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1 Evolution in silico of segmentation networks

We provide here further details on the evolutionary algorithm described in the main text. It is
similar to the algorithm of ref. [1].

1.1 Evolution

We model an embryo as a one-dimensional array of cells (typically 100 or 200 cells depending
on the simulations) sharing the same “genome”. Cells are indexed by their position x in the
array. The dynamics of the morphogen G is imposed on these cells. For simulations with static
gradients, the concentration of G depends only on the position x and is defined as:

G(x, t) = G(x) = exp(0.05x). (1)

For dynamic segmentation, the concentration of the morphogen G is imposed and depends
both on the cell position x and on time t in the following way :

G(x, t) = min[20 exp (0.15x− 0.6t), 500]. (2)

This expression mimics the formation of a signalling gradient upon exit from a growth zone
where the morphogen concentration is held constant and equal to 500. The cell at position x
exits from the growth zone when 20 exp (0.15x− 0.6t) = 500, i.e. when t = x/4− 5 ln(25)/3, so
that the time of exit is proportional to the position of the cell. Then, the morphogen decays
with a fixed degradation rate (chosen to be 0.6 in arbitrary units). Note that the definition of
G imposes both a time and a length scale.

Each network includes a gene E which acts as a reporter gene. The expression profile of
E serves to score the networks, as precisely described below. The initial networks at the start
of an evolution run simply consist in the morphogen G and the reporter E with no interaction
between the two.
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Network behaviors are simulated with delayed-differential equations (DDEs) which are inte-
grated in each cell of the array. The dynamics of individual cells differ due to differences in the
time course of the concentration of morphogen G they experience.

The initial concentrations of all proteins other than the morphogen are zero. Therefore, the
cells in an embryo are initially all in the same state (or phase when it is possible to define an
oscillator). After a long time (chosen here to be 60 time units), the fitness function is computed
from the states that the cells have reached, by counting the number of boundaries in the profile
between low and high states of E, as detailed below.

The evolutionary process works on a collection of such networks (typically 100). At each
step of the algorithm, for each network, the scoring or fitness function is computed. Networks
are then ordered with respect to their fitness with a random order for networks of equal scores
(the fitness is discrete). The least fit half of networks are discarded, the top half is duplicated,
and the duplicated copies are mutated.

There are two kinds of mutation:

• mutations that do not change network topology. The possible mutations in this category
are random modifications of parameters : transcriptional maximum activity, thresholds of
activation and repression, Hill coefficients, delays, degradation constants.

• mutations that change network topology. The possible mutations are creation of new genes,
creation of new activating or repressing regulation on existing genes, as well as removal
of existing genes, or regulations. Either we add a gene along with a randomly chosen
transcriptional regulator and target gene for it to regulate, or we add just the gene and
allow independent mutations to link it into the transcriptional network. We assume that
the rates of creation of new genes or new regulations is slightly higher than the rates of
removal, so that the network is slowly growing.

Once the mutated networks have been produced, the process is iterated.
The mutation rates for all these processes were fixed for each run of the evolutionary sim-

ulations. Typically, the relative probability to modify a numerical parameter was roughly ten
times higher than the probability to change network topology. Varying mutation rates does not
appear to significantly change the evolution outcome but modifies the evolution speed ( see for
instance Figs. S10 for a network obtained with comparable probabilities of changing network
topologies and kinetic constants ).

Finally, as for the previous algorithm [1], evolutionary computations produce irrelevant in-
teractions which do not affect the network fitness (“code bloat” phenomenon). In all figures, we
present the best final network of the population, in which the irrelevant interactions have been
automatically pruned. Note that pruning is just a convenient way to display the core working
networks and is never done during the simulations.

1.2 Fitness

The fitness function used for selection is a key ingredient of the evolutionary computation.
Several fitness functions were tried to obtain segmented patterns. After some preliminary tests,
it appeared that too strict a fitness function, imposing for instance a pre-defined profile E0(x),
and trying to minimize

∫
(|E(x) − E0(x)|)αdx, would not work efficiently. The best network

obtained with such a fitness function (over 18 different evolutionary simulations) is displayed in
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Figure S 1: Best network obtained with a fitness function imposing a fixed profile (the imposed
profile is displayed in red).

Fig. S1: the algorithm managed to evolve a bistable network defining one boundary in less than
100 generations, but was then stuck and failed to produce a network creating more boundaries
within the next 300 hundred generations.

Two examples of difficulties illustrating why such a fitness function failed to quickly evolve
segmentation networks are displayed in Fig. S2. On both panels, the desired profile is in red
and a possible evolved profile is in blue. In Panel (A), the blue profile is slightly shifted and
its concentration is slightly higher than in the ideal profile. Depending on the relative weight
between importance of position and importance of level, this profile may be selected or not. In
Panel (B), the profile shape is fine, but it is translated relative to the ideal profile, so the fitness
of the corresponding network would be very low. We believe that the main reason why these
fitness functions failed was that imposing a specific profile puts too many evolutionary constraints
since it requires fine tuning of both interactions and parameters to evolve. It therefore prevents
incremental evolution.

Defining a fitness function that is ’blind’ to numerical variation in the height, spacing, and
positions of steps defines a much simpler target for the evolutionary search process. This is why
we chose as a fitness function to simply count the number of boundaries nb between stripes.

Several fitness functions were used to detect the boundaries of stripes, and they gave similar
results. In the following we describe the fitness function that was used to select for well-defined
stripes of expression.

The fitness function is computed by looking at the values E(x, tf ) of the protein E in the cell
x at the end of simulation after a long time tf = 60. To select for expression of E somewhere in
the system, we increment nb by one if there is an x such that E(x, tf ) > Eref where Eref = 20
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Figure S 2: Some situations where it might be difficult to select for an interesting network with
too strict a fitness function.

is the minimum concentration above which E is considered fully active (this part of the fitness
did not appear to play a significant role in the selection and could be removed).

It is somewhat complicated to define computationally what a proper “stripe” is, as illustrated
in Fig. S3. On Fig. S3 A and B, low amplitude oscillation defines up and down transition and
potential stripes. There must be some minimum difference in concentrations to distinguish
between an “on” and an “off” state. So we define two thresholds, E+ = 15 and E− = 5; if
E(x) > E+ the cell is considered “on”, if E(x) < E−, the cell is considered “off”. The algorithm
then detects regions of low and high E activity.

Once these thresholds are defined, one can track the extrema above and below thresholds.
The alternation of local maxima and minima define succession of stripes. In that case, nb is
incremented after succession of a maximum of the profile of E above E+ and a minimum below
E− (or if a maximum follows a minimum). This fitness function worked and gave results for the
dynamic case. However, such a fitness function cannot distinguish between profiles of Fig. S3C
and Fig. S3D (and we cannot really consider the profile of Fig. S3C as the boundary of a stripe).
This was not a problem for the dynamic case, because bistable systems that spontaneously
evolved naturally create very sharp boundaries. However, for the static case, it appeared more
difficult to create sharp boundaries; so we explicitly selected for them.

The boundary of a stripe is therefore defined as a sharp transition between low and high
regions. A sharp “up” boundary is a region where E(x) quickly increases to reach a “plateau” in
the “on” region. So we track positions where E(x)−E(x− 1) > ∆a and E(x + 1)−E(x) < ∆b

(i.e. in continuous terms regions where both E′(x) and −E′′(x) are high enough; ∆a = 1 and
∆b = 0.1 for the simulations presented here for the somites case, ∆a = 2 and ∆b = 1.5 for the
static gradient case) . The number of boundaries nb is incremented by one if an “up” boundary
is detected and if the previous boundary is a “down” boundary (and the symmetric computation
is done to detect a “down” boundary).

The fitness is given by this number of boundaries nb so defined.
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Figure S 3: Several examples (A-C) of profiles were definition of boundaries may be ambiguous,
and a desirable profile D
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F = nb. (3)

Practically, the term nb faithfully computes the number of “up” and “down” transitions
defining a stripe.

The last difficulty is that when the number of stripes is computed in this way, the algorithm
may as well select for “travelling waves” of genetic expression (which indeed happened in some
early simulations, in parallel with the canonical example). So a penalty was added to the fitness
function to favor a static stationary pattern, of the form

P = −ε

∫
L,[tf−t0,tf ]

(E(x, tf )− E(x, t))2dxdt, (4)

where L is the length of the embryo, tf the total time of integration and t0 a very small time
(t0 << tf ). When E profile quickly reaches its steady state, this term is close to 0 and does not
significantly change the fitness.

Computing the number of boundaries is enough to select for the topologies displayed here.
A small term was however added to the fitness to ensure the production of clear cut stripes: we
wanted E to reach concentration 0 in the “off” state and to be above concentration Eref in the
“on” state. So, we defined a term ∆ and incremented ∆ by |E(x)|α for cells in the “off” state and
by |min(E(x), Eref )−Eref |α for cells in the “on” state (we took α = 0.5). Then we incremented
F by 1 − tanh(∆), which is always between 0 and 1 and therefore did not significantly modify
the fitness while imposing a second order selective pressure to define these clear cut stripes.
However, it was found in several simulations that this ∆ term did not play an important role.

Note that :

• concentrations of E(x) in the “on” state are free, as long as they are higher than Eref .

• positions of the boundaries are completely free as well, so that the sizes of the stripes are
free.

Other terms can be added to ∆ to produce more regular stripes in the static gradient case.
For instance, Fig. S13 displays a network similar in principle to the network of Fig. 3F that was
selected with a term constraining the stripes and the interstripes to be 5 cells long : we first
counted boundaries, then for each couple (b1,b2) of successive boundaries, we added to ∆ a term
proportional to |b2 − b1 − 5|α, with α = 0.5.

1.3 Choice of parameters and methods

As our primary goal was to find working topologies for the formation of patterns, some arbitrary
simplifying assumptions were made. We imposed the dynamics of the morphogen gradient,
this fixed the typical time scale for the dynamics of the networks. All the other parameters
were randomly chosen and varied in a specified range: for most of the presented simulations,
the maximal transcriptional activities were lower than 300 in arbitrary units, degradation rates
were imposed to be higher than 0.1, Hill coefficients were lower than 5. Delays were kept lower
than 4; for computational reasons, delays take discrete values that vary incrementally in steps
of 0.1 between 0 and 4. These assumptions were checked not to be crucial for the results and
these range of parameters could be changed without consequence.
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1.4 Numerical methods

All evolutionary implementations were written and performed in C++. Specific classes were
developed to model all components of the evolutionary computation : genes, interactions between
genes, and finally collection of networks. Because of the large number of equations to simulate
in a complete embryo, integration was performed with a simple Euler method for speed.

The final behavior of the presented networks were double-checked independently with MAT-
LAB, using the method dde23. All codes are available on request.

2 Movies

A few movies have been made to illustrate the dynamics of some networks, including networks
with topologies similar to Fig. 4 in the main text. A movie where the period of the clock depends
on another gradient is also displayed to show how phase waves can be generated. These movies
can be visualized at the following address : http://www.physics.rockefeller.edu/˜pfrancois/movies.html
.

3 Notations

In the following equations, the following notation conventions are used ( taking R and E as two
arbitrary proteins):

• δE is the degradation constant of protein E,

• SE is the maximum production rate of protein E,

• RE is the threshold of activation/repression in the Hill function describing the regulation
of protein E by protein R. In case of multiple thresholds, we index them with small letters
a, b,...

• τE is the delay in transcription of protein E.

• ni are Hill coefficients

4 Examples of evolved networks

In the equations for networks under the control of a static gradient, the dynamics of G is given
by Eq. 1. Delays are not given for the static case, since they do not play any role in the dynamics
of the system. In the equations for networks under control of dynamic gradients, the dynamics
of G is given by Eq. 2. All equations are given for single cells, e.g. E actually stands for E(x, t).
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4.1 Equations for the final network displayed in Fig. 3C

dE

dt
=

Gn1

Gn1 + (GE)n1

SE

1 + (R1/R1E)n2
− δEE (5)

dR1
dt

=
Gn3

Gn3 + (GR1)n3

SR1

1 + (R2/R2R1)n4
− δR1R1 (6)

dR2
dt

= SR2
Gn5

Gn5 + (GR2)n5
− δR2R2 (7)

A selected set of parameters was SE = 104, SR1 = 119, SR2 = 38, GE = 1, R1E = 15, GR1 =
37, R2R1 = 4, GR2 = 65, n1 = 5, n2 = 2.5, n3 = 5, n4 = 2.8, n5 = 5, δE = 2, δR1 = 1, δR2 = 4.48.

4.2 Equations for the final network displayed in Fig. 3G

dE

dt
=

Gn1

Gn1 + (GE)n1

SE

(1 + (R1/R1Ea)n2)(1 + (R1/R1Eb)n3)(1 + (R2/R2E)n4)
− δEE (8)

dR1
dt

=
Gn5

Gn5 + (GR1)n5

SR1

(1 + (R2/R2R1)n6)
− δR1R1 (9)

dR2
dt

=
Gn7

Gn7 + Gn7
R2

SR2

(1 + (R1/R1R2)n8)
− δR2R2 (10)

A selected set of parameters was SE = 230, SR1 = 14, SR2 = 13, GE = 0.6, R1Ea =
82, R1Eb = 2.9, R2E = 0.07, GR1 = 82, R2R1 = 1.4, GR2 = 5.5, R1R2 = 0.13, n1 = 4.7, n2 =
2.2, n3 = 3.4, n4 = 2, n5 = 3.7, n6 = 2.4, n7 = 4.3, n8 = 2.7, δE = 1, δR1 = 1, δR2 = 4.1.

For this network, mutual repression between repressors R1 and R2 appear early in the evo-
lution. However, this interaction does not play any role at first, as can be seen in Fig. S4, by
comparing the complete system with the pruned system. Later in the evolution, this interaction
helps sharpening the boundary and therefore improves the fitness (via the small term ∆); this
is the reason why it is included in the final representation of the network.

4.3 Equations for the final network displayed in Fig. 4

dE

dt
= max

[
En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

]
SE

1 + (R/RE)n3
(t− τE)− δEE (11)

dR

dt
=

Gn4

Gn4 + Gn4
R

SR

1 + (R/RR)n5
(t− τR)− δRR (12)

A selected set of parameters was SE = 140, SR = 54, EE = 33.7, GE = 83, RE = 9.24, GR =
52, RR = 21, n1 = 5, n2 = 1.86, n3 = 3.9, n4 = 1.22, n5 = 3.31, τE = 0.5, τR = 4, δE = 0.45, δR =
1.72.
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Figure S 4: Comparison between the complete network (before pruning) corresponding to
Fig. 3 F, and the minimal pruned network with the same fitness displayed on Fig. 3 F. The
profile of E (in blue) is not significantly affected by pruning: repression of R2 by R1 does not
change the profile, while autoactivation of E is to weak to play any role. The pruning procedure
used to display results only keeps the core interaction necessary to have a network with a given
fitness.
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Figure S5: Illustration of the conditions required to make one stripe with the topology displayed
on Fig. 4 C under control of a moving gradient. (A) E is first activated, R is activated later (B)
R starts repressing E (C) While the front of G is moving, for low values of R,the concentration
of E remains high enough for E for its autoactivation (close to small x); at high G concentration,
R is fully induced and completely represses E which can no longer activates itself (higher values
of x). (D) This creates a stripe close to small x.
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4.4 Equations and evolutionary pathway for a network similar to the network
of Fig. 4

dE

dt
= max

[
En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

]
SE

1 + (R/RE)n3
− δEE (13)

dR

dt
=

(
max

[
Gn4

Gn4 + Gn4
Ra

,
Gn5

Gn5 + Gn5
Rb

]
SR

1 + (R/RR)n6

)
(t− τR)− δRR (14)

A selected set of parameters was SE = 146, SR = 29, EE = 31.3, GE = 47, RE = 13.6, GRa =
40, GRb = 63, RR = 4, n1 = 2, n2 = 5, n3 = 2.2, n4 = 0.57, n5 = 4.2, n6 = 4.24, τR = 1, δE =
2.24, δR = 1.83. Note that the algorithm sets to 0 the delay in the transcription of E ; however,
a delay is required for R oscillations.
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Figure S 6: Another example of an evolutionary pathway leading to a topology similar to the
network of Fig. 4 .
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Figure S 7: Creation of high (A) or low (B) values of the segmentation marker E in two cells
by the coupled effects of oscillatory and bistable dynamics for the network displayed in Fig. S6.
The cell fate is determined by the concentration of E relative to a threshold E∗ (shown by a
dashed line) at the time (black arrow) of transition from oscillatory to bistable dynamics. The
unstable fixed point E∗ (for G = R = 0) separates protein concentrations E > E∗ converging to
the high state of E expression, from smaller values that end in the low state of E expression (as
indicating by the blue arrows). In (A) E is high enough at the transition time so that G and
R can disappear while leaving E > E∗. In (B) the concentration of E is lower at the transition
time and subsequent oscillations of R push E under the threshold E∗.
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4.5 Repressilator-like network

In all our evolutionary computations, the effect of selective pressure was to first select for a
bistable system, then to create a repressor to delimit one stripe. Eventually, an oscillator
appeared that “replicated” the stripe. In most of our simulations, oscillation was due to an auto
regulatory feedback loop with delay. In much rarer cases, other kind of oscillators appeared.
We obtained for instance several networks where the oscillation was due to a “repressilator”-like
mechanism [2]. “Repressilators” were selected by the evolutionary process because cascades of
repressors created several successive “up” and “downs” (as can be seen in Fig. S8). The final
equations for one of the evolved repressilator-like networks (corresponding to Fig. 6 of the main
paper) are:

dE

dt
= max

[
En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

]
SE

(1 + (R1/R1Ea)n3)(1 + (R1/R1Eb)n4)
− δEE (15)

dR1
dt

=
SR1G

n5

(Gn5 + Gn5
R1)(1 + (R2/R2R1a)n6)(1 + (R2/R2R1b)n7)

− δR1R1 (16)

dR2
dt

=
SR2G

n8

(Gn8 + Gn8
R2)(1 + (R3/R3R2)n9)

− δR2R2 (17)

dR3
dt

=
SR3E

n10

En10 + En10
R3

− δR3R3 (18)

A selected set of parameters was SE = 75, SR1 = 68, SR2 = 112, SR3 = 300, EE = 0.7, GE =
91, R1Ea = 3.8, R1Eb = 7.5, GR1 = 86, R2R1a = 3.11, R2R1b = 88, GR2 = 154, R3R2 = 14, ER3 =
4.13, n1 = n2 = 5, n3 = 2.6, n4 = 1.8, n5 = 2.9, n6 = 3.4, n7 = 0.47, n8 = n9 = 5, n10 =
1.21, δE = 2.43, δR1 = 3, δR2 = 12, δR3 = 11.75. Note that delays were eliminated in this specific
evolutionary process, however they were required along the evolutionary pathway.
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Figure S 8: Evolution of a repressilator-like network with corresponding network behaviors and
topologies right after the main evolutionary transitions.
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4.6 Network working on a principle similar to that the network of Fig. 4

Another example of a network working on a similar principle as the network of Fig. 4 is dis-
played with its evolutionary pathway on Fig. S9. Interestingly, for this network, the evolutionary
pathway was slightly more complicated: the beginning of the pathway was the same, with first
a bistable system coupled to a repressor to form one stripe (Fig. S9A). Then, the pathway bi-
furcated and a second repressor appeared to repress the first repressor, creating a new “up”
transition (Fig. S9B). However, some networks similar to those of Fig. S9B remained in the pop-
ulation of networks, and in one of these, autorepression of the first repressor appeared, creating
first damped and then sustained oscillations as parameters changed (Fig. S9C). Networks based
on the topology displayed in Fig. S9B disappeared from the population.

Equations for the final network are:

dE

dt
= TE(t− τE)− δEE (19)

dR

dt
=

(
SRGn5

(Gn5 + Gn5
R )(1 + (R/RR)n6)

)
(t− τR)− δRR (20)

with

TE = max
[

En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

]
× SE

(1 + (R/REa)n3)(1 + (R/REb)n4)

(21)

A selected set of parameters was SE = 38, SR = 29, EE = 10.6, GE = 26.7, REa = 69, REb =
99, GR = 54, RR = 4.36, n1 = 3.28, n2 = 0.5, n3 = n4 = 0.7, n5 = 4.8, n6 = 3.8, τE = 0.1, τR =
1.5, δE = 1.56, δR = 1.6.
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Figure S9: A more complex evolutionary pathway leading to a genetic network similar to Fig 4.
(A) The evolutionary pathway first reached the two-gene network producing one stripe, similar to
Fig. 4B.(B) Later in the evolution, a new repressor was created, in a similar way to Fig. 3C. This
created a new boundary. (C) For later generations, oscillation on the first repressor appeared, so
that the evolutionary innovation of panel (B) was forgotten - network of panel (C) is a “cousin”
of the network of panel (B). First, oscillations were damped, creating only a few stripes (left).
Then, parameters evolved, increasing the fitness, leading to less damped (middle), and finally
short sustained oscillations (right).
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4.7 Network creating two stripes for one oscillation of the repressor

Some improvements to the “clock and wavefront” model were found by the algorithm. In most
of the evolutionary computations, once the final topology of Fig. 4D was found, the parameters
evolved to create as many stripes as possible. An example of a different improvement is displayed
in Fig. S10. In this example, the evolutionary pathways led to a clock coupled to a bistable
system first as in the example of Fig. 4. Then, neutral evolution created a protein A repressed
by the oscillating repressor. A therefore oscillated as well, but not in phase with E. Evolution
then selected activation of E by A: because of the phase shift between E and A oscillation, this
created a new zone of high E activity after sweeping of the morphogen, so that two stripes were
created for one oscillation of the repressor.

dE

dt
=

(
max

[
En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

,
An3

An3 + An3
E

]
SE

1 + (R/RE)n4

)
(t− τE)− δEE (22)

dR

dt
=

(
Gn5

Gn5 + Gn5
R

SR

1 + (R/RR)n6

)
(t− τR)− δRR (23)

dA

dt
=

(
Gn7

Gn7 + Gn7
A

SA

1 + (R/RA)n8

)
(t− τA)− δAA (24)

A selected set of parameters was SE = 53, SR = 70, SA = 24, EE = 2.2, GE = 58.7, AE =
23.7, RE = 23, GR = 13, RR = 36, GA = 71, RA = 12.5, n1 = 3.21, n2 = 5, n3 = 2.29, n4 =
1.92, n5 = 5, n6 = 4.7, n7 = 0.23, n8 = 3, τE = 0.5, τR = 2.9, τA = 0.1, δE = 2.52, δR = 0.87, δA =
0.81. Setting SA = 0 gives single stripes.
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Figure S 10: Network creating two stripes for one oscillation of R. (A) Standard “clock and
wavefront” mechanism, evolved before the apparition of the innovation. (B) A new protein A
activates E between the stripes, creating twice as many stripes as in panel (A).
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Figure S 11: Evolutionary pathway for a network under control of a dynamic linear morphogen
gradient. (A) Evolution of bistability. (B) Evolution of a repressor creating one stripe. (C)
Evolution of a segmentation clock.

4.8 Linear gradients

The presented results do not depend on the specific shape of the morphogen gradient. This
procedure was applied as well with a linear gradient as an input. Evolution of G is given by
G(x, t) = max(x − 4t, 0). Both the evolutionary pathways and topologies were similar. One
working network obtained with such a gradient is :

dE

dt
=

(
max

[
En1

En1 + En1
E

,
Gn2

Gn2 + Gn2
E

]
SE

1 + (R/RE)n3

)
(t− τE)− E (25)

dR

dt
=

(
SRGn4

(Gn4 + Gn4
R )(1 + (R/RR)n5)

)
(t− τR)−R (26)

A selected set of parameters was SE = 150, SR = 150, EE = 17, GE = 5.7, RE = 1.3, GR =
28.8, RR = 1.9, n1 = 5, n2 = 1.14, n3 = 5, n4 = 2.8, n5 = 3, τE = τR = 1. Evolutionary pathway
is displayed in Fig. S11.
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Figure S 12: Topologies of two networks of Table I, with the corresponding final profiles. In
Network 7, stripes are due to delays in the two positive feedback loops that produce damped
oscillations before stabilisation. In Network 17, the period of the oscillator is quite long, so that
few stripes are created (but the network did have sustained oscillations).
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Figure S13: Network obtained by adding a term in ∆ that constrains stripes and interstripes to
be more regular.
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