Transport of Vitamin B_{12} in *Escherichia coli*: Cloning of the *btuCD* Region

LINDA C. DEVEAUX[†] and ROBERT J. KADNER*

Department of Microbiology, School of Medicine, The University of Virginia, Charlottesville, Virginia 22908

Received 19 December 1984/Accepted 25 February 1985

The transport of vitamin B_{12} in *Escherichia coli* requires a specific vitamin B_{12} receptor protein in the outer membrane and the *tonB* gene product. In addition, the *btuC* gene, located at min 38 on the genetic map, has been found to influence vitamin B_{12} uptake or utilization. The *btuC* function is required for the growth response to vitamin B_{12} when the outer membrane transport process (*btuB* or *tonB* function) is defective. However, even in a wild-type strain, *btuC* is required for proper transport of vitamin B_{12} . Additional mutations in the vicinity of *btuC* were isolated as *lac* fusions that produced a phenotype similar to that of a *btuC* mutant. The *btuC* region was cloned by selection for complementation of a *btuC* mutation. Complementation testing with plasmids carrying various deletions or transposon Tn1000 insertions demonstrated that the new mutations defined a separate, independently expressed locus, termed *btuD*. The coding regions for both genes were identified on a 3.4-kilobase *Hind*III-*Hinc*II fragment and were 800 to 1,000 base pairs in length. They were separated by a 600- to 800-base-pair region. The gene order in this portion of the chromosome map was found to be *pps-zdh-3*::Tn10-*btuD-btuC-pheS*. Expression of β -galactosidase in the *btuD-lac* fusion-bearing strains, whether proficient or defective in vitamin B_{12} transport, was not regulated by the presence of vitamin B_{12} in the growth medium.

The uptake systems for vitamin B_{12} and numerous ironsiderophore complexes in Escherichia coli are unusual in that they employ specific receptor proteins in the outer membrane as an essential component of the high-affinity active transport process (26). The tonB product appears to be necessary for the energy-dependent stages of many transport processes mediated by these receptors (21, 32). For example, whereas the uptake of vitamin B_{12} by means of the *btuB*-coded B_{12} receptor is *tonB* dependent, the entry of the E colicins and phage BF23, which use the same receptor, is not (2, 8, 13). In addition to the receptors, other gene products have been implicated in siderophore transport at steps subsequent to receptor binding. Mutations in the fecB, *fepB*, *iutB*, and *fhuBCD* loci prevent uptake of ferric citrate, ferric enterochelin, ferric aerobactin, and hydroxamate-type siderophores, respectively, but do not impair formation of the corresponding receptor (15, 20, 26, 27, 30, 31, 33)

Mutations affecting vitamin B₁₂ uptake in an identical manner to those blocking iron uptake have not been observed (7). Mutations at *btuC* only slightly impair the growth response of *metE* mutants to vitamin B_{12} in place of methionine (3, 14). The initial rate of vitamin B_{12} transport in a btuC mutant strain resembles that in wild-type strains. A steady-state level of vitamin B₁₂ accumulation is attained, which differs from the parental situation in that most or all of the accumulated vitamin B_{12} can be chased from the cell upon addition of excess nonradioactive vitamin B_{12} (3). Parental strains retain most of the transported substrate. The vitamin B_{12} accumulated in a *btuC* strain is not converted into the various metabolic derivatives normally found and can be released from the cell by EDTA treatment (28). Thus, btuC function is required for proper transport or processing of B_{12} in strains proficient for the outer membrane transport components.

Strains deficient in the components of the outer membrane transport process (altered at *btuB*, *tonB*, or both) can still utilize elevated (5 μ M) levels of vitamin B₁₂ (3). Receptorindependent utilization of vitamin B₁₂ is more effective in strains with altered outer membrane barrier properties (3). In these cases, the growth response to vitamin B₁₂ is absolutely dependent on *btuC* function. *btuC* appears to be involved solely in B₁₂ utilization, since the *btuC* genotype has no effect on the response to the E colicins or phage BF23 or on the utilization of ferric-siderophore complexes as iron source (unpublished observations).

The genetic analysis of the btuC region described in this paper was prompted by the uncertainty of whether this function was involved in the transport of vitamin B₁₂ across the cytoplasmic membrane or its intracellular processing. Only three btuC alleles were available, and it was unknown whether the dispensability of btuC function for the growth response to vitamin B₁₂, when the outer membrane components were intact, reflected only partial loss of function in these mutants. Another impetus for this study concerned the possible role in transport of a vitamin B₁₂-binding protein of approximately 22,000 molecular weight, which was released upon osmotic shock (7, 29).

In this paper, we report the isolation of *lac* fusions near btuC, which define another gene involved in B₁₂ utilization, termed btuD, and the cloning of this region. By generation of deletions between restriction endonuclease cleavage sites and subcloning procedures, the regions able to complement btuC and btuD mutations were identified and separated. These results were confirmed by the isolation of insertions of the transposon Tn1000.

MATERIALS AND METHODS

Media and chemicals. L broth and minimal medium A were as described by Miller (25). Solid media contained 2% agar. Antibiotics were added to the following final concentrations: ampicillin, 25 μ g/ml; tetracycline, 20 μ g/ml; and kanamycin sulfate, 40 μ g/ml. Cyanocobalamin (vitamin B₁₂) was ob-

^{*} Corresponding author.

[†] Present address: Department of Microbiology, University of Illinois, Urbana, IL 61801.

TABLE 1. E. coli K-12 strains used

CH923 $F^- trp A46 rec A41 xyl$ (16) glyS polA1 argH CS1129 ompR151 lac recAF[ris114 C. Schnaitman lac ⁺ zf:Tn10 MC4100 $\Delta(argF-lac) U169 araD139$ (10) relA1 rpsL150 fb-5301 deoC1 tonA21 thi RK4446 MC4100 non gyrA ton ⁺ $\Delta metE \Delta(tonB-trp) btuB$ btuC456 zdh-600:Tn5 recA (22) RK4954 MC4100 non gyrA ton ⁺ $\Delta metE 70$ (22) RK5000 MC4100 non gyrA ton ⁺ metE70 (22) RK5036 MC4100 non gyrA ton ⁺ metE70 (22) RK6006 RK4954 MC4100 non gyrA ton ⁺ metE70 (22) RK6006 RK4954 MC4100 non gyrA ton ⁺ metE70 (22) RK6036 MC4100 Amete Δ btuB RK6036 (10) RK6037 RK6006 btuC ⁺ RK6036 RK6049 RK6049 RK6038 RK5173 zdh-1::Tn10 RK6049 RK60455 RK6036 RK6044 RK5173 zdh-2::Tn10 RK6215 RK6216 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6218 RK6036 btuD468::AplacMu50	Strain	Genotype	Reference or source	
CS1129 ompRiS1 lac recAF'ts114 C. Schnaitman lac ⁺ zf::Tn10 MC4100 $\lambda(argF-lac) U169 araD139$ (10) relA1 rpsL150 fib-5301 deoC1 tonA21 thi NRK4446 MC4100 non gyrA ton ⁺ Δ metE Δ (tonB-trp) btuB btuC456 zdh-600::Tn5 recA RK4954 MC4100 non gyrA ton ⁺ (22) zib-636::Tn10 RK5000 MC4100 recA RK5173 MC4100 non gyrA ton ⁺ metE70 RK519 RK5173 · λ pl(209)[btuB- lacZ1 · λ darg13 [BtuB ⁺] RK6006 RK4446 btuB ⁺ RK6007 RK6006 btuC ⁺ RK6048 RK5173 zdh-1::Tn10 RK6048 RK5173 zdh-2::Tn10 RK6049 RK6048 btuC456 RK6049 RK6048 btuC456 RK6210 metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3::Tn10 RK6215 RK5173 zdh-2::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6532 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6534 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6534 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6536 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6537 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6538 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6534 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD470:: λ placMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6546 RK5173 btuD470:: λ placMu50 zdh-3::Tn10 RK6545 RK5173 btuD470:: λ placMu50 zdh-3::Tn10 RK6546 RK5173 RK6546 RK5174 RK6546 RK5174 RK6546 RK5175 RK6546 RK5175 RK6546 RK	СН923	F ⁻ trpA46 recA441 xyl	(16)	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	CS1129	ompR151 lac recA/F'ts114 lac ⁺ zzf::Tn10	C. Schnaitman	
RK4446 MC4100 non gyrA tonA ⁺ $\Delta metE \Delta (tonB-trp) btuB$ btuC456 zdh-600::Tn5recA (22) RK4954 MC4100 non gyrA ton+ $zib-636::Tn10$ (22) RK5000 MC4100 recA (22) RK5173 MC4100 non gyrA ton ⁺ metE70 (22) RK5149 RK5173 $\cdot hp1(209)[btuB-lac2] \cdot \lambda darg13 [BtuB+] (23) RK6006 BuC4+6 btuB+ (24) RK6006 MC4100 \Delta metE \Delta btuB (24) RK6048 RK5173 zdh-1::Tn10 (25) RK6048 RK5173 zdh-1::Tn10 (24) RK6210 metE pro lysA trp btuB451btuC456 pheS11 zdh-3::Tn10 (25) RK6213 RK5173 zdh-1::Tn10btuC456 (24) (24) RK6214 RK5173 zdh-1::Tn10btuC456 (24) (24) RK6215 RK5173 zdh-3::Tn10btuC456 (24) (24) RK6218 RK5173 zdh-3::Tn10btuC456 (24) (24) RK633 RK6036btuD467::xplacMu50zdh-3::Tn10 (24) (24) RK6533 RK6036btuD468::xplacMu50 (24) (24) RK6533 RK6036btuD468::xplacMu50 (24) (24) RK6538 RK6036btuD468::xpla$	MC4100	$\Delta(argF-lac)$ U169 araD139 relA1 rpsL150 flb-5301 deoC1 tonA21 thi	(10)	
RK4954 MC4100 non gyrA ton ⁺ (22) xib-636::Tn10 RK5000 MC4100 non gyrA ton ⁺ metE70 RK5173 MC4100 non gyrA ton ⁺ metE70 RK5419 RK5173 · $\lambda p1(209)[btuB-]$ lac2] · $\lambda darg13$ [BtuB ⁺] RK6006 BtuC ⁺ RK6006 RK6040 BtuC456 RK6007 RK6006 btuC ⁺ RK6008 RK6008 MC4100 $\Delta metE \ \Delta btuB$ RK6049 RK6048 RK5173 zdh-1::Tn10 RK6049 RK6049 RK60456 RK6016 RK60173 zdh-2::Tn10 btuC456 pheS11 zdh- 3::Tn10 RK6210 metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3::Tn10 btuC456 RK6215 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 btuD467::\placMu50 zdh-3::Tn10 RK6531 RK6036 btuD467::\placMu50 zdh-3::Tn10 RK6533 RK6036 btuD468::\placMu50 zdh-3::Tn10 RK6536 btuD468::\placMu50 RK6535 RK6036 btuD469::\placMu50 zdh-3::Tn10	RK4446	MC4100 non gyrA tonA ⁺ $\Delta metE \Delta(tonB-trp) btuB$ btuC456 zdh-600::Tn5 recA		
RK5000 MC4100 recA RK5173 MC4100 non gyrA ton* metE70 RK5119 RK5119 RK5173 · λ pl(209)[btuB- lac2] · λ darg13 [BtuB*] RK6006 RK4446 btuB* RK6007 RK6006 btuC* RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 btuC456 RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 btuC456 RK6017 metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3::Tn10 btuC456 pheS11 zdh- 3::Tn10 RK6215 RK5173 zdh-1::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6217 RK6173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467:: λ placMu50 zdh-3:::Tn10 RK6533 RK6036 btuD468:: λ placMu50 zdh-3:::Tn10 RK6535 RK6036 btuD469:: λ placMu50 zdh-3:::Tn10 RK6536 btuD467:: λ placMu50	RK4954	MC4100 non gyrA ton ⁺ zib-636::Tn10	(22)	
RK5173 MC4100 non gyrA ton* metET0 RK5419 RK5173 · $\lambda pl(209)[btuB-lac2] · \lambda darg13 [BtuB^+] RK6006 RK4446 btuB* RK6007 RK6006 btuC* RK6036 MC4100 \Delta metE \ \Delta btuB RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 btuC456 RK6040 RK6048 btuC456 RK6010 metE pro lysA trp btuB451 btuC456 pheS11 zdh-3::Tn10 btuC456 RK6213 RK5173 zdh-1::Tn10 RK6214 RK5173 zdh-3::Tn10 RK6215 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467::\lambdaplacMu50 zdh-3::Tn10 RK6533 RK6036 btuD468::\lambdaplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD468::\lambdaplacMu50 zdh-3::Tn10 RK6536 btuD469::\lambdaplacMu50 zdh-3::Tn10 RK6537 RK6036 btuD469::\lambdaplacM$	RK5000	MC4100 recA		
RK5419 RK5173 \cdot hpl(209)[btuB-lacZ] \cdot hdarg13 [BtuB ⁺] RK6006 RK6006 btuB ⁺ RK6007 RK6006 btuB ⁺ RK6036 MC4100 AmetE Δ btuB RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 btuC456 RK6048 RK64456 RK603 RK4446 rec ⁺ btuC ⁺ zdh-3::Tn10 rec ⁺ btuC456 RK6210 metE pro lysA trp btuB451 btuC456 btuC456 RK6213 RK5173 zdh-1::Tn10 RK6214 RK5173 zdh-3::Tn10 RK6215 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6536 RK6036 btuD409::AplacMu	RK5173	MC4100 non gyrA ton ⁺ metE70		
RK6006 RK4446 bitb RK6006 MC4100 $\Delta metE \Delta bitb$ RK6036 MC4100 $\Delta metE \Delta bitb$ RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 bitC456 RK6049 RK6048 bitC456 RK6010 metE pro lysA trp bitb851 bitC456 pheS11 zdh- 3::Tn10 RK6213 RK5173 zdh-1::Tn10 RK6214 RK5173 zdh-3::Tn10 RK6215 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 bitD467::AplacMu50 zdh-3::Tn10 RK6533 RK6036 bitD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 bitD468::AplacMu50 zdh-3::Tn10 RK6535 RK6036 bitD468::AplacMu50 zdh-3::Tn10 RK6536 BitD409::AplacMu50 RK6537 RK6036 bitD469::AplacMu50 zdh-3::Tn10 RK6538 RK6036 bitD470::AplacMu50	RK5419	RK5173 · λp1(209)[btuB- lacZ] · λdarg13 [BtuB ⁺]		
RK6007 RK6006 $btuC^+$ RK6048 MC4100 $\Delta metE \ \Delta btuB$ RK6048 RK5048 RK6049 RK6048 $btuC456$ RK6049 RK6048 $btuC456$ RK6010 metE pro lysA trp $btuB451$ $btuC456$ $pheS11$ $zh-3::Tn10$ RK6213 RK5173 $zdh-1::Tn10$ RK6215 RK5173 $zdh-1::Tn10$ RK6216 RK5173 $zdh-3::Tn10$ RK6218 RK5173 $zdh-3::Tn10$ RK6531 RK6036 $btuD465$::AplacMu50 $zdh-3::Tn10$ RK6532 RK6036 $btuD468$::AplacMu50 $zdh-3::Tn10$ RK6533 RK6036 $btuD469$::AplacMu50 $zdh-3::Tn10$ RK6536 RK6036 $btuD469$::AplacMu50 $zdh-3::Tn10$ RK6538 RK6036 $btuD467$::AplacMu50 $zdh-3::Tn10$ $x540[btuCD^+]$ RK6543	RK6006	RK4446 btuB ⁺		
RK6036 MC4100 $\Delta metE \ \Delta btuB$ RK6048 RK5173 zdh -1::Tn10 RK6063 RK4446 rec' $btuC^+$ zdh -3::Tn10 RK6011 metE pro lysA trp btuB451 $btuC456$ pheS11 zdh - $3::Tn10$ RK6213 RK5173 zdh -1::Tn10 RK6213 RK5173 zdh -1::Tn10 RK6215 RK5173 zdh -3::Tn10 RK6216 RK5173 zdh -3::Tn10 RK6217 RK6036 btuC456 RK6218 RK5173 zdh -3::Tn10 RK6218 RK5173 zdh -3::Tn10 RK6218 RK5173 zdh -3::Tn10 RK6218 RK6036 btuD467::AplacMu50 zdh -3::Tn10 RK6531 RK6036 btuD468::AplacMu50 RK6533 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6536 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6537 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD467::AplacMu50 zdh-3::Tn10	RK6007	RK6006 btuC ⁺		
RK6048 RK5173 zdh-1::Tn10 RK6049 RK6048 btuC456 RK6049 RK6048 btuC456 RK6049 RK6048 btuC456 RK6013 RK4446 rec ⁺ btuC ⁺ zdh-3::Tn10 btuC456 pheS11 zdh- 3::Tn10 RK6213 RK6215 RK5173 zdh-1::Tn10 btuC456 RK6216 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6537 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD470::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] X540[btuCD ⁺] RK6544 RK5173	RK6036	MC4100 $\Delta metE \Delta btuB$		
RK6049 RK6048 buC456 RK6048 buC456 pro lysA trp buB451 BuD467::AplacMu50 pro lysA trp buB451 BuD468::AplacMu50 pro lysA trp buB468::AplacMu50 BuD469::AplacMu50 pro lysA trp buB468::AplacMu50 BuD469::AplacMu50 pro lysA trub468::AplacMu50 BuD470::AplacMu50 pro lysA trub468::AplacMu50 BuB451:AplacMu50 pro lysA trub470::AplacMu50	RK6048	RK 5173 zdb-1Tn 10		
RK 6043 RK 6043 RK 446 rec ⁺ btuC ⁺ zdh-3::Tn10 metE pro lysA trp btuB451 btuC456 phes11 zdh- 3::Tn10 RK 6213 RK 5173 zdh-1::Tn10 btuC456 RK 6213 RK 5173 zdh-1::Tn10 RK 6215 RK 5173 zdh-3::Tn10 btuC456 RK 6216 RK 6218 RK 5173 zdh-3::Tn10 btuC456 RK 6016 btuD467::AplacMu50 zdh-3::Tn10 RK 6531 RK 6036 btuD467::AplacMu50 zdh-3::Tn10 RK 6532 RK 6036 btuD467::AplacMu50 zdh-3::Tn10 RK 6533 RK 6036 btuD469::AplacMu50 zdh-3::Tn10 RK 6535 RK 6036 btuD469::AplacMu50 zdh-3::Tn10 RK 6536 btuD469::AplacMu50 RK 6537 RK 6036 btuD469::AplacMu50 zdh-3::Tn10 x540[btuCD ⁺] RK 6543 RK 5173 btuD469::AplacMu50 zdh-3::Tn10 x540[btuCD ⁺]				
RK6063 RK4446 rec ⁺ btuC ⁺ zdh-3::Tn10 RK6210 metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3::Tn10 RK6213 RK5173 zdh-1::Tn10 RK6215 RK5173 zdh-1::Tn10 BK6216 RK5173 zdh-3::Tn10 BK6216 RK5173 zdh-3::Tn10 BK6218 RK5173 zdh-3::Tn10 BK6218 RK5173 zdh-3::Tn10 BtuC456 BtuD467::AplacMu50 Zdh-3::Tn10 BtuC456 RK6331 RK6036 BtuD467::AplacMu50 zdh-3::Tn10 RK6533 RK6036 BtuD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 BtuD468::AplacMu50 zdh-3::Tn10 RK6535 RK6036 BtuD469::AplacMu50 zdh-3::Tn10 RK6536 RK6036 BtuD469::AplacMu50 zdh-3::Tn10 RK6538 RK6036 BtuD470::AplacMu50 zdh-3::Tn10 RK6543 RK5173 BtuD467::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] X540[btuCD ⁺] RK6545 RK5173 BtuD468::AplacMu50 zdh-3::Tn10	KK0049	RK0048 DIUC430		
RK6210 metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3::Tn10 RK6213 RK5173 zdh-1::Tn10 btuC456 RK6216 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6531 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6533 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6536 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6543 RK5173 btuD467::AplacMu50 RK6544 RK5173 btuD468::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD468::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD469::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD469::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺]	RK6063	RK4446 rec ⁺ btuC ⁺ zdh-3::Tn10		
RK6213 RK5173 zdh-1::Tn10 RK6215 RK5173 zdh-1::Tn10 btuC456 RK5173 zdh-3::Tn10 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 BK6218 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 RK6531 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6537 RK6036 btuD470::AplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD470::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6544 RK5173 btuD467::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD468::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺]	RK6210	metE pro lysA trp btuB451 btuC456 pheS11 zdh- 3Tp10		
RK6215 RK5173 zdh-1::Tn10 btuC456 RK6216 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 btuD467::AplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD467::AplacMu50 zdh-3::Tn10 RK6533 RK6036 btuD468::AplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD469::AplacMu50 zdh-3::Tn10 RK6537 RK6036 btuD470::AplacMu50 zdh-3::Tn10 AK6543 RK5173 btuD467::AplacMu50 zdh-3::Tn10 AK6544 RK5173 btuD467::AplacMu50 zdh-3::Tn10 A540[btuCD ⁺] RK6545 RK5173 btuD468::AplacMu50 zdh-3::Tn10 A540	DV6112	DV 5172 add 1. To 10		
RK6215 RK5173 zdh-3::Tn10 btuC456 RK6216 RK5173 zdh-3::Tn10 btuC456 RK6218 RK5173 zdh-3::Tn10 btuC456 RK631 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6532 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6533 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6534 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6535 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6536 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6537 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6544 RK5173 btuD468:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173 btuD468:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173	KK0215	KK5175 200-11110		
biuC435 RK6216 RK5173 zdh-3::Tn10 RK6218 RK5173 zdh-3::Tn10 biuC435 RK6036 biuD467::\placMu50 zdh-3::Tn10 RK6532 RK6036 biuD467::\placMu50 zdh-3::Tn10 RK6533 RK6036 biuD468::\placMu50 zdh-3::Tn10 RK6533 RK6036 biuD468::\placMu50 zdh-3::Tn10 RK6534 RK6036 biuD468::\placMu50 zdh-3::Tn10 RK6535 RK6036 biuD469::\placMu50 zdh-3::Tn10 RK6536 RK6036 biuD469::\placMu50 zdh-3::Tn10 RK6538 RK6036 biuD467::\placMu50 zdh-3::Tn10 RK6543 RK5173 biuD467::\placMu50 zdh-3::Tn10 \S40[btuCD ⁺] N40[btuCD ⁺] RK6544 RK5173 biuD468::\placMu50 zdh-3::Tn10 \S40[btuCD ⁺] N540[btuCD ⁺] RK6545 RK5173 biuD468::\placMu50 zdh-3::Tn10	RK6215	RK51/3 zdh-1::1n10		
RK6216 RK5173 zdh-3::Tn10 btuC456 RK6531 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6532 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6533 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6533 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6534 RK6036 btuD468:: λ placMu50 zdh-3::Tn10 RK6535 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6537 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 RK6538 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6544 RK5173 btuD468:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173 btuD469:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173 btuD469:: λ placMu50 <		btuC456		
RK6218 RK5173 zdh -3::Tn10 btuC456 RK6531 RK6036 btuD467:: λ placMu50 zdh-3::Tn10 RK6533 RK6036 btuD467:: λ placMu50 RK6533 RK6036 btuD468:: λ placMu50 RK6533 RK6534 RK6035 btuD468:: λ placMu50 zdh-3::Tn10 RK6535 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6536 RK6036 btuD469:: λ placMu50 zdh-3::Tn10 RK6537 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 RK6538 RK6036 btuD470:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6543 RK5173 btuD468:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173 btuD468:: λ placMu50 zdh-3::Tn10 λ 540[btuCD ⁺] RK6545 RK5173 <	RK6216	RK5173 zdh-3::Tn10		
http://www.second http://www.second http://www.second http://www.second k6531 RK6036 btu/267::\placMu50 btu/267::\placMu50 RK6532 RK6036 btu/267::\placMu50 zdh-3::Tn10 RK6533 RK6036 btu/268::\placMu50 zdh-3::Tn10 RK6534 RK6036 btu/268::\placMu50 zdh-3::Tn10 RK6535 RK6036 btu/2469::\placMu50 zdh-3::Tn10 RK6536 RK6036 btu/2469::\placMu50 zdh-3::Tn10 RK6537 RK6036 btu/2470::\placMu50 zdh-3::Tn10 RK6538 RK6036 btu/2470::\placMu50 zdh-3::Tn10 RK6543 RK5173 btu/2467::\placMu50 zdh-3::Tn10 \stufter \stufter RK6544 RK5173 btu/2468::\placMu50 zdh-3::Tn10 \stufter \stufter RK6545 RK5173 btu/2469::\placMu50 zdh-3::Tn10 \stufter \stufter RK6545 RK5173	RK6218	RK5173 zdh-3::Tn10		
RK6531 RK6036 btuD467::λplacMu50 zdh-3::Tn10 RK6532 RK6036 btuD467::λplacMu50 RK6533 RK6036 btuD468::λplacMu50 zdh-3::Tn10 RK6534 RK6036 btuD468::λplacMu50 zdh-3::Tn10 RK6535 RK6036 btuD468::λplacMu50 zdh-3::Tn10 RK6536 BtuD469::λplacMu50 zdh-3::Tn10 RK6536 RK6036 btuD470::λplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD470::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6543 RK5173 btuD468::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD468::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::		htuC456		
RK60351 RK60350 $zdh-3::Tn10$ RK6532 RK6036 $btuD467::\lambda placMu50$ RK6533 RK6036 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ RK6534 RK6036 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ RK6535 RK6036 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ RK6536 RK6036 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ RK6536 RK6036 $btuD470::\lambda placMu50$ $zdh-3::Tn10$ RK6538 RK6036 $btuD470::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6543 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda $	DV(621	DIUC730		
RK6532 RK6036 $btuD467::\lambdaplacMu50$ RK6533 RK6036 $btuD468::\lambdaplacMu50$ $zdh-3::Tn10$ RK6534 RK6036 $btuD468::\lambdaplacMu50$ RK6535 RK6036 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ RK6536 RK6036 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ RK6536 RK6036 $btuD470::\lambdaplacMu50$ $zdh-3::Tn10$ RK6538 RK6036 $btuD470::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6543 RK5173 $btuD468::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6546 RK5173 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6546 RK5173	KK0331	<i>btuD</i> 467::λplacMu50 zdh-3::Tn10		
RK6533 RK6036 zdh -3::Tn10 RK6534 RK6036 $btuD468$:: $\lambda placMu50$ RK6535 RK6036 $btuD469$:: $\lambda placMu50$ zdh -3::Tn10 RK6536 RK6036 $btuD469$:: $\lambda placMu50$ zdh -3::Tn10 RK6537 RK6036 $btuD470$:: $\lambda placMu50$ RK6538 RK6036 $btuD470$:: $\lambda placMu50$ zdh -3::Tn10 RK6538 RK6036 $btuD470$:: $\lambda placMu50$ zdh -3::Tn10 $\lambda 540[btuCD^+]$ RK6544 RK5173 $btuD468$:: $\lambda placMu50$ zdh -3::Tn10 $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469$:: $\lambda placMu50$ zdh -3::Tn10 $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469$:: $\lambda placMu50$ zdh -3::Tn10 $\lambda 540[btuCD^+]$ RK6546 RK5173 $btuD470$:: $\lambda placMu50$ zdh -3::Tn10 $\lambda 540[btuCD^+]$ RK6546 RK5173	RK6532	RK6036 btuD467::λplacMu50		
RK6534 RK6036 $btuD468::\lambdaplacMu50$ RK6535 RK6036 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ RK6536 RK6036 $btuD469::\lambdaplacMu50$ RK6537 RK6036 $btuD470::\lambdaplacMu50$ $zdh-3::Tn10$ RK6538 RK6036 $btuD470::\lambdaplacMu50$ $zdh-3::Tn10$ RK6543 RK5173 $btuD467::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambdaplacMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambdaplaceMu50$	RK6533	RK6036 <i>btuD</i> 468::AplacMu50 <i>zdb</i> -3::Tp10		
RK6535 RK6036 btuD469::λplacMu50 zdh-3::Tn10 RK6536 RK6036 btuD469::λplacMu50 RK6537 RK6036 btuD470::λplacMu50 zdh-3::Tn10 RK6538 RK6036 btuD470::λplacMu50 zdh-3::Tn10 RK6543 RK5173 btuD467::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6544 RK5173 btuD468::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6546 RK5173 btuD470::.λplaceMu50	RK6534	RK6036 btuD468::>placMu50		
$zdh-3::Tnl0$ RK6536 RK6036 $btuD469::\lambda placMu50$ RK6537 RK6036 $btuD470::\lambda placMu50$ $zdh-3::Tnl0$ RK6538 RK6036 $btuD470::\lambda placMu50$ $zdh-3::Tnl0$ RK6543 RK5173 $btuD467::\lambda placMu50$ $zdh-3::Tnl0$ $\lambda540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tnl0$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tnl0$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tnl0$ $\lambda540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda placeMu50$	RK6535	RK6036		
RK6030 $btuD469::\lambda placMu50$ RK6537 RK6036 $btuD470::\lambda placMu50$ $zdh-3::Tn10$ RK6538 RK6036 $btuD470::\lambda placMu50$ RK6538 RK6036 $btuD470::\lambda placMu50$ RK6543 RK5173 $btuD467::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda 540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda placeMu50$	DV 6526	<i>zdh-3</i> ::Tn <i>10</i>		
RK0337 RK0336 $btuD470::\lambda placMu50$ $zdh-3::Tn10$ RK6543 RK5173 $btuD467::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda placeMu50$	RK6537	<i>btuD</i> 469::λplacMu50		
RK6538 RK6036 $btuD470::\lambda placMu50$ RK6543 RK5173 $btuD467::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ $zdh-3::Tn10$ $\lambda540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda placeMu50$	KK0557	<i>btuD470</i> ::λplacMu50 zdh-3::Tn10		
RK6543 RK5173 $btuD467::\lambda placMu50$ zdh-3::Tn10 $\lambda 540[btuCD^+]$ RK6544 RK5173 $btuD468::\lambda placMu50$ zdh-3::Tn10 $\lambda 540[btuCD^+]$ RK6545 RK5173 $btuD469::\lambda placMu50$ zdh-3::Tn10 $\lambda 540[btuCD^+]$ RK6546 RK5173 $btuD470::\lambda placeMu50$	RK6538	RK6036 btuD470::λplacMu50		
$\begin{array}{c} & \lambda 540[btuCD^{+}] \\ RK6544 & RK5173 & btuD468::\lambda placMu50 & zdh-3::Tn10 & \lambda 540[btuCD^{+}] \\ RK6545 & RK5173 & btuD469::\lambda placMu50 & zdh-3::Tn10 & \lambda 540[btuCD^{+}] \\ RK6546 & RK5173 & btuD470::\lambda placeMu50 & zdh-3::Tn10 & \lambda 540[btuCD^{+}] \\ RK6546 & RK5173 & btuD470::\lambda placeMu50 & zdh-3::XplaceMu50 & zdh-3::XplaceMu50$	RK6543	RK5173 btuD467::λplacMu50 zdh-3::Tn10		
RK6544 RK5173 btuD468::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6546 RK5173 btuD470::λplaceMu50		λ 540[btuCD ⁺]		
zdh-3::Tn10 λ540[btuCD ⁺] RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6546 RK5173 btuD470::λplaceMu50	RK6544	RK5173 htyD468::>placMu50		
RK6545 RK5173 btuD469::λplacMu50 zdh-3::Tn10 λ540[btuCD ⁺] RK6546 RK5173 btuD470::λplaceMu50		<i>zdh-3</i> ::Tn <i>10</i> λ540[btuCD ⁺]		
zdh-3::Tn10 λ540[btuCD ⁺] RK6546 RK5173 btuD470::λplaceMu50	RK6545	RK5173 btuD469::λplacMu50		
RK6546 RK5173 btuD470::λplaceMu50		<i>zdh-3</i> ::Tn <i>10</i> λ540[btuCD ⁺]		
-	RK6546	RK5173 btuD470::λplaceMu50		

Continued

TABLE 1—Continued

Strain	Genotype	Reference or source	
	<i>zdh-3</i> ::Tn <i>10</i>		
	λ 540[btuCD ⁺]		
RK6551	RK6534 <i>\DtuD475</i>		
RK6552	RK6538 ΔbtuD476		
RK6553	RK6538 ΔbtuD477		
RK6554	RK6531 Δ(zdh-3-btuD)478		
RK6555	RK5173 $\Delta btuD471$ zdh-		
	<i>3</i> ::Tn <i>10</i>		

tained from Sigma Chemical Co. The chromogenic substrate 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (Bachem, Inc.) was prepared as a 2.0% stock in dimethyl sulfoxide (Fisher Scientific Co.) and used at a final concentration of 25 μ g/ml.

Bacterial strains and phage. All bacterial strains employed in these experiments are listed in Table 1 and are derivatives of *E. coli* K-12. Bacteriophage P1 (laboratory stock) was used for transductions. The hybrid phages $\lambda plac$ Mu50 and $\lambda pMu507$ used for the construction of the *btuD-lacZ* operon fusions were a gift of E. Bremer and are described below. The *Hind*III cloning vector $\lambda NM540$ was provided by M. Smith. Transposon Tn10 insertions near *btuC* (*zdh-1* and *zdh-3*) were kindly provided by D. G. Fraenkel (12).

Construction of btuD-lacZ operon fusions. A derivative of bacteriophage λ , $\lambda placMu50$, was used to isolate the *btuD*lacZ operon fusion by transposition of the phage into the btuD gene (5) (Fig. 1). This phage contains both ends of bacteriophage Mu and its cI and A genes and is able to carry out random transposition similar to intact Mu phage. The Mu s end sequences are positioned next to the sequence encoding the N-terminal portion of the *lacZ* structural gene in a manner that allows transcription of lac from external promoters. Stable *lacZ* operon fusions can be generated in a single step whenever the hybrid phage integrates in the correct orientation. In the resultant operon fusion, lacZ expression is determined by the transcriptional signals of the target gene (5). For the construction of *btuD* fusions, Lac⁺ λplacMu50 lysogens of strain RK6063 were selected after infection of 1 ml of an overnight L-broth culture with 2×10^9 $\lambda p lac Mu 50$ and $\lambda p Mu 507$ hybrid phage. Phage $\lambda p Mu 507$ was used as a helper phage to increase the frequency of transposition of the $\lambda placMu50$ phage. Infection was carried out for 20 min at 37°C, and the suspension was centrifuged and washed three times with L broth. Samples of the cell suspension in L broth were plated on minimal medium containing lactose and methionine. Approximately 15,000 Lac⁺ lysogens were pooled, and a P1 phage lysate was prepared on the pool. The lysate was used to transduce strain RK6036 to tetracycline resistance, with screening on minimal medium plates containing glucose, tetracycline, and the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-Dgalactopyranoside for the acquisition of Lac⁺ character and λ immunity.

Transposon insertion mutagenesis. Insertion mutagenesis with Tn1000 (the $\gamma\delta$ segment of the F plasmid) was performed by the method of Guyer (17), with several modifications. Plasmids pLCD31 and pLCD32 (derivatives of pACYC184 carrying the 3.4-kilobase (kb) *Hind*III-*Hind*II fragment in the *Hind*III site) were introduced into strain CS1129 by transformation, with selection for chlorampheni-

col resistance. These transformants were used as donors in mating experiments with strain RK5000 (recA btu⁺). Overnight cultures of both strains were diluted in L broth, and the cultures were grown to the early logarithmic phase. Equal volumes of both cultures were mixed and incubated for 8 h at 30°C without aeration. Portions of the mixture were plated on L broth with nalidixic acid, which selects against the donor, and chloramphenicol, to select for transfer of the btuCD plasmid to the recipient. The transconjugants were

FIG. 1. Construction of *btuD-lac* operon fusions and generation of deletions. Some of the Lac⁺ strains generated by transposition of $\lambda placMu50$ into the chromosome of a strain with a Tn/l insertion near *btuC* (a, b) have an integrated prophage that can be transduced by phage P1 along with the tetracycline resistance of Tnl0 (c). A few tetracycline-resistant transductants were Lac⁺, and a few of these exhibited a Btu⁻ phenotype (d). Lysogenization of Lac⁺ Btu⁻ strains with phage $\lambda p1081.1$ (e) was obtained by selection for kanamycin-resistant colonies that were Lac⁻ (f). The tandem dilysogen was unstable and gave rise to temperature-sensitive variants by homologous recombination within the prophages (g). Selection for temperature resistance yielded deletion strains (h). Most of them retained kanamycin resistance. Some were tetracycline susceptible, whereas others retained the tetracycline resistance of the Tnl0.

purified, and the plasmid DNA was analyzed by restriction digestions.

Restriction endonuclease digestions and ligations. DNA was digested with restriction endonucleases under conditions suggested by the manufacturer (Bethesda Research Laboratories). Products were analyzed on 0.8% agarose gels, and the sizes of the fragments were determined by comparison to λ DNA digested with *Hind*III. Ligations were performed as described by Berman et al. (5).

Cloning procedures. Chromosomal DNA was isolated from strain RK4954 and digested to completion with the restriction endonuclease *PstI*. With T4 DNA ligase, DNA fragments were cloned into the unique *PstI* site of plasmid pBR322 (24). Hybrid plasmids containing a fragment of DNA carrying the *btuC* gene were isolated in strain RK4446 (*metE btuB tonB btuC recA*) by selection for resistance to tetracycline and ability to grow on 5 μ M B₁₂. Isolates were purified on selective medium. Plasmids were isolated by a miniprocedure employing alkaline sodium dodecyl sulfate extraction (6) and digested with restriction endonucleases. Transformations were carried out by the CaCl₂ procedure of Dagert and Ehrlich (11).

Southern blot analysis. Preparation of gels and transfer assembly were performed as described by Berman et al. (5). Hybridizations were carried in $5 \times SSC$ (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate)-50% formamide at 42°C. DNA used for probes was isolated as restriction fragments from agarose gels as described by Benson (4) and then nick translated with the Bethesda Research Laboratories nick translation kit as suggested by the manufacturer.

β-Galactosidase assays. β-Galactosidase production in strains carrying fusions to *lacZ* was assayed by monitoring change in optical density at 420 nm of *o*-nitrophenyl-β-galactopyranoside in Z buffer (25). Cells were grown to the early logarithmic phase in medium A, washed three times, and disrupted in a French pressure cell. The specific activity of β-galactosidase was expressed as change in optical density at 420 nm per minute per 10¹² cells.

Vitamin B₁₂ transport assays. Assays of vitamin B₁₂ transport were modified from the procedure of Kadner and Bassford (19). Cells were grown in medium A to the early logarithmic phase, and ³H-labeled vitamin B_{12} was added to a final concentration of 34 nM (0.23 µCi/ml). At indicated times, 0.2 ml of cells was removed, delivered directly onto a membrane filter (0.45-µm pore size; Millipore Corp.), immediately washed with 5 ml of medium A, and then dried and counted. Retention of transported vitamin B_{12} was assayed by running a duplicate reaction and adding an excess of unlabeled vitamin B_{12} (0.1 μ M, final concentration) at 20 min after the addition of the labeled substrate and removing samples at 5-min intervals thereafter. Correction was made for the binding of labeled substrate to filters in the absence of cells. Uptake is expressed in picomoles per microliter of cell water.

RESULTS

Isolation of btuD-lacZ fusions. The btuC region is located at min 37.5 on the *E. coli* linkage map, between *pheS* and the Tn10 insertions *zdh-1* and *zdh-3* (1, 3, 12). Mutations resulting from fusion to *lacZ* and located in the *btuC* region were obtained by using phage $\lambda placMu50$, which forms stable *lac* fusions in a single step (9) (Fig. 1). A P1 phage lysate prepared on a pool of lactose-utilizing lysogens was used to transduce strain RK6036 (*metE btuB*) to tetracycline resistance, thereby selecting for recombinants that acquired the

		Donor strain	Recipient strain	Relevant genotype		No. of
Linkage	Cross			Donor	Recipient	vith donor btu allele/no. Tc ^r
btuD-lac to zdh-3::Tn10						
	1	RK6531	RK5173	zdh-3::Tn10 btuD-lac467	+	37/75
	2	RK6533	RK5173	zdh-3::Tn10 btuD-lac468	+	45/100
	3	RK6535	RK5173	zdh-3::Tn10 btuD-lac469	+	6/25
	4	RK6537	RK5173	zdh-3::Tn10 btuD-lac470	+	30/100
	5	RK6217	RK5173	zdh-3::Tn10 btuC456	+	112/124
	6	RK6213	RK6532	<i>zdh-1</i> ::Tn10	Ф(btuD-lac)467	184/196
	7	RK6216	RK6532	<i>zdh-3</i> ::Tn <i>10</i>	Ф(btuD-lac)467	95/100
	8	RK6213	RK6534	<i>zdh-1</i> ::Tn <i>10</i>	Ф(btuD-lac)468	171/190
	9	RK6216	RK6534	<i>zdh-3</i> ::Tn <i>10</i>	Ф(btuD-lac)468	96/100
	10	RK6213	RK6536	<i>zdh-1</i> ::Tn <i>10</i>	Ф(btuD-lac)469	173/194
	11	RK6216	RK6536	<i>zdh-3</i> ::Tn <i>10</i>	Ф(btuD-lac)496	96/100
	12	RK6213	RK6538	<i>zdh-1</i> ::Tn <i>10</i>	Φ(btuD-lac)470	167/195
	13	RK6216	RK6538	<i>zdh-3</i> ::Tn <i>10</i>	Φ(btuD-lac)470	96/100
	14	RK6215	RK5173	zdh-1::Tn10 btuC456	+	147/201
	15	RK6216		<i>zdh-3</i> ::Tn <i>10</i>	btuC456	88/96
$\Delta btuD$ to zdh-1 and zdh-3						
	16	RK6547	RK6036	<i>zdh-3</i> ::Tn10 Δ <i>btuD</i> 471	+	82/82
	17	RK6548	RK6036	<i>zdh-3</i> ::Tn10 Δ <i>btuD</i> 472	+	112/114
	18	RK6549	RK6036	<i>zdh-3</i> ::Tn10 Δ <i>btuD</i> 473	+	101/103
	19	RK6550	RK6036	<i>zdh-3</i> ::Tn10 Δ <i>btuD</i> 474	+	199/199
	20	RK6213	RK6552	<i>zdh-1</i> ::Tn <i>10</i>	$\Delta btuD476$	91/100
	21	RK6215	RK6552	zdh-1::Tn10 btuC456	$\Delta btuD476$	96/99
	22	RK6216	RK6552	<i>zdh-3</i> ::Tn <i>10</i>	ΔbtuD476	93/97
	23	RK6218	RK6552	zdh-3::Tn10 btuC456	$\Delta btuD476$	98/100
	24	RK6213	RK6554	<i>zdh-</i> ! ::Tn10	$\Delta(zdh3-btuD)478$	94/100
	25	RK6215	RK6554	zdh-1::Tn10 btuC456	Δ(zdh3-btuD)478	95/98
	26	RK6216	RK6554	<i>zdh-3</i> ::Tn <i>10</i>	∆(zdh3-btuD)478	100/100
	27	RD6218	RK6554	zdh-3::Tn10 btuC456	$\Delta(zdh3-btuD)478$	95/100

TABLE 2. Representative transduction crosses to determine linkage of btuD fusions and deletions to zdh::Tn10 and btuC

btuC region from the donor. Of approximately 5,000 tetracycline-resistant recombinants screened, 30 were blue on 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside medium (Lac⁺); of these, 4 were unable to utilize 5 μ M B₁₂.

To determine that the Lac⁺ phenotype and the defect in B_{12} utilization resulted from the same genetic event, P1 phage lysates of each of the four Btu⁻ Lac⁺ strains were used to transduce strain RK5173 to tetracycline resistance (Table 2, crosses 1 to 4). Less than half (30 to 50%) of the recombinants that acquired *zdh*-3::Tn10 were Lac⁺ Btu⁻ and λ immune. In no recombinants were these characters separated.

When selection was made for the Lac⁺ character, all of the recombinants were Btu⁻ and roughly half were tetracycline resistant. When some Lac⁺ Btu⁻ tetracycline-susceptible recombinants were transduced with donor lysates prepared on btu^+ strains carrying either zdh-1::Tn10 or zdh-3::Tn10, approximately 90 and 96%, respectively, of the tetracycline-resistant recombinants were Lac⁻ Btu⁺ and λ sensitive (Table 2, crosses 6 to 13). The linkages of the Tn10 insertions to btuC were 71 and 90%, respectively (Table 2, crosses 5, 14, and 15). The closer linkage to the Tn10 insertions when the four mutations were present in the recipient than when in the donor was consistent with the insertion of $\lambda plac$ Mu50 into a gene located in the btuC region and involved in vitamin B₁₂ utilization.

Generation of deletions. The presence of λ DNA associated with the *lac* fusions facilitated the isolation of deletions. The cI^+ prophages in the *btuC* region were replaced with $\lambda 1081.1$ by homologous recombination (Fig. 1) (5). This phage carries cI857 and *lacZ*::Tn5, so that temperature-sen-

sitive lysogens can be obtained by selection for kanamycinresistant strains that are Lac⁻. In this way thermoinducible lysogens were obtained for all four fusions with and without the adjacent zdh-3::Tn10 insertion. Selection for temperature resistance should yield deletions removing λ and flanking chromosomal sequences (5).

Temperature-resistant variants were obtained at low frequency (less than 10^{-8}). All were λ sensitive, but most remained kanamycin resistant, suggesting that the deletions extended only in one direction, away from the promoter for the gene into which insertion had occurred (Fig. 1). In transduction crosses, kanamycin resistance was 100% linked to the Btu⁻ phenotype (data not shown). In several temperature-resistant variants that retained zdh-3::Tn10, tetracycline resistance and the Btu⁻ phenotype were very closely linked (98 to 100% cotransduction), in contrast to the 90% linkage between this transposon and btuC (Table 2, crosses 16 to 19). Some of the deletions appeared to remove the adjacent zdh-3::Tn10 insertion, since the strains became tetracycline susceptible. The temperature-resistant derivatives that had become tetracycline susceptible were used as recipients to examine the extent of the deletion (Fig. 2). When a zdh-3:: $Tn10 btuC^+$ strain was used as a donor (Table 2, cross 26; compare with cross 22), all of 100 tetracyclineresistant recombinants were Btu⁺. When the more distant zdh-1::Tn10 insertion (70% cotransduction with btuC) was in the donor strain, a few (6 of 100) tetracycline-resistant recombinants remained Btu⁻ (Table 2, cross 24). These results showed that the events resulting in formation of temperature-resistant, tetracycline-susceptible derivatives from the zdh-3::Tn10 fusion-bearing strain were deletions extending to or beyond the site of the zdh-3::Tn10 insertion, but not as as far as the site of the zdh-1::Tn10 insertion.

To determine whether the deletions removed *btuC*, transduction crosses between a donor carrying zdh-3::Tn10 btuC and various deletion strains were performed (Fig. 2b). If the deletion included the site of the *btuC* mutation, all tetracycline-resistant transductants must be Btu⁻. If the deletion did not cover the site of the *btuC* mutation, recombination could occur between the endpoint of the deletion and the btuC mutation to give rise to Btu⁺ transductants. In all crosses (Table 2, crosses 21, 23, 25, and 27), approximately 5% of the tetracycline-resistant recombinants were Btu⁺ Thus, the deletions did not cover the site of the btuCmutation in the donor strain. This result and those presented below demonstrated that the fusions were in a gene distinct from btuC. This gene is termed btuD and, on the basis of the mapping and deletion results, lies in the gene order zdh-3btuD-btuC-pheS (Fig. 3).

Phenotype of *btuD* **mutants.** When resident in a *metE tonB btuB* strain, the *btuD* fusions and deletions conferred a less severe impairment of vitamin B_{12} utilization than did a *btuC* mutation. Deficiency at *btuC* resulted in complete inability to utilize vitamin B_{12} in place of methionine. The presence of the *btuD* fusions and deletions in this genetic background resulted in markedly decreased growth with 5 μ M B_{12} after 18 h, but full growth after 48 h. Growth on minimal medium with methionine appeared normal.

In strains wild type at *btuB* and *tonB*, the presence of the *btuC* mutation prevented growth on 0.5 nM vitamin B_{12} and resulted in reduced colony size on 5 nM vitamin B_{12} . Strains carrying *btuD* fusions or deletions grew normally on 5

a)

FIG. 2. Diagram of the genetic crosses to determine the endpoints of the $\Delta btuD$ deletions with respect to adjacent Tn10 insertions and btuC. (a) Alternative locations of a deletion in the recipient, represented by the bracket in the lower line, with respect to the zdh::Tn10 insertions. (b) Results expected if the deletion does or does not overlap the site of the btuC mutation in the donor chromosome. The results, presented in the text and Table 2, showed that the deletions did not extend past zdh-1::Tn10 on the left or btuC456 on the right. The letter C represents the btuC locus.

FIG. 3. Distances between markers, judged from transduction frequencies. The distances (in kb) between the markers depicted in this graphic were estimated by conversion of cotransduction frequencies into distances using the formula of Wu (33). The values are approximate because of the small number of recombinants examined and the high cotransduction frequencies. However, subcloning and nucleotide sequence information places the distance between *btuC* and *btuD* at 1.6 to 2.4 kb.

nMvitamin B_{12} and showed reduced growth on 0.5 nM vitamin B_{12} . This difference in growth phenotype supported the view that the deletions left *btuC* intact.

The vitamin B_{12} uptake properties of these strains were determined (Fig. 4). Both the *btuC* and *btuD* mutations had a similar effect on transport activity. The initial phases of uptake were similar to that in the parental strain. In both mutant strains, a steady-state level of vitamin B_{12} accumulation lower than that in the parental strain was reached. Most of the accumulated substrate was released from the mutant strains upon addition of excess nonradioactive vitamin B_{12} . In the parental strain, a larger proportion of the accumulated label was retained under these conditions.

Cloning of the *btuC* region. To investigate the genetic organization of the *btuC* region, its molecular cloning was undertaken. A library of *PstI*-digested chromosomal DNA from strain RK4954 was constructed in pBR322 and was introduced into strain RK4446 (*metE tonB btuB btuC recA*). Tetracycline-resistant transformants were screened for growth on minimal medium with 5 μ M B₁₂. Two *btuC*⁺

FIG. 4. Effect of mutations in *btuC* and *btuD* on B₁₂ uptake activity. The uptake of strains RK6048 (*btu*⁺) (\bullet , \bigcirc), RK6049 (*btuC456*) (\blacksquare , \Box), and RK6555 (*btuD461*) (\blacktriangle , \triangle) were measured with (\bullet , \blacksquare , \blacktriangle) or without (\bigcirc , \Box , \triangle) the addition at 20 min of nonradioactive vitamin B₁₂ to 10^{-7} M.

FIG. 5. Physical maps and genetic activity of the DNA fragment complementing btuC and btuD mutations and its derivatives. The top line presents the restriction map of the 8-kb *PstI* fragment. The outer lines show the material carried in the inserts of the indicated plasmids, which were derived by subcloning the indicated restriction fragments into the corresponding sites of appropriate vectors. Deletions were generated by digestion with the appropriate restriction enzyme and self-ligation. The plasmid sequences are not indicated. The ability of each plasmid to complement *recA btuC* or *btuD* recipients for growth with vitamin B₁₂ is indicated on the right.

transformants contained plasmids that carried a common 8-kb PstI fragment, whose restriction endonuclease cleavage sites were mapped. As diagrammed in Fig. 5, a variety of deletions between restriction sites and subclones carrying portions of the 8-kb PstI insert were constructed. The details of the subcloning of some of the restriction fragments are not shown, but involved the addition of restriction site linkers and cloning into the polylinker region of plasmid pUC9, so that the fragments contained *Hin*dIII or *Eco*RI sites at their ends. This allowed cloning into the appropriate sites of pBR322. Several of the inserts were also cloned into the phage vector, λ NEM540.

The complementation properties of the plasmids described in Fig. 5 were determined by introducing them by transformation into *recA btuB* derivatives of *btuC* or *btuD* strains. Transformants were tested for growth on 5 μ M B₁₂. Plasmid pLCD2, carrying the 8-kb *PstI* fragment, complemented all *btuC* and *btuD* mutations, including $\Delta btuD$ deletions. Deletion of the 1.5-kb *PstI-Hind*III fragment in pLCD29 did not affect complementing activity. Deletion of either the *SstII* fragment (pLCD8) or the larger overlapping *BglII* fragment (pLCD7) abolished *btuC*-complementing activity, but with retention of *btuD*-complementing activity. The smallest fragment capable of complementing both *btuC* and *btuD* was the 3.4-kb *Hind*III-*Hinc*II fragment (pLCD25 and others). Within this 3.4-kb fragment (Fig. 5), *btuC* must lie to the left side, since the 1.4-kb *Hind*III-*Eco*RV fragment (pLCD12 and others) complemented btuC, whereas the 1.0-kb HindIII-BglII fragment (pLCD16) did not. The btuD gene lies on the right side of the 3.4-kb fragment, since the 2.4-kb BglII-HincII fragment (pLCD27) complemented btuD, whereas the 2.2-kb HindIII-BalI fragment (pLCD26) did not. Note that btuC and btuD were expressed even when the appropriate fragments were cloned separately in either orientation in the vector, suggesting that they comprise separate transcription units.

Chromosomal origin of the cloned genes. The approach of Greener and Hill (16) was employed to show that the cloned genes were derived from the btuC region of the chromosome. Plasmid pUC9 and its derivative, pLCD4, carrying the 3.4-kb HindIII-HincII fragment, were introduced into strain RK5721. This strain carries the polA mutation, which prevents autonomous replication of ColE1-like plasmids (23). Selection for maintenance of the plasmids' ampicillin resistance determinant requires integration of the plasmid into the chromosome, preferentially by homologous recombination at the site on the chromosome from which the cloned DNA originated. Genetic crosses were conducted to reveal the location of the integrated drug resistance determinant and thereby the origin of the cloned fragment. Phage P1 lysates of ampicillin-resistant transformants were used to infect strain RK6210 (pheS11 zdh-3::Tn10). Ampicillin-resistant transductants were tested for their response to tetracycline and to p-fluorophenylalanine, specified by the pheS11 allele present in the recipient strain. When the donor strain carried the vector pUC9, all of the ampicillin-resistant trans ductants remained resistant to tetracycline and p-fluorophenvlalanine. When the donor strain carried plasmid pLCD4, 35% of the ampicillin-resistant transductants were susceptible to tetracycline and 55% were susceptible to p-fluorophenylalanine. These results showed that plasmid pLCD4 had integrated into the btuCD region of the chromosome and hence must carry DNA derived from that region.

Physical location of the *btuC* and *btuD* mutations. The location of *btuC* on the 3.4-kb *HindIII-HincII* fragment was determined by marker rescue experiments testing the ability of plasmids carrying portions of the 3.4-kb insert to yield $btuC^+$ recombinants when introduced into a strain carrying the *btuC456* allele. Plasmid pLCD16, carrying the 1.0-kb *HindIII-Bg/III* fragment, did give rise to $btuC^+$ recombinants. In contrast, neither plasmid pLCD27, carrying the 2.4-kb *Bg/II-HincIII* fragment, nor plasmid pLCD33, carrying the region from the leftward *PstI* terminus to the *BalI* site but deleted between the *SstIII* sites, gave any *btuC^+* recombinants, even after prolonged incubation of the selection plates. These results placed the location of the *btuC456* mutation in the 660-base-pair (bp) region between the *HindIII* site and the rightward *SstII* site.

The location of the *btuD* gene could not be determined by marker rescue crosses because of the leaky phenotype of *btuD* fusion or deletion strains on minimal medium with vitamin B₁₂. However, the approximate location of the sites of the insertions could be determined by Southern hybridization analysis (data not shown). Chromosomal DNA from *btuD-lacZ* fusion-bearing strains and the parental strain was digested with *Eco*RV, separated by agarose gel electrophoresis, transferred to nitrocellulose filters, and probed with the ³²P-labeled, 3.4-kb *Hind*III-*Hinc*II fragment. Three *Eco*RV fragments from the parental strain hybridized to the 3.4-kb probe, as expected from the restriction map in Fig. 5. The fusion-bearing strains showed hybridization to the 2.9-kb and 3.2-kb bands, representing the *Eco*RV fragments on the left and right site of the region, respectively. However,

FIG. 6. Complementation properties of plasmids carrying Tn1000 insertions. The thick line presents the restriction map of the 3.4-kb *Hind*III-*Hinc*II fragment, and the location of Tn1000 insertions in plasmid pLCD31 or pLCD32 are indicated. The arrow from each insertion indicates the complementation activity of that plasmid in a *buC* or *buD* host. The lines above the restriction map designate the approximate locations of the *buC* and *buD* genes and the extent of the region between these genes in which insertions did not affect complementing activity.

hybridization to the central 1.4-kb *Eco*RV fragment was disrupted and replaced by hybridization to fragments of different sizes in the different insertions.

DNA from strains carrying btuD deletions was analyzed in the same manner. Hybridization to the 2.9-kb EcoRV fragment, which contains btuC, still occurred. The 1.4-kb and 3.2-kb EcoRV fragments no longer hybridized and were replaced by other fragments of various sizes. These results were in agreement with the complementation behavior and showed that the btuC and btuD genes were separated by the EcoRV site at the 3.0-kb coordinate defined in Fig. 5. **Transposon insertions.** More precise localization of the *btuC*- and *btuD*-coding regions was allowed by the isolation of insertions of transposon Tn1000 into plasmids pLCD31 and pLCD32, carrying the 3.4-kb *Hind*III-*Hinc*II fragment in opposite orientation. The location and orientation of each insertion were determined by appropriate restriction endonuclease digestions. The complementation properties of each plasmid were determined and agreed well with the subcloning results (Fig. 6). Insertions causing loss of *btuC*complementing activity defined a contiguous region on the left side of the *Hind*III-*Hinc*II fragment. This region ex-

FIG. 7. Uptake of vitamin B_{12} in strains carrying the *btuCD*⁺ plasmid pLCD2. The recipient strains were RK6049 (*btuC*) and RK6048 (*btu*⁺). They carried no plasmid (\blacksquare, \square) , the vector pBR322 (\bullet, \bigcirc) , or pLCD2 $(\blacktriangle, \triangle)$. The uptake and retention of labeled vitamin B_{12} were determined. The amount of radioactive substrate retained was measured with $(\blacksquare, \bullet, \blacktriangle)$ or without $(\square, \bigcirc, \triangle)$ the addition of nonradioactive vitamin B_{12} to 10^{-7} M.

TABLE 3. Regulation of β -galactosidase production by *btuD*lacZ and *btuB*-lacZ operon fusions

Strain	Relevant genotype	1 μM vitamin B ₁₂ in growth medium	β-Galactosidase activity (U)
RK6543	Φ(btuD-lac)467	_	92
		+	89
RK6544	Φ(btuD-lac)468	-	96
		+	94
RK6545	Ф(btuD-lac)469	-	94
	. ,	+	110
RK6546	Φ(btuD-lac)470	-	111
	. ,	+	104
RK5419	$\Phi(btuB-lac)$	-	42
		+	11

tended from approximately 300 bp from the *Hind*III end to approximately 150 bp to the left of the central EcoRVsite.Insertions on either side of this region (e.g., insertions 32-15 and 32-4) did not impair btuC-complementing activity. These results confirmed that the btuC region comprises 800 to 1,000 bp in the region between the *Hind*III and EcoRVsites.

Insertions resulting in the loss of btuD-complementing activity defined a contiguous region on the right side of the fragment. The boundaries for this gene could not be precisely stated, but the maximum size was 1,200 bp. Insertions on either side of the btuD region did not impair complementation activity, confirming the view that btuC and btuD are independent transcription units.

Insertions between btuC and btuD allowed the expression of both genetic activities. This region could be as large as 600 to 800 bp and thus could encode another protein.

Effect of *btuCD* plasmids on B_{12} uptake. Vitamin B_{12} transport activity in strains carrying the *btuCD*⁺ plasmid pLCD2 was determined (Fig. 7). The presence of this plasmid resulted in elevated uptake rates in both *btuC*⁺ and *btuC* strains, relative to these strains with or without the vector plasmid pBR322. Addition of nonradioactive vitamin B_{12} resulted in extensive loss of label in the *btuC* mutant. This chase did not occur when this strain carried plasmid pLCD2. Thus, this plasmid was able to complement a *btuC* mutant both for ability to retain B_{12} and with amplification of uptake activity.

Regulation of btuD expression. The expression of the btuB-coded receptor protein is subject to repression by growth with vitamin B_{12} (18). To examine whether *btuD* expression was also regulated in this manner, β-galactosidase production by strains carrying the four *btuD-lac* operon fusions was determined. These strains were made lysogenic for phage $\lambda 540 btuCD^+$, which carries the 3.4-kb btuCD region, to restore normal vitamin B₁₂ transport activity. All four *btuD-lac* fusion-bearing strains, grown without or with 1 μ M vitamin B₁₂, exhibited approximately the same levels of β -galactosidase (near 100 U) (Table 3). By contrast, the β -galactosidase activity of a strain carrying a *btuB*-lacZ operon fusion was in this range, but was repressed 3.4-fold by growth with 1 μ M vitamin B₁₂. Thus, the expression of btuD appears not to be regulated by vitamin B_{12} levels in the growth medium.

DISCUSSION

This paper provides an initial characterization of genes in the btuC region which are involved in the transport or

utilization of vitamin B_{12} . Mutant isolation and complementation tests with subclones and Tn1000 insertions showed that at least two genes located in this region contribute to this function. The complementation analysis involving transformation of *btuC* or *btuD* mutant strains with various plasmids allowed the physical localization of the coding region for these genes on a 3.4-kb DNA segment. The two genes were expressed independently, and transposon insertions in one did not impair the expression of the other. This result showed that *btuC* and *btuD* are not part of the same transcription unit. The basic complementation results have been confirmed by using DNA fragments cloned into a λ vector and maintained at single copy, showing that the observed complementation behavior was not an aberration resulting from high dosage of these genes.

Strains carrying either the 8-kb PstI fragment or the 3.4-kb HindIII-HincII fragment in multicopy plasmids exhibited elevated rates of vitamin B₁₂ uptake. Retention of accumulated substrate was observed even when the host carried the *btuC* mutation. This result suggested that the cloned 3.4-kb fragment carries all of the genes in this vicinity that contribute to the uptake activity. The increase in the rate of transport was not proportional to the increase in gene copy number. However, the transport process is complex, involving in addition the outer membrane receptor and the tonB product. The site of the rate-limiting step is not known, but is probably not the transport across the cytoplasmic membrane. These results do not rule out a role for the products of btuC or btuD or both in the metabolic conversions of vitamin B_{12} , rather than its transport across the cytoplasmic membrane. Perhaps elucidation of the cellular location of these polypeptides might be informative.

The *btuD* mutations isolated in this study resulted from insertion of the transposable element $\lambda placMu50$ (9), which allows single-step formation of *lac* fusions to the target gene. Fusions in the *btuC* region were selected on the basis of the cotransduction of their Lac⁺ character with a Tn10 insertion near *btuC*. The fusions obtained in this manner could be transduced into other strains without serious problems from induction of the prophage or further transposition. The four fusions obtained were all to the *btuD* gene. Despite the fact that insertion of the λ prophage or deletions from the site of the prophage probably result in complete loss of this gene function, the phenotype of these mutants with respect to growth with B_{12} was markedly less severe than the phenotype of *btuC* mutants. This indicates that the *btuD* product is not essential for B_{12} utilization, even in strains lacking the outer membrane transport system. When assayed by uptake of labeled vitamin B_{12} , both *btuC* and *btuD* mutants have essentially identical transport properties. The growth response to vitamin B_{12} is a more sensitive assay than is uptake of labeled substrate, since uptake of as few as 25 molecules per cell per generation is sufficient to allow full growth (14).

Some of the deletions generated from the fusion strain retained kanamycin resistance, but had lost λ sequences and the adjacent zdh-3 insertion. The simplest explanation is that the direction of transcription of btuD is toward zdh-3 because the kanamycin resistance determinant lies between the btuD promoter and the λ sequences. Since these deletions did not remove btuC, btuC must lie on the other side of btuD from zdh-3. Hence the gene order in this region has to be zdh-3-btuD-btuC-pheS.

Recent observations (unpublished) showed that three polypeptides are encoded in the btuC region, showing that the region between btuC and btuD does encode a protein. It

is not possible to prove yet that the product of this middle gene is also involved in B_{12} uptake, since chromosomal mutations have not yet been obtained in this gene. Attempts are being made to cross the Tn1000 insertions in this gene onto the chromosome to examine the B_{12} growth phenotype of these mutants.

ACKNOWLEDGMENTS

Dina Clevenson and Lucy Weston provided excellent technical assistance during this study.

This work was supported in part by Public Health Service research grant GM19078 from the National Institute of General Medical Sciences. L.C.D. was a predoctoral trainee supported by National Research Service Award T32 CA09109.

LITERATURE CITED

- 1. Bachmann, B. J. 1983. Linkage map of *Escherichia coli* K-12, edition 7. Microbiol. Rev. 47:180-230.
- Bassford, P. J., Jr., C. Bradbeer, R. J. Kadner, and C. A. Schnaitman. 1976. Transport of vitamin B₁₂ in tonB mutants of Escherichia coli. J. Bacteriol. 128:242-247.
- Bassford, P. J., Jr., and R. J. Kadner. 1977. Genetic analysis of components involved in vitamin B₁₂ uptake in *Escherichia coli*. J. Bacteriol. 132:796-805.
- 4. Benson, S. A. 1984. A rapid procedure for isolation of DNA fragments from agarose gels. Biotechniques 2:66-68.
- Berman, M. L., L. W. Enquist, and T. J. Silhavy. 1982. Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Birnboim, H. C., and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7:1513-1524.
- Bradbeer, C. 1979. Transport of vitamin B₁₂ in *Escherichia coli*, p. 711-723. *In* B. Zagalak and W. Friedrich (ed.), Vitamin B₁₂. W. de Gruyter, Berlin.
- Bradbeer, C., M. L. Woodrow, and L. I. Khalifah. 1976. Transport of vitamin B₁₂ in *Escherichia coli*: common receptor system for vitamin B₁₂ and bacteriophage BF23 on the outer membrane of the cell envelope. J. Bacteriol. 125:1032-1039.
- Bremer, E., T. Silhavy, J. Weisemann, and G. Weinstock. 1984.
 λ plac Mu: a transposable derivative of bacteriophage lambda for creating lacZ protein fusions in a single step. J. Bacteriol. 158:1084-1093.
- Casadaban, M. J. 1976. Transposition and fusion of the *lac* genes to selected promoters in *Escherichia coli* using bacteriophage lambda and Mu. J. Mol. Biol. 104:541-555.
- Dagert, M., and S. D. Ehrlich. 1979. Prolonged incubation in calcium chloride improves the competence of *Escherichia coli* cells. Gene 6:23-28.
- 12. Daldal, F., and D. G. Fraenkel. 1981. Tn10 insertions in the pfkB region of Escherichia coli. J. Bacteriol. 147:935-943.
- 13. Davies, J. K., and P. Reeves. 1975. Genetics of resistance to colicins of group A. J. Bacteriol. 123:102-117.
- DiGirolamo, P. M., R. J. Kadner, and C. Bradbeer. 1971. Isolation of vitamin B₁₂ transport mutants of *Escherichia coli*. J.

Bacteriol. 106:751-757.

- 15. Fecker, L., and V. Braun. 1983. Cloning and expression of the *fhu* genes involved in iron(III)-hydroxamate uptake by *Escherichia coli*. J. Bacteriol. 156:1301-1314.
- Greener, A., and C. W. Hill. 1980. Identification of a novel genetic element in *Escherichia coli* K-12. J. Bacteriol. 144: 312-321.
- 17. Guyer, M. S. 1978. The $\lambda\delta$ sequence of F is an insertion sequence. J. Mol. Biol. 126:347-365.
- Kadner, R. J. 1978. Repression of synthesis of the vitamin B₁₂ receptor in *Escherichia coli*. J. Bacteriol. 136:1050–1057.
- Kadner, R. J., and P. J. Bassford, Jr. 1977. Relation of cell growth and colicin tolerance to vitamin B₁₂ uptake in *Escherichia coli*. J. Bacteriol. 129:254–264.
- Kadner, R. J., K. Heller, J. W. Coulton, and V. Braun. 1980. Genetic control of hydroxamate-mediated iron uptake in *Escherichia coli*. J. Bacteriol. 143:256–264.
- Kadner, R. J., and G. McElhaney. 1978. Outer membrane-dependent transport systems in *Escherichia coli*: turnover of TonB function. J. Bacteriol. 134:1020–1029.
- Kadner, R. J., and D. M. Shattuck-Eidens. 1983. Genetic control of the hexose phosphate transport system of *Escherichia coli*: mapping of deletion and insertion mutations in the *uhp* region. J. Bacteriol. 155:1052-1061.
- 23. Kingsbury, D. T., and D. R. Helinski. 1973. Temperature-sensitive mutants for the replication of plasmids in *Escherichia coli*: requirement for deoxyribonucleic acid polymerase I in the replication of the plasmid ColE₁. J. Bacteriol. 114:1116-1124.
- Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- 25. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Neilands, J. B. 1982. Microbial envelope proteins related to iron. Annu. Rev. Microbiol. 36:285-309.
- Pierce, J. R., C. L. Pickett, and C. F. Earhart. 1983. Two fep genes are required for ferrienterochelin uptake in *Escherichia* coli K-12. J. Bacteriol. 155:330–336.
- Reynolds, P. R., G. P. Mottur, and C. Bradbeer. 1980. Transport of vitamin B₁₂ in *Escherichia coli*. Some observations on the role of the gene products of *BtuC* and *TonB*. J. Biol. Chem. 255:4313–4319.
- Taylor, R. T., M. P. Nevins, and M. L. Hanna. 1972. Uptake of cyanocobalamin by *Escherichia coli* B: corrinoid specificity and the relationship of a binder. Arch. Biochem. Biophys. 149:232-243.
- 30. Wagegg, W., and V. Braun. 1981. Ferric citrate transport in *Escherichia coli* requires outer membrane receptor protein FecA. J. Bacteriol. 145:156-163.
- Williams, P. H., and P. J. Warner. 1980. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of *Escherichia coli*. Infect. Immun. 29:411-416.
- 32. Wookey, P., and H. Rosenberg. 1978. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in *Escherichia coli*. J. Bacteriol. 133:661-666.
- 33. Wu, T. T. 1966. A model for three-point analysis of random general transduction. Genetics 54:405-410.