Supporting Text

1 Dynamic Structure Factor

For the fits to the dynamic light-scattering data we use amesgon for the dy-
namic structure factor derived from the single-polymensgrgerse mean square
displacement (MSD) of a point on the contour (1). By a normaflmanalysis as
outlined inMethods, one finds for the MSD (1-3):
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wherek,, = mn/L, 1, = 4mn/kk?: , and

T (n>1),
Tn = (¢=LJ/A) [7]

Texpl€(l/n—1)] (n<?),
is the relaxation time of the glassy wormlike chain dr{@) = 47nh(k) is the

Fourier transform of the (“Rotne-Prager”) mobility furani,
h(k) = vrp — log(ka) + O(K*a®), (8]

which represents a dimensionless refining factor to thelsifffigee-draining” ap-
proximation with a constant friction coefficiegt employed inMethods. This
factor depends on the hydrodynamic constgpt and on the backbone diameter

a of the filament.



Forn > /¢ the following approximation to the integral EqQ. 6 is used:
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Here,7n = 7, = (47n/k)(A/7)* is the relaxation time of a mode of (half) wave-
lengthA. The length?, (t) = (kt/47n)'/* is the transverse elastohydrodynamic
correlation length. The constantis defined a¥3 = vgp — log(ng) wheren, is

a numerically determined mode number. The (approximatedyral forn < ¢,
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is evaluated numerically (an analytic approximation isegivn ref. 4). The dy-

namic structure factor in the limit> 7, = 47 /xq* immediately follows (1),
S(q,1)/5(q,0) = exp(—*[0r7° (1) + o7 1 (1)]/4). [11]

To produce the fits of Eg. 11 to the DLS data in Fig. 5 of the maxt, twe
used the constants = 9 um anda = 9 nm (5). The free parameters were the
stretching parametef, the interaction lengtiA, and the hydrodynamic constant
B. The values obtained far = 17 uM and different values of the scattering
vectorg are given in Sl Figs. 7-9.

The applicability of single-polymer theory (1) becomes sfigmable for low
values ofg comparable to the inverse mesh sjzé. As¢~! = 2.6 um~! for c =
17 uM, a quantitative evaluation of the fits should focus on tingdat measurable
g > 2.6 um~!, The data in Sl Figs. 7-9 suggest that (at least) the valuesnsal
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for ¢ < 10 um~! have to be discarded as meaningless, while those obtained fo
10 um™! < ¢ < 15 um! still exhibit some small but noticeable systematic
errors.

The MSD given by Eq. 6 exhibits a remarkable symmetry. It raight-
forward to check that upon simultaneously rescaling- A’ = YA andé —
&' = ~&, the long-time tails of the original MSBr? and the MSD of the rescaled
variables,r'2, can be superimposed, that &;2(t) = dr2 (at) for t > 75, 7o/
with oo = exp[€(y—1)] (the weak mode-number dependence of the mobility func-
tion is neglected). Inset of Fig. 5 in the main text demonsg¢éhat this symmetry

is well obeyed fory = 8.04 um~1.

2 Linear Viscoelastic M odulus of a Glassy wor mlike
Chain

In the theory of Soft Glassy Rheology (SGR) (6), the noisgiematurel < = < 2
is directly monitored by the power-law exponent- 1 of the linear viscoelastic
moduli for low frequencies@’(w), G"(w) ~ w* ). In this sectionz will be
compared to the stretching paramefesf a glassy wormlike chain (GWLC).

By applying the the prescription of the GWLC to the high-regcy limiting
form of the dynamical shear modulus of a wormlike chain (7@, ealculate the
macrorheological modulus of a GWLC (4). Its expression famighing prestress
is

G(w) = £A/€a(v), [12]



here¢ = /3/c,L is the mesh size and

_aLZn4+ZWT /2 [13]

with the prefactory, = L*/(kT7"(2) is the susceptibility of the GWLC to a point
force at the ends. The relaxation timgsare modified as described in section 1.
By an analytic approximation it is possible to determine finectional depen-
dence ofG(w) on the frequency and the stretching paramétefhe viscoelastic
modulus of a GWLC is not a simple power law but a function thepehds es-
sentially logarithmically on frequency. An approximatitnthe storage modulus

validforwomy, < 1,€>11s
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G(w) =

From Eq. 14 it is straightforward to derive the local powew kexponent of the
elastic modulus fo€ > 1 at a fixed frequency. Asymptotically fé — oo (at
fixedw) the resultisc — 1 = 3/€ (note that the limit€ — oo andw — 0 do not
commute). This result and the exact slope valid fo€adlre shown in Sl Fig. 10.

A similar analysis can be carried out for the loss angle arctan(G”/G").
The exact value as a function &fat a fixed frequency and the asymptotic ana-
lytical approximationy = arctan(5/€) ~ 5/& (valid for £ — oo atfw/wy =
const.< 1) are given in Sl Fig. 10. Our resuli(x — 1)/3 = ¢) is compatible
with power-law rheology, where the exact relatioty2)(x — 1) = 4 is expected
(8). The deviation of our factor from the exact value is aefart of the analytical

approximations made.
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