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Supplementary Note 1. ‘NP analysis’ method 

Briefly, this analysis method includes the following steps: 1) obtain all the PPIs 

(Protein-Protein Interactions) between genes that have either similar 

expression profiles (correlated interactions) or opposite expression profiles 

(anti-correlated interactions) to arrive at the network of Negatively and 

Positively correlated interactions (NP network); 2) identify network modules so 

that the expression profiles of genes within a module are similar, correlated 

interactions are maximally enclosed within a module and anti-correlated 

interactions are optimally distributed between modules. The second step is 

approximated by first applying hierarchical clustering to the genes in the NP 

network, then dissecting the largest uniform clusters and anti-correlated 

clusters using the ratio of negative to positively correlated interaction numbers. 

Algorithm details are available in (Xia et al., 2006b). 

 Compared to conventional expression profiler clustering, the NP 

analysis incorporates additional biological information from PPI networks. It 

does not require pre-filtering the genes based on expression intensity of 

fold-change, which is often biased against low-level expressed regulatory 

genes. Instead, it is solely based on the shape of change of expression profiles 

between genes/proteins that potentially interact. Due to the transitive property 

of expression profiles, when anti-correlated interactions are included in the NP 

network and used to delimit the cluster boundaries, they promote the partition 

of anti-correlated clusters and increase the homogeneity of all expression 

clusters. The enriched regulatory nodes (proteins) mediating inter-module 

PPIs in a NP network indicates a unique advantage of this analysis method in 

finding regulatory nodes, edges and circuits in the cellular network (Xia et al., 

2006b). 

 

Supplementary Note 2. Getting similar modules using other interactome 

data 



Yeast two hybrid information is unreliable when used alone, integrating with 

other ‘omics’ data can however reveal true biological information (Gunsalus et 

al., 2005). To confirm the biological relevance of the network modules found in 

the fruit fly aging network, we performed the same analysis using the subset of 

high-confidence Y2H dataset as defined in the original studies generated the 

datasets or another dataset of PPIs predicted using a probabilistic model (Xia 

et al., 2006a). The first dataset gives rise to the same modules except for 

smaller module sizes. The second dataset give rise to clear P, R and O 

modules, but a very small D module due to the species-specificity of the D 

modules.  Relationships among the modules are also preserved by these 

other two datasets (Supplementary Figure 2 and Supplementary Table III). 

This indicates the identification of P, D, O and R modules are not due to the 

false positives in the Y2H dataset. 

 

Supplementary Note 3. Expression of orthologous genes of fly modules 

in human and that of human modules in fly 

To examine whether the different gene compositions of D modules between 

human brain and fly and the additional R-O partitions in fly are due to different 

coverage of the interactome or transcriptome datasets for the two species, or 

due to different regulation modes between fly whole body and neurons, or 

reflect different regulatory modes in the two species, we first examined if the 

P-D and R-O anti-correlations can be observed using homologous genes. The 

results indicate that the anti-correlations are not conserved among the 

homologous genes (Supplementary Figure 3A).  We further examined the 

conservation of aging-related changes of human brain and fly modules across 

the two species and among various tissues, including human brain, muscle, 

skin, whole fly and fly heads, which consist mostly of neurons. We found 1) the 

age-related gene expression increase of P homologs is conserved across 

species and tissues; 2) the age-related decrease of D homologs is conserved 

among tissues within a species but different between the two species; 3) the 



age-related decrease of O is observed in whole fly, fly heads and human 

muscle, but age-related increase of R is observed in whole fly, fly heads and 

human brain (Supplementary Figure 3B, Supplementary Table IV). Assuming 

the homologs determined by our method are conserved in their molecular 

functions between the two species, if the differences in D module gene 

composition and the lack of R-O in human are due to the different coverage of 

the interactome or transcriptome datasets, the homologous genes that are 

differentially covered by the datasets should display the same anti-correlation 

and age-related changes when cross-examined using the fly or human 

expression datasets, which is not the case here (Supplementary Figure 3A and 

3B). Altogether, these suggest the lack of O and R module or the lack of 

overlap of D modules between fly and human might not be due to different 

interactome and transcriptome data coverages. 

 

Supplementary Note 4. Enrichment of cell cycle commitment genes in 

human and fruitfly P modules 

Consistent with their roles in cell-autonomous proliferation process, both the 

human and fly P modules have the highest percentage of G1/S and G2/M 

genes among all modules (enrichment P=0.08 for human brain P module, 

3.65x10-4 and 3.51x10-4 for fly P modules under normal or CR condition, 

respectively, Supplementary Figure 6).  Although we have found that 1) P 

module genes are enriched in proliferation-related GO terms 2) at cellular level, 

its expression switch from high to low expression upon induction of cellular 

proliferation to differentiation switch (Xia et al., 2006b). Enrichment in genes 

that assume high expression at G1/S and G2/M cell cycle phase is 

independent evidence that the P module is related to the cellular proliferation 

process. 

 



Supplementary Note 5. Statistically evaluate the chance of getting 

anti-correlated modules corresponding to reductive and oxidative phase 

respectively 

We generated 100 artificially constructed module pairs (gene set pairs) of the 

same number of genes as in the R and O modules, respectively, by randomly 

selecting fruit fly genes in the NP or Y2H network. We then counted the 

number of times when a pair of modules displayed transcriptional 

anti-correlation during the yeast metabolic cycle based on the expression 

profiles of their yeast orthologs. None was found to display transcriptional 

anti-correlations that are equal to or less than that between R and O modules 

(e.g. PCC=-0.58 for the normal and CR module overlaps, empirical P<0.01, 

assuming normal distribution, P=2.6x10-4 and 8x10-5 when modules are 

constructed from random nodes in the NP and Y2H network, respectively). 

This demonstrates that it is unlikely to observe a concerted expression 

changes such as that between the R and O modules during the metabolic 

cycle among randomly constructed modules. We also randomly selected 20 

pairs for visual examination. None of the pairs display alternative high 

expression at the oxidative and reductive phases, respectively (data not 

shown). 
 

Supplementary Note 6. Literature annotation of the genes that extend 

worm lifespan upon RNAi 

Pak3 positively regulates Raf-1 activity (King et al., 1998) and is associated 

with nonsyndromic X-linked mental retardation (Allen et al., 1998). TCEB3 is a 

subunit of the Elongin (SIII) complex that activates elongation by mammalian 

RNA polymerase II (Aso et al., 1995). CDC20 is a cell cycle check point protein. 

Its up-regulation has been associated with tumorigenesis and poor prognosis 

(Ouellet et al., 2006). While genome-wide RNAi worm lifespan screens usually 

identify genes that extend the maximal lifespan, genes found through our 



computational prediction mostly extend the mean or average lifespan of the 

worms, which are actually the most desirable results of anti-aging agents. 
 
Supplementary Note 7. Literature annotation of the genes that shorten 

worm lifespan upon RNAi 

We also found many genes that shorten worm lifespan upon RNAi. Because 

reduced lifespan can be caused by diseases that unnecessarily affect aging 

per se, large-scale RNAi screens generally ignore these genes. However, a 

literature search reveals that most of these genes we found already have 

evidences to support their roles in aging. For example, although MAPK1 is 

also required for vulva development, and the early death of MAPK1 RNAi 

worms is due to a vulva-less phenotype, impaired MAPK1 signaling might 

mediate SIRT1 inhibition induced human cell senescence (Ota et al., 2006). 

Studies have also indicated that MAPK1 signaling pathway is impaired in the 

aged mouse brain and that these impairments can be modulated by lifelong 

caloric restriction (Zhen et al., 1999). RNAi of the rest of these genes does not 

cause obvious developmental defects. The activity and fidelity of POLA decline 

in aged mice and the age-related decrease of POLA activity can be delayed by 

the caloric restriction (Srivastava and Busbee, 2002). Gain of function 

mutations of worm gsa-1 (G protein alpha subunit, homolog of human GNAS) 

can induce the neural degeneration through necrotic cell death (Korswagen et 

al., 1997). Sp3 is an oxidative stress-inducible, anti-death transcription factor 

in cortical neurons and is associated with neurodegenerative diseases, such 

as Huntington’s disease (Ryu et al., 2003). Deactivation of TBP (TATA Binding 

Protein) by polyQ aggregation has been shown to contribute to neural 

degenerative diseases including Huntington’s disease (Schaffar et al., 2004). 

 

 
Supplementary Figure Legends 
 



Supplementary Figure 1. The protein-protein interaction (PPI) within and 

among the fruitfly modules under normal and calorie restriction (CR) conditions 

(A) Under normal condition, the network forms a bipartite structure with 

correlated interactions (Red edges, representing PPIS between two genes 

having similar (PCC>0.4) expression profiles during aging) connecting 

between P and R as well as between D and O modules. The two partitions in 

the network are connected by anti-correlated interactions (Green edges, 

representing PPIs between two genes having opposite (PCC<-0.4) expression 

profiles during aging). 

(B) Under diet/calorie restricted condition (CR), the modules are connected by 

mostly anti-correlated interactions, whereas those in between other module 

pairs are a mixture of correlated or anti-correlated interactions.  Fruitfly D, P, 

O and R modules are represented with nodes of lavender, green, orange, light 

green color, respectively. The nodes in the NP network are grouped by the 

identified network modules to visualize the PPIs within and in between 

modules.  

 

Supplementary Figure 2. Transcriptional relationships among the modules 

under normal or diet restricted (CR) conditions based on an independent PPI 

dataset. 

Different from Figure 1B and C, the average expression values are based on 

modules derived from a Bayesian model-predicted PPI network deposited in 

the ‘IntNetDB’ database (Xia et al., 2006a). The significances of the overlaps 

of these modules to the modules found in Y2H PPI network are listed in 

Supplementary Table III. 

 

Supplementary Figure 3. Expression of orthologous genes of fly 

modules in human and that of human modules in fly 

(A) Average expression levels of human brain modules gene homologs in fly 

and average expression levels of fly modules gene homologs in human brain. 



The fly homologs of human module genes and the human homologs of the fly 

module genes were determined by best reciprocal BLASTP hits with e-value < 

10-6 and used to plot the average expression levels.  

(B) The conservation of aging-related changes among different tissues and 

between human and fly. The expression levels of genes in the human brain P, 

D and fly P, D, R and O modules under high or low food conditions (listed in 

column headers) are compared between young and old samples of human 

brain, muscle, skin, whole fly and fly head (listed in row headers) by paired 

Student t-test. Red color indicates an increase in the old samples; green 

indicates a decrease in the old samples. The color intensity represents the 

–log(P-value) between the old and young samples. Old and young samples 

were categorized as in Supplementary Table IV. 

 

Supplementary Figure 4. The average expression intensities of the P, D, R 

and O modules under normal and calorie restriction (CR) conditions 

The expression levels of the genes specific for each conditions are plotted 

against age for each modules. Normal Specific and CR Specific represent the 

non-overlapping genes specific under normal or CR condition. 

 

Supplementary Figure 5. Overlaps between the human brain and fly modules 

Fly modules include those under normal diet or caloric restricted diet. Color 

intensity in each field denotes the significance of the overlap, proportional to 

the –log values of the Fisher exact test P-values as indicated by the color 

legend. The numbers in parentheses are the genes in each module in the 

same search space between human and fly, that is, in the intersection of the fly 

and human interactomes and transcriptomes based on the orthologs between 

the two species. The numbers inside the matrix are the overlapping genes 

between the intersecting modules from the row and the column. 

 



Supplementary Figure 6. The percentage of G1/S and G2/M cell cycle genes 

in the human and fly modules under normal and CR conditions 

The averages are based on all the genes in the intersection of transcriptome 

and interactome probed for human or fly (lavender bar). 

 

Supplementary Figure 7. Node-betweeness ordered node attacks.  

(A) Attacking the aging genes in the NP network increases the characteristic 

path length (CPL) of the network more rapidly than attacking randomly 

selected non-aging genes or removal of random nodes (‘failure’), but slower 

than sequential removal of nodes of highest betweeness in the order of their 

betweeness values. Betweeness-matched attacks on aging and non-aging 

genes in the NP network are shown in the inset. 

(B) Betweeness-ordered attacks on aging genes belonging to the NP network 

increase CPL of the HPRD network more rapidly than attacking aging genes 

not in the NP network or random removal of genes in the HPRD network. 

Betweeness-matched attacks on NP and non-NP aging genes in the HPRD 

network are shown in the inset. 

(C) Betweeness-ordered attacks on the aging (or all) genes on the module 

interfaces increases CPL of the NP network more rapidly than attacking their 

counterparts in the cores. Betweeness-matched attacks on the core and 

interface genes are shown in the inset. Only the first 2% of the attacks are 

shown in the inset for the interface and core genes, the trend continues for the 

rest. 

 

Supplementary Figure 8. The interface genes in fly NP network are more 

important to network topology than the core genes. Attacking the interface 

genes increase the CPL of the NP network more rapidly than attacking the 

core genes under either normal (A) or CR (B) conditions. Similar results were 

obtained by betweeness-ordered attacks on the interface and core genes 

under either normal (C) or CR (D) conditions. 



 

Supplementary Table I. Gene list of each fly module under normal or 

diet-restricted (CR) condition 

Provided in a separate file “Sup_2.xls”. 

 

Supplementary Table II. GO terms enriched in each of the fly module 

Provided as a separate file “Sup_3.xls”. 

 

Supplementary Table III. The significances of overlap between the 

IntNetDB modules and Y2H modules 

The overlap significance between modules derived from Drosophila interologs 

of a Bayesian-model predicted human PPI network (IntNetDB modules, listed 

as the row headers) and the modules found in Y2H PPI network (Y2H modules, 

listed as the column headers) are evaluated by Fisher exact test and listed in 

the crossing cells. 

 
Module D (557) P (618) O (569) R (389) 

D (124) 0.0142209 1 0.9999190 1 

P (162) 1 1.16E-31 1 0.5579290  

O (411) 0.9999994 0.9999993 2.27E-53 1 

Normal

R (106) 1 0.9287505 1 2.08E-31 

Module D (747) P (764) O (416) R (370) 

D (127) 0.0314082 1 0.9683391 1 

P (272) 0.9999994 1.27E-45 1  0.9968089  

O (341) 0.9999993 0.9298167 1.16E-52 1 

CR 

R (123) 1 1 1 1.26E-33 

 

 

Supplementary Table IV. The young and old samples used to determine 

the aging-related changes in expression levels of the gene modules, as 

shown in Supplementary Figure 3B. 

 



  Age of young group Age of old group 

human brain >26 yr and <40 yr >=40 yr and <=90 yr 

human male muscle 21-27 yr 69-75 yr 

human female muscle 20-29 yr 20-29 yr 

human fibroblast  22, 22 and 20 yr 87, 89 and 89 yr 

fly normal condition 7-18 days 42-47 days 

fly head 3 days 47 days 

 

 

 

 

 

 

 

Supplementary Table V. The proteins at the human brain module 

interfaces have significantly higher percentage of known human ‘aging 

genes’ and transcriptional regulators than those inside the cores 

 

  P-value  
Interface percentage (aging 

gene/ regulatory gene) 

Core percentage  (aging 

gene/ regulatory gene) 

Module D P PP I D P PP I D P PP I 

D  1.00E-04 0  0.09  12% 16% 14%  5% 6% 8% 

P 0  0.01  0.01 27%  9% 13% 13%  4% 5% 

PP 0.001  0.03   0.70 26% 17%  5% 16% 11%  8% 

I 0.71  0.55  0.005   24% 18% 32%  21% 15% 13%   

The statistical significance of the difference between the values for the interface and those inside the two 

modules bridged by the interface is evaluated by the Student t-test.  

The percentage of known ‘aging genes’ inside the human modules or at the module interfaces are shown at the 

upper right half of the matrices, while those for the transcription regulatory genes are at the lower left half. 
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