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1 Dynamic Structure Factor

For the fits to the dynamic light-scattering data we use an expression for the dy-

namic structure factor derived from the single-polymer transverse mean square

displacement (MSD) of a point on the contour (1). By a normal mode analysis as

outlined inMethods, one finds for the MSD (1–3):

δr2

⊥(t) = 〈[r⊥(s, t) − r⊥(s, 0)]2〉 [5]

≈
4L3

π4ℓp

L/a
∫

0

dn
1 − exp[−(t/τ̃n)h̃(kn)]

n4
, [6]

wherekn = πn/L, τn = 4πη/κk4
n , and

τ̃n =











τn (n > ℓ),

τn exp[E(l/n − 1)] (n < ℓ),

(ℓ = L/Λ) [7]

is the relaxation time of the glassy wormlike chain andh̃(k) = 4πηh(k) is the

Fourier transform of the (“Rotne-Prager”) mobility function,

h̃(k) = γRP − log(ka) + O(k2a2), [8]

which represents a dimensionless refining factor to the simple “free-draining” ap-

proximation with a constant friction coefficientζ⊥ employed inMethods. This

factor depends on the hydrodynamic constantγRP and on the backbone diameter

a of the filament.
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Forn > ℓ the following approximation to the integral Eq. 6 is used:
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]})

]

.

[9]

Here,τΛ ≡ τℓ = (4πη/κ)(Λ/π)4 is the relaxation time of a mode of (half) wave-

lengthΛ. The lengthℓ⊥(t) = (κt/4πη)1/4 is the transverse elastohydrodynamic

correlation length. The constantB is defined asB = γRP − log(ñ0) whereñ0 is

a numerically determined mode number. The (approximated) integral forn < ℓ,

r2,G
⊥

(t) =
4L3

ℓpπ4

ℓ
∫

0

dn
1 − exp (−(t/τ1)n

4 exp[−E(l/n − 1)] {B − log [a/ℓ⊥(t)]})

n4

[10]

is evaluated numerically (an analytic approximation is given in ref. 4). The dy-

namic structure factor in the limitt ≫ τq = 4πη/κq4 immediately follows (1),

S(q, t)/S(q, 0) = exp(−q2[δr2,G
⊥

(t) + δr2

⊥,Λ(t)]/4). [11]

To produce the fits of Eq. 11 to the DLS data in Fig. 5 of the main text, we

used the constantsℓp = 9 µm anda = 9 nm (5). The free parameters were the

stretching parameterE , the interaction lengthΛ, and the hydrodynamic constant

B. The values obtained forc = 17 µM and different values of the scattering

vectorq are given in SI Figs. 7-9.

The applicability of single-polymer theory (1) becomes questionable for low

values ofq comparable to the inverse mesh sizeξ−1. As ξ−1 = 2.6 µm−1 for c =

17 µM, a quantitative evaluation of the fits should focus on the largest measurable

q ≫ 2.6 µm−1. The data in SI Figs. 7-9 suggest that (at least) the values obtained
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for q . 10 µm−1 have to be discarded as meaningless, while those obtained for

10 µm−1 . q . 15 µm−1 still exhibit some small but noticeable systematic

errors.

The MSD given by Eq. 6 exhibits a remarkable symmetry. It is straight-

forward to check that upon simultaneously rescalingΛ → Λ′ = γΛ andE →

E ′ = γE , the long-time tails of the original MSDδr2

⊥
and the MSD of the rescaled

variables,δr
′2

⊥
, can be superimposed, that is,δr

′2

⊥
(t) = δr2

⊥
(αt) for t ≫ τΛ, τΛ′

with α = exp[E(γ−1)] (the weak mode-number dependence of the mobility func-

tion is neglected). Inset of Fig. 5 in the main text demonstrates that this symmetry

is well obeyed forq = 8.04 µm−1.

2 Linear Viscoelastic Modulus of a Glassy wormlike

Chain

In the theory of Soft Glassy Rheology (SGR) (6), the noise temperature1 < x < 2

is directly monitored by the power-law exponentx − 1 of the linear viscoelastic

moduli for low frequencies (G′(ω), G′′(ω) ∼ ωx−1). In this section,x will be

compared to the stretching parameterE of a glassy wormlike chain (GWLC).

By applying the the prescription of the GWLC to the high-frequency limiting

form of the dynamical shear modulus of a wormlike chain (7), we calculate the

macrorheological modulus of a GWLC (4). Its expression for vanishing prestress

is

G(ω) =
1

5
Λ/ξ2α(ω), [12]
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hereξ =
√

3/cpL is the mesh size and

α(ω) = αL

∞
∑

n=1

1

n4 + iωτ̃n/2
[13]

with the prefactorαL = L4/(kTπ4ℓ2
p) is the susceptibility of the GWLC to a point

force at the ends. The relaxation timesτ̃n are modified as described in section 1.

By an analytic approximation it is possible to determine thefunctional depen-

dence ofG(ω) on the frequency and the stretching parameterE . The viscoelastic

modulus of a GWLC is not a simple power law but a function that depends es-

sentially logarithmically on frequency. An approximationto the storage modulus

valid for ωτΛ ≪ 1, E ≫ 1 is

G′(ω) =
Λ

5ξ2αΛ
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[14]

From Eq. 14 it is straightforward to derive the local power law exponent of the

elastic modulus forE ≫ 1 at a fixed frequency. Asymptotically forE → ∞ (at

fixedω) the result isx − 1 = 3/E (note that the limitsE → ∞ andω → 0 do not

commute). This result and the exact slope valid for allE are shown in SI Fig. 10.

A similar analysis can be carried out for the loss angleδ = arctan(G′′/G′).

The exact value as a function ofE at a fixed frequency and the asymptotic ana-

lytical approximationδ = arctan(5/E) ≈ 5/E (valid for E → ∞ at Eω/ωΛ =

const.≪ 1) are given in SI Fig. 10. Our result (5(x − 1)/3 = δ) is compatible

with power-law rheology, where the exact relation(π/2)(x − 1) = δ is expected

(8). The deviation of our factor from the exact value is an artefact of the analytical

approximations made.
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