported the terminal oxidant needs of the cultures with a generation time of 3 h. This compared favorably with generation times observed in cultures grown microaerobically on NH₄Cl (3 to 3.5 h) and under N-free conditions (5.5 h) (23a) and aerobically on NH₄Cl (1 to 2 h) (18). Malate, the carbon and energy source, was the growth-limiting component since growth, measured by absorbance (data not shown) and protein content, ended when the malate was fully depleted. We observed high levels of H₂ uptake, reaching a maximum in late log phase, in the presence and absence of exogenous H₂. Hydrogen uptake activity in the $+H_2$ culture reached a higher maximum and was more stable in stationary phase than in the $-H_2$ culture.

FIG. 1. Hydrogen uptake activity in N₂O-grown cultures in the absence (A) and presence (B) of 5% H₂. Symbols: \bigcirc , O₂-dependent H₂ uptake; \triangle , protein; \bigcirc , L-malic acid; \Box , NO₃⁻; \blacksquare , NO₂⁻.

Although the final protein content of the two cultures was nearly the same, the maximum absorbance (not shown) of the $+H_2$ culture was higher and more stable in stationary phase than that of the $-H_2$ culture (0.66 versus 0.58, dropping to 0.53). This absorbance difference may reflect some changes in cell content, size, and morphology due to the presence of H_2 , and the drop in absorbance may be due to cell lysis. The initial and final pH values, about 6.7 and 7.1, respectively, were similar in both cultures.

With N_2O -grown cells, methylene blue, O_2 , and N_2O could each serve as the electron acceptor for H_2 uptake, whereas NO_2^- inhibited H_2 uptake (Table 1).

Uptake hydrogenase in NO₃⁻-grown cultures. A. brasilense was grown anaerobically with NO_3^- (0.5 mM initially) as the terminal electron acceptor and NH₄Cl as the nitrogen source (Fig. 2). The NO_3^- was depleted, and NO_2^- , the reduction product, reached its maximum by 9 h. The NO₂⁻ maximum corresponds to a shoulder or plateau in the absorbance (not shown), protein, and malate curves. This phenomenon has been observed repeatedly in other NO_3^- -grown cultures (Lalande and Knowles, unpublished data). The duration of the shoulder or plateau was dependent upon the initial concentration of NO_3^- ; the more NO_3^- added, the more NO₂⁻ produced and the longer the interruption of growth. By 11 h (Fig. 2), NO_2^- reduction had begun, and the cells grew with NO₂⁻ as the terminal electron acceptor. Although not shown here, in similar cultures, concomitant with the reduction of NO_2^- was the release of N_2O , which was detected in the effluent gas from the cultures. By 14 h NO₂⁻ had disappeared and growth had stopped. At 16.5 h, and thereafter whenever NO_2^- could not be detected in the cultures by spot test, spikes of NO_3^- (yielding a final concentration of 0.4 to 0.5 mM) were added to the cultures to allow growth to continue.

We detected only low levels of H_2 uptake in NO_3^- -grown cultures, in the presence and absence of exogenous H_2 (Fig. 2). These levels were roughly 50 to 100 times lower than those in N₂O-grown cultures. What little activity there was appeared to reach a maximum as the malate disappeared and was more stable and roughly two times higher in the $+H_2$ culture than in the $-H_2$ culture.

After 52 h there was no malate remaining in the cultures. A further slow reduction of NO_3^- took place, but only in the $+H_2$ culture (Fig. 2). Protein and absorbance values for NO_3^- -grown cultures in the presence and absence of exogenous H_2 were nearly the same; maximum absorbance values (not shown) were 0.423 and 0.440, respectively. The initial and final pH values, about 6.7 and 7.4, respectively, were similar in both cultures.

For NO_3^- -grown cells, methylene blue, O_2 , N_2O , NO_3^- , and NO_2^- were all capable of acting as the electron acceptor for H_2 uptake (Table 2). Hydrogen uptake was not inhibited by 0.5 mM NO_2^- , in contrast to N_2O -grown cells.

DISCUSSION

A. brasilense appears to be one of the few organisms capable of synthesizing hydrogenase under denitrifying con-

TABLE 1. Uptake hydrogenase activity of N₂O-grown A. brasilense with different electron acceptors"

Electron acceptor (concn)	H ₂ uptake ^b	Relative activity (%)
Methylene blue (5.0 mM)	463.5 ± 24.2	100.0
0.5% O ₂ (5.9 μM)	270.5 ± 8.0	58.4
$1.0\% O_{2} (11.8 \mu M)$	424.7 ± 1.0	91.6
$N_{2}O(1.0 \text{ mM})$	70.2 ± 1.2	15.1
NO_{3}^{-} (0.5 mM)	28.8 ± 5.4	6.2
NO_{2}^{-} (0.5 mM)	6.7 ± 0.6	1.4
None added	32.0 ± 1.5	6.9

^{*a*} Late-log-phase culture grown in the absence of H₂. Protein content was 71.8 μ g of protein ml⁻¹. Before samples were taken, the culture was purged of N₂O by flushing with N₂ for 15 min. Flasks with culture samples were then preincubated for 30 min to allow the cells to use any contaminating N₂O or O₂ (verified by gas chromatography).

^b Activities expressed as nmol of H_2 (mg of protein)⁻¹ min⁻¹. Assays were 24 min long. Results are means of three flasks \pm standard error.

FIG. 2. Hydrogen uptake activity in NO_3^- -grown cultures in the absence (A) and presence (B) of 5% H₂. Arrows indicate the times at which NO_3^- spikes were added. Samples for NO_3^- and NO_2^- analysis were taken both before and after the NO_3^- spike up to and including 41 h; but after 41 h the samples were taken only before the spike, at the same time as cells were removed for H₂ uptake assays. Symbols as in the legend to Fig. 1.

ditions in the absence of molecular H_2 . Others include *P*. *denitrificans* (17) and *A. eutrophus* (21). Hydrogenase expression in *P. denitrificans* strains other than 381 appears to be constitutive (17) and in *A. eutrophus* is associated with electron donor limitation (10). *R. japonicum* possesses hydrogenase activity under denitrifying conditions (13) but requires the presence of H_2 for hydrogenase expression (12).

In N₂O-grown cultures the high rates of H₂ uptake observed reached a maximum as the malate (electron donor) became limiting. Hydrogen was not necessary for hydrogenase derepression but increased the maximum activity and stability of the H₂ uptake system. In cultures grown under microaerobic conditions in the absence of H₂ there is a rapid decay of H₂ uptake activity in stationary phase, whereas in the presence of H₂ the H₂ uptake system is much more stable (23a). Hydrogen-dependent respiration is O₂-sensitive (20, 23a), and it seems that in stationary phase, in the absence of an oxidizable substrate, even microaerobic conditions (such as 0.75% O₂) are sufficient to rapidly inactivate the H₂ uptake system (23a). The presence of H₂ in stationary phase

TABLE 2. Uptake hydrogenase activity of NO_3^- -grown A. brasilense with different electron acceptors"

Electron acceptor (concn)	H ₂ uptake ^b	Relative activity (%)
Methylene blue (5.0 mM)	17.4 ± 1.7	100.0
0.5% O ₂ (5.9 μM)	15.5 ± 2.0	89.1
$1.0\% O_2 (11.8 \mu M)$	8.6 ± 0.8	49.4
$N_2O(1.0 \text{ mM})$	11.2 ± 3.2	64.4
NO_3^{-} (0.5 mM)	5.6 ± 1.8	32.2
NO_2^{-} (0.5 mM)	7.1 ± 2.0	40.8
None added	1.5 ± 1.0	8.6

^{*a*} Stationary-phase culture grown in the presence of 5% H₂. Protein content was 81.6 μ g of protein ml⁻¹. Samples were taken when there was no detectable NO₃⁻ or NO₂⁻ in the culture, and the flasks were then preincubated for 30 min to remove any contaminating O₂ (verified by gas chromatography).

^b Activities expressed as nmol of H_2 (mg of protein)⁻¹ min⁻¹. Assays were 24 min long. Results are means of three flasks \pm standard error.

might allow the H₂ uptake system to protect itself to some extent against O₂-inactivation by H₂-dependent O₂ utilization. Thus, it is not surprising that under anaerobic N₂Ogrown conditions, even in the absence of H₂, the H₂ uptake system was relatively stable. In N₂O-grown cultures the increased stability of the H₂ uptake system in the presence of H₂ may be due to the oxidation of H₂ as a source of maintenance energy.

The N₂O-grown cells had higher rates of H₂ uptake when assayed in the presence of O₂ than with N₂O or NO₃⁻, and we suggest that electron transport components leading to O₂ are present under anaerobic growth conditions, as in *P*. *denitrificans* (25).

The higher O_2 optimum for H_2 uptake shown by the late log phase N_2O -grown cells of Table 1 compared with the stationary phase NO_3^- -grown cells of Table 2 supports our previous observations with N_2 -fixing and NH_4^+ -grown A. brasilense (23a). The results suggest a limited amount of respiratory protection (with malate) for the H_2 uptake system in late-log-phase culture samples where malate was still present but not for stationary-phase culture samples where malate was no longer present.

Nitrite is toxic to a variety of microorganisms (3, 27), but little is known of the physiological basis for this inhibition. In aerobic organisms it inhibits O_2 uptake, oxidative phosphorylation, and active transport, suggesting that it interferes with electron carriers in the membrane respiratory system (22, 24, 28). Since H₂ oxidation is dependent upon electron transport, it is not surprising that NO₂⁻ inhibited H₂ uptake in N₂O-grown A. brasilense.

From preliminary experiments, usually with 2 mM NO₃⁻ initially, we had come to expect only low levels of H₂ uptake in NO₃⁻-grown cultures. However, in these earlier studies, the electron acceptor and not the electron donor was the growth-limiting component. Therefore in the present study we ensured the full depletion of the electron donor (malate) by adding successive NO3⁻ spikes. Also, due to the inhibition of H_2 uptake in N₂O-grown cells by NO₂⁻, we used a lower concentration of NO₃⁻ initially (0.5 mM instead of 2 mM) and assayed for H₂ uptake only when spot tests indicated the absence of NO_2^- in the cultures. Despite these modifications, we observed only low H₂ uptake activity in NO_3^- -grown cultures. The reasons for this are not clear. Although the initial accumulation of NO₂⁻ did inhibit growth until NO₂⁻ reductase was derepressed and reduced the NO_2^{-} further, the low hydrogenase activity was apparently

not due to inhibition by NO_2^- because NO_2^- supported H_2 oxidation in NO_3^- -grown cells. Nitrate-grown cells probably had higher levels of NO_2^- reductase than did N_2O -grown cells because of the constant exposure to NO_2^- in the NO_3^- -grown cultures. This might have allowed the NO_3^- -grown cells to maintain intracellular NO_2^- concentrations below inhibitory levels.

Nitrate-grown A. brasilense used NO₃⁻, NO₂⁻, N₂O, and O₂ as the terminal electron acceptors for H₂ uptake. This makes it similar to R. japonicum grown anaerobically under chemolithotrophic conditions (14). The slow disappearance of NO₃⁻ and the lack of NO₂⁻ accumulation in the +H₂ culture after the malate was fully depleted were probably due to H₂-dependent NO₃⁻ and NO₂⁻ reduction.

The ability of A. brasilense to grow using any one of the three major substrates of denitrification and the presence of H_2 uptake activity under these conditions add to the versatility of this organism and help explain its widespread distribution. Further understanding of the relationship between uptake hydrogenase activity and denitrification would be desirable, and we are currently investigating further aspects of the inhibition of H_2 uptake by NO_2^- and other compounds.

ACKNOWLEDGMENTS

We thank Roger Lalande for providing information regarding culture conditions.

This work was supported by grants to R.K. from the Natural Sciences and Engineering Research Council of Canada (A3252) and the Inland Waters Directorate of Environment Canada. K.H.T. was supported by a Natural Sciences and Engineering Research Council 1967 Science Scholarship,

LITERATURE CITED

- 1. Bothe, H., B. Klein, M. P. Stephan, and J. Döbereiner. 1981. Transformations of inorganic nitrogen by *Azospirillum* spp. Arch. Microbiol. 130:96–100.
- Brouzes, R., C. I. Mayfield, and R. Knowles. 1971. Effect of oxygen partial pressure on nitrogen fixation and acetylene reduction in a sandy loam soil amended with glucose, p. 481– 494. In T. A. Lie and E. G. Mulder (ed.), Biological nitrogen fixation in natural and agricultural habitats. Plant Soil, special volume. Martinus Nijhoff, The Hague, The Netherlands.
- Castellani, A. G., and C. F. Niven, Jr. 1955. Factors affecting the bacteriostatic action of sodium nitrite. Appl. Microbiol. 3:154– 159.
- Chan, Y. K., and R. Knowles. 1979. Measurement of denitrification in two freshwater sediments by an in situ acetylene inhibition method. Appl. Environ. Microbiol. 37:1067–1072.
- Chan, Y. K., L. M. Nelson, and R. Knowles. 1980. Hydrogen metabolism of *Azospirillum brasilense* in nitrogen-free medium. Can. J. Microbiol. 26:1126–1131.
- Day, J. M., and J. Döbereiner. 1976. Physiological aspects of N₂-fixation by a Spirillum from Digitaria roots. Soil Biol. Biochem. 8:45-50.
- Döbereiner, J., and J. M. Day. 1976. Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites, p. 518-538. In W. E. Newton and C. J. Nyman (ed.), Proceedings of the 1st International Symposium on Nitrogen Fixation. Washington State University Press, Pullman.
- Döbereiner, J., I. E. Marriel, and M. Nery. 1976. Ecological distribution of *Spirillum lipoferum*. Beijerinck. Can. J. Microbiol. 22:1464–1473.
- Eskew, D. L., D. D. Focht, and I. P. Ting. 1977. Nitrogen fixation, denitrification, and pleomorphic growth in a highly pigmented Spirillum lipoferum Appl. Environ. Microbiol. 34:582-585.
- 10. Friedrich, C. G. 1982. Derepression of hydrogenase during

limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of *Alcaligenes eutrophus*. J. Bacteriol. **149**:203–210.

- Kluyver, A. J., and W. Verhoeven. 1954. Studies on true dissimilatory nitrate reduction. IV. On adaptation in *Micrococcus denitrificans*. Antonie van Leeuwenhoek J. Microbiol. Serol. 20:337–358.
- Maier, R. J., F. J. Hanus, and H. J. Evans. 1979. Regulation of hydrogenase in *Rhizobium japonicum*. J. Bacteriol. 137:824– 829.
- Neal, J. L., G. C. Allen, R. D. Morse, and D. D. Wolf. 1982. Anaerobic nitrate-dependent chemolithotrophic growth by *Rhi-zobium japonicum*. Can. J. Microbiol. 29:316–320.
- Neal, J. L., G. C. Allen, R. D. Morse, and D. D. Wolf. 1983. Nitrate, nitrite, nitrous oxide and oxygen-dependent hydrogen uptake by *Rhizobium*. FEMS Microbiol. Lett. 17:335–338.
- Nelson, L. M., and R. Knowles. 1978. Effect of oxygen and nitrate on nitrogen fixation and denitrification by *Azospirillum* brasilense grown in continous culture. Can. J. Microbiol. 24:1395-1403.
- Neyra, C. A., J. Döbereiner, R. Lalande, and R. Knowles. 1977. Denitrification by N₂-fixing *Spirillum lipoferum*. Can. J. Microbiol. 23:300–305.
- 17. Nokhal, T.-H., and H. G. Schlegel. 1980. The regulation of hydrogenase formation as a differentiating character of strains of *Paracoccus denitrificans*. Antonie van Leeuwenhoek J. Microbiol. Serol. **46**:143–155.
- Okon, Y., S. L. Albrecht, and R. H. Burris. 1977. Methods for growing *Spirillum lipoferum* and for counting it in pure culture and in association with plants. Appl. Environ. Microbiol. 33:85– 88.
- Okon, Y., J. P. Houchins, S. L. Albrecht, and R. H. Burris. 1977. Growth of *Spirillum lipoferum* at constant partial pressures of oxygen, and the properties of its nitrogenase in cell-free ex-

tracts. J. Gen. Microbiol. 98:87-93.

- Pedrosa, F. O., M. Stephan, J. Döbereiner, and M. G. Yates. 1982. Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense. J. Gen. Microbiol. 128:161-166.
- Pfitzner, J., and H. G. Schlegel. 1973. Denitrifikation bei Hydrogenomonas eutropha Stamm H 16. Arch. Mikrobiol. 90:199– 211.
- Rowe, J. J., J. M. Yarbrough, J. B. Rake, and R. G. Eagon. 1979. Nitrite inhibition of aerobic bacteria. Curr. Microbiol. 2:51-54.
- 23. Tarrand, J. J., N. R. Krieg, and J. Döbereiner. 1978. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can. J. Microbiol. 24:967–980.
- 23a. Tibelius, K. H., and R. Knowles. 1983. Effect of hydrogen and oxygen on uptake hydrogenase activity in nitrogen-fixing and ammonium-grown Azospirillum brasilense. Can. J. Microbiol. 29:1119-1125.
- Van Verseveld, H. W., E. M. Meijer, and A. H. Stouthamer. 1977. Energy conservation during nitrate respiration in *Para*coccus denitrificans. Arch. Microbiol. 112:17-23.
- 25. Vignais, P. M., M.-F. Henry, E. Sim, and D. B. Kell. 1981. The electron transport system and hydrogenase of *Paracoccus denitrificans*. Curr. Top. Bioenerg. 12:115–196.
- Wilhelm, E., R. Battino, and R. J. Wilcock. 1977. Low-pressure solubility of gases in liquid water. Chem. Rev. 77:219–262.
- Wodzinski, R. S., D. P. Labeda, and M. Alexander. 1978. Effects of low concentrations of bisulfite-sulfite and nitrite on microorganisms. Appl. Environ. Microbiol. 35:718-723.
- 28. Yarbrough, J. M., J. B. Rake, and R. G. Eagon. 1980. Bacterial inhibitory effects of nitrite: inhibition of active transport, but not of group translocation, and of intracellular enzymes. Appl. Environ. Microbiol. **39**:831–834.