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We used the Euler-Lotka equation [1] to determine how juvenile mortality would influence 

the age-specific strength of selection. As measure for the age-specific strength of selection we 

determined the fitness cost, in terms of a reduction in the population growth rate r, of a 

mutation leading to death after m divisions (as described in the main text). We then asked 

how the fitness costs changed if juvenile mortality was introduced. To implement juvenile 

mortality, we used a form of the Euler-Lotka equation that includes mortality: 1 = ∑n=0 to m e-

r(a+n*b)ln, where ln denotes to probability to survive to the nth division (the first division has the 

index n = 0). l0 is the probability to survive to the first division, and 1- l0 is therefore the 

juvenile mortality. We first assumed no adult mortality, so that ln= l0 for all n. Evaluating r as 

a function of m showed that with juvenile mortality the strength of selection remained high 

for longer than without juvenile mortality (Fig. S1). For example, if juvenile mortality is 0.9, 

a mutation that leads to cell death at an age of 30 hours decreases fitness by more than 50%; 

without juvenile mortality, the fitness cost of such a mutation would be virtually zero (Fig. 

S1; for plotting the figure we used chronological age rather than the number of divisions; the 

age at n divisions is a+n*b).  

 

Without adult mortality (and with juvenile survival larger than zero), populations are not in 

equilibrium; they have a positive growth rate r, and the number of individual increases 

continuously. This is not realistic for natural populations, which have long-term growth rates 

that are very close to zero (otherwise they would increase in size without limits). It is thus 

interesting to investigate combinations of adult and juvenile mortality rates that lead to long-

term growth rates r = 0. For r = 0, the Euler-Lotka equation reduces to 1 = ∑n=0 to m ln, where ln 

is again the probability to survive to the nth division. Writing j for the probability of surviving 



 

the juvenile period (j = l0), and a for the (constant) probability of surviving between two 

divisions as a mother cell (a = ln+1/ln), the equation can be written as 1 = ∑n=0 to m j*an (because 

l0=j, l1= j*a, l2=j*a*a, and so on). Re-arranging yields 1/j = ∑n=0 to m an. For large m (m -> ∞) 

and a<1,  the sum ∑n=0 to m an approaches 1/(1-a), so that 1/j = 1/(1-a), and j = 1-a. This means 

that the long-term growth rate is zero if j+a = 1, i.e., if the probability to survive the juvenile 

period and the probability to survive between two divisions as an adult sum up to one (and, 

likewise, the probability of dying during the juvenile period and the probability of dying 

between two divisions as an adult sum up to one). This simple result has an intuitive 

explanation: with j+a=1, at each cell division, on average one of the two cells produced 

survives to the next division. As a consequence, the number of cells stays constant over time. 

Combinations of juvenile and adult survivals that lead to growth rates of zero could result 

from density-dependent mortality. For example, if a is constant (for example because it is 

determined by predation) and j is regulated in a density-dependent manner, then j will attain a 

value of (1-a) at equilibrium. There are currently no data available on survival rates of 

juvenile and adult C. crescentus in natural populations (such information could probably be 

obtained, because it is possible to determine the age, in numbers of divisions, of C. crescentus 

individuals collected from the wild [2]). We therefore analyzed different combinations of 

juvenile and adult survivals that lead to r = 0, and calculated the fitness costs of mutations 

that lead to death at a given age (Fig. S2). These costs cannot be expressed as a percentage 

reduction of growth rate because the growth rate without mutations is zero. We thus 

calculated the costs in terms of the (negative) growth rate of a mutant in a resident population 

without this mutation. To do so, we solved the equation 1 = ∑n=0 to m e-r(a+n*b)ln for different m; 

the survival probabilities ln depended on j and a as described above. This analysis again 

shows that with high levels of juvenile mortality the strength of selection declines only slowly 

with age. For example, with juvenile mortality 1-j = 0.95, a mutation leading to death after 50 

divisions (corresponding to a chronological age of 116 hours) decreases the growth rate r 

from zero to -0.002 [h-1]. While it is not trivial to express this cost in terms of a fixation 

probability of this mutation, it seems substantial enough to prevent fixation of the mutation by 



 

random genetic drift. In contrast, if juvenile mortality is low, the cost of such a mutation is 

much lower. For example, if 1-j = 0.5, this mutation reduces the growth rate from zero to -

1*10-8[h-1]; such a mutation is very close to neutral even in populations of substantial size.  
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Figure S2: With juvenile mortality, the strength of selection declines more slowly with age than 
without juvenile mortality. The lines designate the reduction in �tness through a mutation that 
leads to death at a given age, as a function of age,  for di�erent levels of juvenile mortality. 
Juvenile mortality denotes the fraction of juveniles that die before the �rst reproduction.  The 
red line represents the situation without juvenile mortality; this line is equal to the red line in 
Fig. 1. With increasing levels of juvenile mortality (green lines), selection remains substantial for
 longer. A �tness reduction of 100% (or higher) means that a mutation with such an e�ect would 
reduce the growth rate of the population to zero (or would lead to a negative growth rate). The
calculations are based on measurement of the length of the juvenile phase and the interval 
between divisions made with the C. crescentus wildtype strain UJ590, as presented in Fig. 1. 
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Figure S3: This graph illustrates the age-speci�c strength of selection in populations that have a
long-term growth rate r = 0. In such populations, juvenile mortality and adult mortality sum up 
to one (see text). Starting with a cell type that does not have an upper limit for the length of the 
reproductive period (i.e., m = ∞) and that has r = 0, we determined the changes in growth rate
 induced by mutations that would lead to cell death at a given age. With low juvenile mortality 
(for example 0.5, meaning that juveniles and adults both have a chance of 0.5 to survive to the
next division), the growth rate reduction introduced by such mutations becomes negligible very 
quickly for later age of onset. In contrast, if juvenile mortality is high (and, consequently, adult 
mortality low), mutations have a substantial �tness cost even if the age of onset is late. The 
calculations are again based on measurement of the length of the juvenile phase and the interval 
between divisions made with the C. crescentus wildtype strain UJ590, as presented in Fig. 1. The 
unit of r is h-1. 
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