Proton Electrochemical Gradients in Washed Cells of Nitrosomonas europaea and Nitrobacter agilis

SHARAD KUMAR AND D. J. D. NICHOLAS*

Department of Agricultural Biochemistry, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, 5064, South Australia

Received 6 October 1982/Accepted 7 December 1982

The components of the proton motive force (Δp) , namely, membrane potential $(\Delta \Psi)$ and transmembrane pH gradient (ΔpH), were determined in the nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis. In these bacteria both $\Delta\Psi$ and Δ pH were dependent on external pH. Thus at pH 8.0, Nitrosomonas europaea and Nitrobacter agilis had $\Delta \Psi$ values of 173 mV and 125 mV (inside negative), respectively, as determined by the distribution of the lipophilic cation $[3H]$ tetraphenyl phosphonium. Intracellular pH was determined by the distribution of two weak acids, $14C$ -benzoic and $14C$ -acetyl salicylic, and the weak base [¹⁴C]methylamine. Nitrosomonas europaea accumulated ¹⁴C-benzoic acid and $14C$ -acetyl salicylic acid when the external pH was below 7.0 and $14C$]methylamine at alkaline pH. Similarly, Nitrobacter agilis accumulated the two weak acids below an external pH of about 7.5 and $[14C]$ methylamine above this pH. As these bacteria grow best between pH 7.5 and 8.0, they do not appear to have a ApH (inside alkaline). Thus, above pH 7.0 for Nitrosomonas europaea and pH 7.5 for Nitrobacter agilis, $\Delta \Psi$ only contributed to Δp . In Nitrosomonas europaea the total Δp remained almost constant (145 to 135 mV) when the external pH was varied from ⁶ to 8.5. In Nitrobacter agilis, Ap decreased from ¹⁷⁸ mV (inside negative) at pH 6.0 to ⁹⁵ mV at pH 8.5. Intracellular pH in Nitrosomonas europaea varied from 6.3 at an external pH of 6.0 to 7.8 at external pH 8.5. In Nitrobacter agilis, however, intracellular pH was relatively constant (7.3 to 7.8) over an external pH range of 6 to 8.5. In Nitrosomonas europaea, Δp and its components ($\Delta \Psi$ and ΔpH) remained constant in cells at various stages of growth, so that the metabolic state of cells did not affect Δp . Such an experiment was not possible with Nitrobacter agilis because of low cell yields. The effects of protonophores and ATPase inhibitors on ΔpH and $\Delta \Psi$ in the two nitrifying bacteria are considered.

The nitrifying bacteria Nitrosomonas europaea and Nitrobacter agilis oxidize the inorganic nitrogen compounds NH_4 ⁺ and NO_2^- , respectively, thus generating energy (ATP) and reducing equivalents for growth (3-7). Although some aspects of the metabolism of these bacteria have been extensively studied and reviewed on several occasions (1, 2, 27, 39, 43, 47, 49), the role of components of the proton motive force (Δp) associated with cell membranes is relatively unexplored. Nitrosomonas europaea translocates protons during respiration (8, 9, 14, 19) with an effective \rightarrow H⁺/O ratio of 4 for either NH_4 ⁺, NH₂OH, or NH₂NH₂ as the oxidizable substrate (19). However, proton ejection during $NO₂⁻$ oxidation by Nitrobacter agilis was not detected (19). According to Mitchell's chemiosmotic hypothesis (37), the electrochemical gradient of protons gives rise to Δp , which is responsible for the coupling of metabolic energy to the transport of a number of nutrients and to ATP synthesis (18, 21, 33, 51). This proton gradient consists of an electrical potential $(\Delta \Psi)$ and a pH gradient (ΔpH) across the cytoplasmic membrane. The two components of Δp have the following relationship (37): $\Delta p = \Delta \Psi - 2.3RT/F$ ΔpH ; or, in millivolts at 25°C: $\Delta p = \Delta \Psi - 59$ ApH.

Whereas Ap has been determined in a variety of bacteria (13, 15, 17, 20, 22-24, 26, 36, 41), no information is available for the nitrifiers. We now report on the measurements of Δp in two nitrifying bacteria, Nitrosomonas europaea and Nitrobacter agilis.

MATERIALS AND METHODS

Bacteria and growth conditions. The strain of Nitrosomonas europaea used was obtained from Jane Meikleiohn of Rothamsted Experimental Station, Harpenden, U.K. Cultures were grown in either 8- or 40-liter batches at 28°C with vigorous aeration for 3 days (midexponential phase) in an inorganic medium (8). The pH was maintained at 7.8 throughout the growth by titration of the medium with sterile 20% (wt/vol) $K₂CO₃$, using an automatic pH stat unit (Radiometer, Copenhagen, Denmark). The cells harvested by continuous-flow centrifugation (Ivan Sorvall, Inc., Norwalk, Conn.) at 4°C as described previously (8, 30), were washed several times with cold ¹⁰⁰ mM Trishydrochloride buffer (pH 7.5) and finally suspended in the appropriate buffer. Nitrobacter agilis ATCC ¹⁴¹²³ was grown in 8-liter batches for 5 days with vigorous aeration in an inorganic medium described by Wallace et al. (48). Cells were harvested and washed as for Nitrosomonas europaea. The typical cell yields were about 150 and 50 mg (wet weight) liter⁻¹ for Nitrosomonas europaea and Nitrobacter agilis, respectively.

EDTA treatment of cells. Cells of both Nitrosomonas europaea and Nitrobacter agilis were suspended in ¹⁰⁰ mM Tris-hydrochloride buffer (pH 8.0; ²⁰ mg ml^{-1}) and treated with EDTA adjusted to pH 7 with KOH (5 mM for Nitrosomonas europaea and ¹⁰ mM for Nitrobacter agilis) for 10 min at 37°C. The cells, collected by centrifugation, were washed once in the buffer and suspended in the appropriate buffer. The EDTA-treated cells were used within 2 h.

Intracellular space. Intracellular space was determined by using $3H₂O$, $14C$ sucrose, and $14C$ linulin (34, 46). Thus, for Nitrosomonas europaea and Nitrobacter agilis, the intracellular water spaces were 1.7 \pm 0.2 and $1.2 \pm 0.2 \mu l$ mg⁻¹ (dry weight), respectively.

Uptake of labeled probes. Untreated or EDTA-treated cells were incubated at 25°C in Na⁺ phosphate (100 mM) or Tris-hydrochloride (50 mM) buffer at the appropriate pH. The cell suspensions were either vigorously oxygenated for 10 min with pure oxygen or mixed with catalase (0.05 mg ml⁻¹) and H_2O_2 (1 μ l ml^{-1}). The substrate was 5 mM NH₄Cl for Nitrosomonas and 5 mM $NaNO₂$ for Nitrobacter. Then the isotopically labeled compound was added, and incubation was continued for a further 5 to 15 min. Samples (1 ml) were then centrifuged in an Eppendorf microfuge at 13,000 \times g for 1 min. Portions of the supernatant (100 μ l) and of the cell pellet were added to 1 ml of ³ M perchloric acid in 15-mi scintillation glass vials. After 30 min, when cell proteins were completely dissolved, 5 ml of a scintillation counting fluid (PCS; Amersham, Australia) was added to each vial, and the contents were mixed thoroughly and radioassayed in a Packard Tri-Carb ⁴⁶⁰ CD liquid scintillation spectrometer. In the standard protocol, two consecutive experiments were carried out in which $\Delta\Psi$ and ΔpH were measured. For $\Delta \Psi$ determination, [3H]tetraphenyl phosphonium ($[{}^{3}H]TPP+$) bromide (20 to 50 nCi ml⁻¹) was added to a cell suspension (1 to 1.5 mg [dry weight] ml^{-1}). For ΔpH determination, ¹⁴C-benzoic acid (2 μ Ci ml⁻¹), ¹⁴C-acetyl salicylic acid (2 μ Ci ml⁻¹) or [¹⁴C]methylamine hydrochloride (1 μ Ci ml⁻¹) was added. ${}^{3}H_{2}O$ was used to determine total pellet water.

The calculations of $\Delta\Psi$ and ΔpH were made by using the Nernst equation as described previously (24) after correcting for nonspecifically bound $[3H]TPP^+$ and extracellular counts of 14C-benzoic acid, 14Cacetyl salicylic acid, and ['4C]methylamine, respectively.

Oxygen uptake. The oxidation of $NH₄$ ⁺ by Nitroso-

monas europaea and $NO₂⁻$ by Nitrobacter agilis was measured in an oxygen electrode (Rank Bros., Cambridge, U.K.). For this purpose, cells (40 mg, wet weight) were suspended in ⁵ ml of ⁵⁰ mM Trishydrochloride buffer (pH 7.8). The reaction was started by adding 10 umol of NH₄Cl for Nitrosomonas or 10 μ mol of NaNO₂ for Nitrobacter. The response of the electrode was monitored with a Rikadenki chart recorder, and oxygen uptake values were calculated as described before (19).

Materials. Carbonyl cyanide m-chlorophenyl hydrazone (CCCP), N,N'-dicyclohexylcarbodiimide (DCCD), and diethylstilbestrol (DESB) were purchased from Sigma Chemical Co., St. Louis, Mo. All other chemicals used were of the highest grade available. The radioisotopes [³H]TPP⁺ bromide (23.7 Ci mmol⁻¹), acetyl [carboxyl-¹⁴C]salicylic acid (20 mCi $mmol^{-1}$), and $[¹⁴C]$ inulin (5.6 Ci mmol⁻¹) were from Amersham International Ltd. H_2O (1 Ci mol⁻¹), 7- 14 C-benzoic acid (22.6 mCi mmol⁻¹), $[^{14}$ C]methylamine hydrochloride (51.8 mCi mmol⁻¹), and $[14C]$ sucrose $(1 \text{ mCi mmol}^{-1})$ were purchased from New England Nuclear Corp., Boston, Mass.

RESULTS

Uptake of radioactive probes. All probes used to determine $\Delta \Psi$ and ΔpH were readily taken up by cells of Nitrosomonas europaea and Nitrobacter agilis, and an equilibrium state was reached within ⁵ min. The EDTA treatment of bacteria was necessary to make them permeable to the radioactive compounds. High concentrations of EDTA (5 mM for Nitrosomonas and ¹⁰ mM for Nitrobacter), relative to those used for Escherichia coli (41), were employed because of the complex cell membrane structures of these bacteria (38). EDTA-treated cells were metabolically active, since oxygen uptake values were similar to those of untreated cells.

Measurement of Δ pH as a function of pH $^{\circ}$. The uptake of 14C-benzoic acid, 14C-acetyl salicylic acid, and $[$ ¹⁴C]methylamine, respectively, by Nitrosomonas europaea and Nitrobacter agilis was observed over a range of external pH (pH°). The uptake of all three compounds was pH' dependent. Nitrosomonas europaea accumulated the two weak acids only when the pH' was below 7.0, and accumulated the weak base, methylamine, when the pH^o was above 7.0, indicating that the intracellular $pH (pHⁱ)$ of the bacterium was maintained around neutrality. The Δ pH was almost 0 at pH $^{\circ}$ 7, but when pH $^{\circ}$ was >7.0 the pHⁱ became acidic in relation to pH^o (inside acidic). For *Nitrobacter agilis* the pH0 at which neither of the two weak acids nor the weak base was taken up by the cells was about 7.5. Benzoic and acetyl salicylic acids were not metabolized by either strain (checked by thin-layer chromatography). Nitrosomonas europaea, however, slowly utilized methylamine when the external pH was greater than 7.5.

FIG. 1. Effects of external pH on pHⁱ Δ pH, $\Delta \Psi$, and Δp in EDTA-treated cells of (A) Nitrosomonas europaea and (B) Nitrobacter agilis. EDTA-treated cells were suspended in ⁵⁰ mM sodium phosphate buffer at the pH values indicated. Uptake studies were carried out as described in the text. Intracellular pH (\triangle) and \triangle pH represented in terms of millivolts (59 \times ΔpH) (Δ) were determined with ¹⁴C-benzoic acid and $[14C]$ methylamine. $\Delta\Psi$ values (O) were calculated from the uptake of $[{}^3H]TPP^+$. Δp (\bullet) was calculated from ΔpH and $\Delta \Psi$ as described in the text.

Because methylamine was utilized slowly by Nitrosomonas europaea, the uptake studies with the probes, which were completed within 5 min, were unaffected by this metabolism.

Nitrosomonas europaea had limited capacity to maintain a constant $pHⁱ$, and thus it increased from 6.3 to 7.8 when the external pH (pH^o) was varied over the range from 6.0 to 8.5 (Fig. 1A). On the other hand, in Nitrobacter agilis (Fig. 1B) pHⁱ increased from 7.3 to 7.8 when the pH^o was increased from 6.0 to 8.5. Thus at pH 6.0 Nitrosomonas europaea and Nitrobacter agilis had ΔpH values of 0.3 and 1.3 pH units, respectively. As these bacteria respire optimally between pH 7.5 and 8.0, it appears that they do not have a ΔpH (inside alkaline), but instead their $pHⁱ$ values are either similar to their pH^o or more acidic (inside acid). Over a range of pH^o (from 6.0 to 8.5, the pH^i in Nitrobacter agilis increased only by about 0.5 units, whereas in Nitrosomonas europaea it increased by 1.5 units.

Measurement of $\Delta\Psi$ as a function of pH°. The variations in $\Delta \Psi$ as determined by [3H]TPP⁺ uptake over a pH^o range from 6 to 8.5 are shown in Fig. 1. In both bacteria $\Delta \Psi$ increased with increasing pH^o. Thus in Nitrosomonas europaea $\Delta\Psi$ increased from 125 mV at pH^o 6 to 178 at pH^o 8.5. In Nitrobacter agilis the effect of pH^o on $\Delta\Psi$ was less pronounced than in Nitrosomonas europaea; thus it increased from ¹⁰⁵ mV at pH $^{\circ}$ 6.0 to 135 mV at pH $^{\circ}$ 8.5, an increase of approximately ¹⁰ mV for each pH unit. The increase in $\Delta \Psi$ in Nitrosomonas europaea was nonlinear and approached a plateau at pH° 8.0, whereas in Nitrobacter agilis the increase was almost linear.

Total Δp . Since Δp is a function of $\Delta \Psi$ and ApH, it is clear from Fig. 1A that it remained almost constant (135 to 145 mV) in Nitrosomonas europaea over a range of external pH. This was largely the result of an increase in $\Delta\Psi$ and a decrease in ΔpH when the pH° was increased from 6.0 to 8.5; thus a decrease in Δ pH was compensated by an increase in $\Delta \Psi$. In Nitrobacter agilis (Fig. 1B), however, the contribution of ApH decreased rapidly when the pH^o was increased (-73 mV at pH 6.0 to +40 mV at pH 8.5), while $\Delta\Psi$ increased by 30 mV only from pH° 6 to 8.5, thus decreasing the total Δp from 177 mV at pH^o 6 to 95 mV at pH^o 8.5.

Ap in cells of Nitrosomonas europaea harvested at various stages of growth. Nitrosomonas europaea grows slowly (mean generation time, 10 to 12 h). About 24 h after inoculation, the exponential stage of growth started, and it lasted for another 4 days (Fig. 2). Because the cell yields were low, it was not possible to conduct uptake studies with the probes to determine ΔpH and $\Delta\Psi$ in growing cultures as described by Kashket and co-workers for a number of bacteria (22-24). To assess whether there were any changes in ΔpH and $\Delta\Psi$ (at various stages of growth), cultures (1 liter) were harvested at various times as shown in Fig. 2. Thus ΔpH and $\Delta \Psi$ were determined at two pH' values (6 and 8) after the washed cells were suspended in a fresh culture medium. The intracellular water volume was reasonably constant during growth (1.6 \pm 0.2 μ l) mg^{-1} [dry weight]). Cells harvested at different stages of growth maintained a fairly constant $\Delta\Psi$ and pHⁱ (Fig. 2). Thus, at pH^o6 $\Delta \Psi$ was approximately 122 mV and Δ pH was 0.3 units (inside alkaline), and at pH $\rm{P8}$ $\Delta\Psi$ was approximately 165 mV and Δ pH was 0.5 units (inside acid). A similar experiment was not possible with Nitrobacter agilis because of the exceptionally low cell yields (40 to 50 mg [wet weight] liter⁻¹ of culture after 5 days of growth).

Effects of some inhibitors on the components of Ap. To determine the relevance of respiratory potential to Δp maintenance, the effects of respiratory inhibitors on $\Delta\Psi$ and ΔpH in Nitrosomonas europaea and Nitrobacter agilis were investigated. Diethyldithio-carbamate, a potent inhibitor of NH4' oxidation by Nitrosomonas europaea (8, 9), completely inhibited respiration at 20 μ M, but did not have any substantial effect on Δp (Table 1). In Nitrobacter agilis (Table 2), sodium azide at 50 μ M completely inhibited $NO₂⁻$ oxidation (also see references 30 and 40); although it had no effect on $\Delta \Psi$, it dissipated ΔpH , thus lowering Δp by about 20 mV. Be-

FIG. 2. Intracellular pH and $\Delta\Psi$ in cells of Nitrosomonas europaea at various stages of growth determined at pH' values of 6.0 (A) and 8.0 (B). Cultures (18 liters) were grown in 20-liter Pyrex glass bottles at constant temperature (28°C) and pH (8.0). Growth of bacteria (0) was monitored throughout the growth period by the rate of $NH₄$ ⁺ oxidation and by determining the protein contents of cells. At the time intervals indicated, 1- to 2-liter samples, withdrawn aseptically from the cultures, were harvested by centrifugation (10,000 \times g for 30 min) in 250-ml polycarbonate bottles. The cells were then washed and suspended in fresh growth medium at either pH 6.0 (A) or pH 8.0 (B). Uptake studies were carried out as described in the text. $\Delta\Psi$ (O) was calculated from the uptake of $[3H]TPP^+$. Intracellular pH (\triangle) was determined by the uptake of ¹⁴C-benzoic acid and $[14C]$ methylamine at pH 6.0 and 8.0, respectively.

cause respiration in nitrifiers has been shown to be inhibited by uncouplers (2, 4, 7, 8, 11, 12, 30) and this effect was related to the collapse of $\Delta\Psi$ in Nitrobacter, we investigated the effect of the classical uncoupler CCCP on Ap in both Nitrosomonas europaea (Table 1) and Nitrobacter agilis (Table 2). The respiration of both nitrifiers

was completely inhibited by CCCP concentrations of more than 50 μ M, but Δp was only partially collapsed (Table ¹ and 2). Recently we have found that several ATPase inhibitors re-

TABLE 1. Effects of some inhibitors on respiration and Δp in Nitrosomonas europaea^a

Inhibitor	Concn (μM)	% In- hibi- tion of respir- ation ^b	ΔΨ (mV)	Δ pH ^c	Δp (mV)
None			-147	0.18	-158
DIECA ^d	20	100	-148	0.00	-148
CCCP	10 100	80 100	-110 -80	0.10 0.00	-116 -80
DCCD	200	50	-117	0.16	-128
DESB	50	25	-187	0.50	-216

^a Washed cell suspensions in ⁵⁰ mM Tris-hydrochloride (pH 6.9) were employed for $\Delta\Psi$ and ΔpH determination.

 b Determined at pH 7.8 by the oxygen electrode technique described in the text. The control rate of $O₂$ uptake was approximately 850 ng-atoms of O min⁻¹ mg^{-1} of protein.

Determined by ¹⁴C-benzoic acid distribution.

^d DIECA, Diethyldithiocarbamate.

TABLE 2. Effects of some inhibitors on respiration and Δp in Nitrobacter agilis^a

Inhibitor	Concn (μM)	% In- hibi- tion of respir- ation ^b	ΔΨ (mV)	Δ pH ^c	Δp (mV)
None			-115	0.34	-138
Sodium azide	50	100	-114	0.05	-117
CCCP	10	70	-82	0.20	-94
	50	100	-75	0.12	-82
DCCD	100	55	-116	0.38	-138
	250	100	-118	0.08	-113
DESB	20	45	-124	0.31	-142
	50	85	-133	0.09	-139

^a Washed cell suspensions in ⁵⁰ mM Tris-hydrochloride buffer at pH 7.0 were employed for $\Delta\Psi$ and ApH determination.

 b Determined at pH 7.8 by the oxygen electrode technique described in the text. The control rate of $O₂$ uptake was approximately 650 ng-atom of O min⁻¹ mg^{-1} of protein.

Determined by 14 C-benzoic acid distribution.

strict respiration in nitrifying bacteria to an extent similar to that for ATPase itself. To investigate whether this inhibition was related to a collapse of Δp , the effects of two ATPase inhibitors, DCCD and DESB, on $\Delta\Psi$ and ΔpH were investigated. DCCD at high concentrations ($>200 \mu M$) affected Δp in both nitrifiers by lowering $\Delta \Psi$ in Nitrosomonas europaea (Table 1) and ΔpH in Nitrobacter agilis (Table 2). DESB had little or no effect on Ap in Nitrobacter agilis (Table 2), but at 50 μ M concentration it elevated Δp by about 60 mV (inside negative) in Nitrosomonas europaea.

Effects of NH₄⁺ and NH₂OH on $\Delta\Psi$ and Δp H. Permeant amines and amine-like compounds have a tendency to redistribute across the membrane towards the acidic side in response to a pH gradient (16, 29). It has been shown that high concentrations of substrate $(NH₄⁺, NH₂OH, or$ N_2H_5 ⁺) in *Nitrosomonas europaea* tend to diminish proton pumping (19). Both NH_4 ⁺ and NH₂OH at high concentrations diminished completely the small pH gradient (\simeq 0.1 unit) across the cell membranes of Nitrosomonas europaea (Fig. 3). Moreover, NH₄⁺ also decreased $\Delta\Psi$ $(170 \text{ mV}$ to 140 mV at 100 mM NH₄⁺), but relatively small concentrations of $NH₂OH$ (\simeq 20 mM) rapidly decreased $\Delta\Psi$ by about 60 mV. Increasing the $NH₂OH$ beyond 20 mM did not dissipate $\Delta\Psi$ any further. Nitrobacter agilis does not oxidize NH_4 ⁺ or NH_2OH , but it assimilates small amounts (2 mM) of NH₄Cl (31). High concentrations of NH_4^+ (>10 mM) dissipated Δ pH completely and $\Delta\Psi$ partially (20 mV at 100 $mM NH₄⁺$).

DISCUSSION

The results indicate that at a pH^o of 7.0 for Nitrosomonas europaea and 7.5 for Nitrobacter agilis there was no transmembrane pH gradient (inside alkaline) because at these pH values neither weak acids nor weak bases were concentrated by the bacteria. The pH optimum for NH_4^+ and NO_2^- oxidation by Nitrosomonas europaea and Nitrobacter agilis, respectively, was between 7.5 and 8.0, indicating that optimally respiring cells of these bacteria do not have a ApH. Nitrosomonas europaea actively translocates protons (8, 9, 14, 19) during respiration, with \rightarrow H⁺/O ratios of up to 4.0 for either NH₄⁺, $NH₂OH$, or $NH₂NH₂$ as the substrate (19). The results of this study indicate that for pH° values above 7.0, the pHⁱ of Nitrosomonas europaea becomes more acid than the pH°. Moreover, its $pHⁱ$ did not remain constant as the pH^o was varied, so that Nitrosomonas europaea had a limited capacity to maintain a constant pH'. This result contrasts with those reported for Micrococcus lysodeikticus (15) and E. coli under aero-

FIG. 3. Effects of NH₄⁺ and NH₂OH on $\Delta \Psi$ and ApH in washed cells of Nitrosomonas europaea. EDTA-treated washed cells were suspended in ⁵⁰ mM Tris-hydrochloride (pH 6.9). $\Delta\Psi$ was determined from the uptake data for $[{}^3H]TPP^+$ after the treatment of suspensions with either NH₄Cl (O) or NH₂OH (\bullet) at special concentrations. ApH was calculated from the distribution of 14 C-benzoic acid in the presence of either NH₄Cl (Ψ) or NH₂OH (\triangle).

bic conditions (41), but is comparable to anaerobic bacteria, namely, Methanospirillum hungatei (20), Clostridium pasteurianum (45), and even E. coli grown under anaerobic conditions (25) . In Nitrobacter agilis the pH¹ remained relatively constant (7.3 to 7.8) over a range of pH^o values (6 to 8.5), which is similar to the results for E. coli (41), Micrococcus lysodeikticus (15), Thiobacillus acidophilus (36), and Bacillus subtilis (28) (for a recent review, see reference 42).

The weak base methylamine, used as a probe for the determination of ΔpH , is not oxidized by either nitrifier. Since ammonia and its analogs are probably taken up by Nitrosomonas europaea as neutral species (14, 19), it is unlikely that the cells would accumulate methylamine in response to a $\Delta\Psi$ (inside negative) as reported for Azotobacter vinelandii (32).

At a pH $^{\circ}$ of 6.0, neither Nitrosomonas europaea nor Nitrobacter agilis oxidized its respective substrate, but they still maintained a reasonable ΔpH and $\Delta \Psi$, and thus Δp . In fact, in Nitrobacter agilis, Δp was maximum at pH 6.0 (or less than 6.0), and it decreased linearly with an increase in pH^o . However, at pH 7.0, when both Nitrosomonas europaea and Nitrobacter agilis retain about half of their respiratory activities, the small pH gradient was dissipated by uncouplers and compounds which inhibit respiration. It is known that Nitrosomonas europaea and Nitrobacter agilis have appreciable rates of endogenous respiration (19) involving complex organic substrates, e.g., poly- β -hydroxybutyric acid in Nitrobacter agilis (7). In Nitrosomonas europaea, endogenous respiration has been shown to be coupled to proton translocation (19). It is likely that this endogenous respiration enables the cells to maintain a reasonable Δp in the absence of exogenous substrates, or when the exogenous respiration is inhibited. This phenomenon could be of ecological significance for nitrifiers, because these soil bacteria in their natural habitat may encounter conditions that preclude respiration for extended periods of time.

In Nitrosomonas europaea the uncoupler CCCP severely inhibited respiration $(80\%$ at 10 μ M CCCP) but lowered Δp by about 40 mV. At higher concentrations (100 μ M CCCP) the respiration was completely inhibited, but the Δp was lowered by only ⁷⁸ mV (from ¹⁵⁸ to ⁸⁰ mV). In Nitrobacter agilis, CCCP $(50 \mu M)$ completely restricted respiration, but nonrespiring cells still maintained a Δp of 82 mV (inside negative). Uncouplers are known to restrict respiration in nitrifying bacteria (2, 4, 7, 8, 30), but it is only recently that they have been shown to inhibit respiration in other bacteria, e.g., T. acidophilus (36). Besides the nitrifiers, uncouplers have been shown to inhibit respiration in denitrifying bacteria (50). Thus in Pseudomonas aeruginosa and Pseudomonas denitrificans the effects of uncouplers on respiration were not linked to a collapse of Δp but rather to their detergent-like effects on cell membranes (50). It is possible that the mechanism of inhibition of respiration by CCCP and other uncouplers in Nitrosomonas europaea and Nitrobacter agilis is similar to that in the denitrifying bacteria.

Because the inhibitors known to collapse membrane potential also restricted nitrite oxidation in Nitrobacter winogradskyi, Cobley (11, 12) predicted that respiration was $\Delta\Psi$ dependent. The way in which nitrite oxidation is mediated by a $\Delta\Psi$ is, however, not understood. He also reported (11, 12) that $NO₂⁻$ oxidation by membrane particles of Nitrobacter winogradskyi was stimulated by NH_4^+ , a compound known to collapse ΔpH (11). The results reported in this paper indicate that NH_4 ⁺ diminished the ΔpH in Nitrobacter agilis, but in a recent study (31) with washed cells of Nitrobacter agilis we found that NH_4 ⁺ inhibited NO_2 ⁻-dependent O_2 uptake and that NH_4 ⁺ competed with either NO_2 ⁻ translocation or NO_2^- oxidation, because NH_4^+ inhibition could be reversed by increasing nitrite. Cobley's prediction that NH_4 ⁺ stimulation of $NO₂$ ⁻ oxidation resulted from a collapse of ΔpH is not substantiated by our data.

DCCD and DESB, inhibitors of ATPase (10),

severely restricted respiration in both nitrifying bacteria, indicating a close functional relationship between ATPase and oxidoreductase systems of these bacteria. Whether this inhibition was associated with a collapse of Δp is not clear. because DESB elevated Δp in Nitrosomonas europaea rather than lowering it. It is possible, however, that in washed cells these inhibitors are nonspecific and affect other metabolic functions. Recently DCCD has been shown to inhibit beef heart cytochrome oxidase function (44).

The results reported in this paper indicate that the total Δp at pH 7.5 would be approximately ¹⁵⁰ mV and ¹²⁵ mV (inside negative) in Nitrosomonas europaea and Nitrobacter agilis, respectively. These values are comparable to those reported for E. coli (41) and Methanobacterium thermoautotrophicum (20). In E. coli, Δp is composed of both $\Delta \Psi$ and ΔpH ; however, ΔpH appears to be absent in Methanobacterium thermoautotrophicum and Methanospirillum hungatei (20). The overall behavior of $\Delta \Psi$ and $\Delta \nu H$ in nitrifying bacteria is quite similar to that reported for other bacteria. By using isolated membrane vesicles from Bacillus alcalophilus it has been shown (35) that respiration results in proton extrusion, whereas cation $H⁺$ antiporters (K^+/H^+) and $Na^+/H^+)$ catalyze inward proton movements. These cation $H⁺$ antiporters have also been found in E. coli (see reference 42 for review) and can explain how an electrical potential (inside negative) is supported in the absence of a ΔpH or when the pHⁱ of the bacterium is lower than the pH° (inside acid). A similar mechanism has been suggested for Methanobacterium thermoautotrophicum and Methanospirillum hungatei (20). This is also a likely mechanism for nitrifiers, although the existence of such systems in nitrifying bacteria has yet to be determined.

ACKNOWLEDGMENTS

This work was supported by a grant to D.J.D.N. from the Australian Research Grants Committee. S.K. is grateful to the University of Adelaide for a postgraduate scholarship.

LITERATURE CITED

- 1. Aleem, M. I. H. 1970. Oxidation of inorganic nitrogen compounds. Annu. Rev. Plant Physiol. 21:67-90.
- 2. Aeem, M. I. H. 1977. Coupling of energy with the electron transfer reactions in chemolithotrophic bacteria, p. 351- 381. In B. A. Haddock and W. A. Hamilton (ed.), Microbial energetics, 27th Symposium, Society for General Microbiology. Cambridge University Press, Cambridge.
- 3. Aleem, M. I. H., and H. Lees. 1963. Autotrophic enzyme systems. I. Electron transport system concerned with hydroxylamine oxidation in Nitrosomonas. Can. J. Biochem. Physiol. 41:763-778.
- 4. Aleem, M. I. H., H. Lees, and D. J. D. NIcholas. 1963. Adenosine-triphosphate-dependent reduction of nicotinamide-adenine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature (London) 200:759-761.
- 5. Aleem, M. I. H., and A. Nason. 1959. Nitrite oxidase, a particulate cytochrome electron transport system from

Nitrobacter. Biochem. Biophys. Res. Commun. 1:323-

- 327.
6. Aleem, M. I. H., and A. Nason. 1969. Phosphorylation coupled to nitrite oxidation by particles from the chemolithotroph Nitrobacter agilis. Proc. Natl. Acad. Sci. U.S.A. 46:763-769.
- 7. Aleem, M. I. H., and D. L. Sewell. 1981. Mechanism of nitrite oxidation and oxidoreductase systems in Nitrobacter agilis. Curr. Microbiol. 5:267-272.
- 8. Bhandari, B., and D. J. D. Nicholas. 1979. Ammonia and 02 uptake in relation to proton-translocation in cells of Nitrosomonas europaea. Arch. Microbiol. 122:249-255.
- 9. Bhandari, B., and D. J. D. Nicholas. 1979. Ammonia, $O₂$ uptake and proton extrusion by spheroplasts of Nitrosomonas europaea. FEMS Microbiol. Lett. 6:297-300.
- 10. Bowmen, B. J., S. E. Mainzer, K. E. Allen, and C. W. Slayman. 1978. Effects of inhibitors on the plasma-membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochim. Biophys. Acta 512:13-28.
- 11. Cobley, J. G. 1976. Energy conserving reactions in phosphorylating electron transport particles from Nitrobacter winogradskyi. Biochem. J. 156:481-491.
- 12. Cobley, J. G. 1976. Reduction of cytochromes by nitrite in electron transport particles from Nitrobacter winogradskyi. Biochem. J. 156:493-498.
- 13. Deutsch, C. J., and T. Kula. 1978. Transmembrane electrical and pH gradients of Paracoccus denitrificans and their relationship to oxidative phosphorylation. FEBS Lett. 87:145-151.
- 14. Drozd, J. W. 1976. Energy coupling and respiration in Nitrosomonas europaea. Arch. Microbiol. 110:257-262.
- 15. Fredberg, I., and H. R. Kaback. 1980. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles. J. Bacteriol. 142:651-658.
- 16. Good, N. E. 1960. Activation of Hill reaction by amines. Biochim. Biophys. Acta 40:502-517.
- 17. Guffantl, A. A., P. Susman, R. Blanco, and T. A. Krulwich. 1978. The proton-motive force and α -aminoisobutyric acid transport in obligatory alkolophilic bacterium. J. Biol. Chem. 253:708-715.
- 18. Harold, F. M. 1977. Membrane and energy transduction in bacteria. Curr. Top. Bioenerg. 6:83-149.
- 19. Hollocher, T. C., S. Kumar, and D. J. D. Nicholas. 1982. Respiration-dependent proton-translocation in Nitrosomonas europaea and its apparent absence in Nitrobacter agilis during inorganic oxidations. J. Bacteriol. 149:1013- 1020.
- 20. Jarrell, K. F., and G. D. Sprott. 1981. The transmembrane electrical potential and intracellular pH in methanogenic bacteria. Can. 1. Microbiol. 27:720-728.
- 21. Kaback, H. R. 1976. Molecular biology and energetics of membrane transport. J. Cell Physiol. 89:575-594.
- 22. Kashket, E. R. 1981. Effects of aerobiosis and nitrogen source on the proton-motive force in growing Escherichia coli and Klebsiella pneumoniae. J. Bacteriol. 146:377- 384.
- 23. Kashket, E. R. 1981. Proton-motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J. Bacteriol. 146:369-376.
- 24. Kashket, E. R., A. G. Blanchard, and W. C. Metzger. 1980. Proton-motive force during growth of Streptococcus lactis cells. J. Bacteriol. 143:128-134.
- 25. Kashket, E. R., and P. T. S. Wong. 1969. The intracellular pH of Escherichia coli. Biochim. Biophys. Acta 193:212- 214.
- 26. Kell, D. B., P. John, and S. J. Ferguson. 1978. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Biochem. J. 174:257-266.
- 27. Kelly, D. P. 1971. Autotrophy: concept of lithotrophic bacteria and their organic metabolism. Annu. Rev. Microbiol. 25:177-210.
- 28. Khan, S., and R. M. Macnab. 1980. Proton-chemical potential, proton electrical potential and bacterial mobility. J. Mol. Biol. 138:599-614.
- 29. Krognan, D. W., A. T. Jagendorf, and M. Avron. 1959. Uncouplers of spinach chloroplast photosynthetic phosphorylation. Plant Physiol. 34:272-277.
- 30. Kumar, S., and D. J. D. Nicholas. 1981. Oxygen-dependent nitrite uptake and nitrate production by cells, spheroplasts and membrane vesicles of Nitrobacter agilis. FEMS Microbiol. Lett. 11:201-206.
- 31. Kumar, S., and D. J. D. Nicholas. 1982. Assimilation of inorganic nitrogen compounds by Nitrobacter agilis. J. Gen. Microbiol. 128:1795-1801.
- 32. Laane, C., W. Krone, W. Konings, H. Haaker, and C. Veeger. 1980. Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and bacteroids of Rhizobium leguminosarum. Eur. J. Biochem. 103:39-
- 46. 33. Maloney, P. C., E. R. Kashket, and T. H. Wilson. 1974. A protonmotive force drives ATP synthesis in bacteria. Proc. Natl. Acad. Sci. U.S.A. 71:3896-3900.
- 34. Maloney, P. C., E. R. Kashket, and T. H. Wilson. 1975. Methods for studying transport in bacteria. Methods Membr. Biol. 5:1-49.
- 35. Mandel, K. G., A. A. Guffanti, and T. A. Krulwich. 1980. Monovalent cation/proton antiporter in membrane vesicles from Bacillus alcalophilus. J. Biol. Chem. 255:7391- 7396.
- 36. Matin, A., B. Wilson, E. Zychlinsky, and M. Matin. 1982. Proton motive force and the physiological basis of delta pH maintenance in Thiobacillus acidophilus. J. Bacteriol. 150:582-591.
- 37. Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41:445-502.
- 38. Murray, R. G. E., and S. W. Watson. 1965. Structure of Nitrosocystis oceanus and comparison with Nitrosomonas and Nitrobacter. J. Bacteriol. 89:1594-1609.
- 39. Nkholas, D. J. D. 1963. The metabolism of inorganic nitrogen and its compounds in micro-organisms. Biol. Rev. 38:530-568.
- 40. O'Kelly, J. C., G. E. Becker, and A. Nason. 1970. Characterization of the particulate nitrite oxidase and its component activities from the chemoautotroph Nitrobacter agilis. Biochim. Biophys. Acta 205:409-425.
- 41. Padan, E., D. Zilbestein, and H. Rottenberg. 1976. The proton-electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63:533-541.
- 42. Padan, E., D. Zilberstein, and S. Schuldner. 1981. pH homeostasis in bacteria. Biochim. Biophys. Acta 650:151- 166.
- 43. Peck, H. D. 1968. Energy coupling mechanisms in chemolithotrophic bacteria. Annu. Rev. Microbiol. 22:489-518.
- 44. Procheska, L. J., R. Bisson, R. A. Capaldi, G. C. M. Steffens, and G. Buse. 1981. Inhibition of cytochrome c oxidase function by dicyclohexyl-carbodiimide. Biochim. Biophys. Acta 637:360-373.
- 45. Riebeling, V., R. K. Thaurer, and K. Jungerman. 1975. The internal alkaline pH gradient, sensitive to uncouplers and ATPase inhibitor in growing Clostridium pasteurianum. Eur. J. Biochem. 55:445-453.
- 46. Stock, J. B., B. Rauch, and S. Roseman. 1977. Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 252:7850-7861.
- 47. Suzuki, I. 1974. Mechanism of inorganic oxidation and energy coupling. Annu. Rev. Microbiol. 28:85-102.
- 48. Wallace, W., S. E. Knowles, and D. J. D. NIchols. 1970. Intermediary metabolism of carbon compounds by nitrifying bacteria. Arch. Microbiol. 70:26-42.
- 49. Wallace, W., and D. J. D. NIcholas. 1969. The biochemistry of nitrifying micro-organisms. Biol. Rev. 44:359-391.
- 50. Walter, B., E. Sidrankyl, J. K. Krlstjansson, and T. C. Hollocher. 1978. Inhibition of denitrification by uncouplers of oxidative phosphorylation. Biochemistry 17:3039-3045.
- 51. Wilson, D. M., J. P. Alderate, P. C. Maloney, and T. H. Wilson. 1976. Proton-motive force as the source of energy for adenosine 5'-triphosphate synthesis in Escherichia coli. J. Bacteriol. 126:327-337.