Supplemental Data. Zhao et al. 2007. SAD2, an importin β-like protein, is required for UV-B response in *Arabidopsis* by mediating MYB4 nuclear trafficking.



## Supplemental Figure 1. Complementation of *sad2* mutants by the *SAD2* gene.

(A) Twelve-day-old seedlings of wild type, sad2-1, and a sad2-1 complemented line (com-1) were treated with UV-B (5.3 mW/cm<sup>2</sup>) for 10 min. Photographs were taken after a three-day incubation in the growth chamber.

(**B**) Twelve-day-old seedlings of wild type, *sad2-1*, and two *35S:SAD2* transgenic lines (in the *sad2-1* mutant) were treated with UV-B ( $5.3 \text{ mW/cm}^2$ ) for 10 min. Photographs were taken after a three-day incubation in the growth chamber.

(C) Twelve-day-old seedlings of Col-0, *sad2-2*, and two *sad2-2* complemented line (com-4 and com-6) were treated with UV-B ( $5.3 \text{ mW/cm}^2$ ) for 12 min. Photographs were taken after a three-day incubation in the growth chamber.



**Supplemental Figure 2. Expression of SAD2 homologs At3g59020 and At1g26170 in wild type and their corresponding mutants SALK\_052799 and SALK\_043918.** Total RNA was extracted from 12-day-old seedlings of wild type and the mutants. The resulting cDNAs were used for quantitative real time PCR analysis. Error bars indicate SD (n=3).



## Supplemental Figure 3. Transient expression of *MYB4-GFP* in wild-type and *sad2-2* protoplasts.

MYB4-GFP nuclear localization in wild-type (left) or *sad2-2* mutant (right) protoplasts. Top panels, confocal GFP images; low panels, combined bright-field, chloroplast autoflorescence and GFP images. (Left) A protoplast showing typical nuclear localized MYB4-GFP in wild type. (Right) A protoplast showing nuclear and cytoplasmic localized MYB4-GFP in the *sad2-2* mutant.

| -3010 | ACGATAGTGG TTTGTA  | ATTIA CCAATIAACA | AGAAGAAAGA        | AAAATGTAAC  | AAACAAGAAA | AGGCTCGGCA | AAGAAATGAA | AAAATCTCAA  | CTTAAGAAAT  |
|-------|--------------------|------------------|-------------------|-------------|------------|------------|------------|-------------|-------------|
| -2910 | AAAAATGTAG ACGCAC  | CAATT AAATACCTTC | ACATTIATAT        | ACATTGGTGG  | ATATGGACCT | CTCTATCCCT | ATTATATTCC | ACTCTTIACA  | AATGGTGTGG  |
| -2810 | TGTGACAAGT TATGTG  | GTATA ATTAATCATC | CACCGTCACC        | AACCATCCAC  | CTTATTTCA  | CGTCTCGIAA | GGGAAACAGA | TCATAGIAGC  | ATCTTACTCT  |
| -2710 | TCTGARATIA AAGACI  | TCIAT CAGTTIATCA | CAACTCAACT        | ATTATGGAAA  | ACTTAACTTA | TTCTTTGGTC | GTCAATAAAA | TCIAATCTTT  | ACCTTGAGAT  |
| -2610 | CAAGGTGATC TTAATT  | ICTTG TATCTGAATA | CGCAAAGTTG        | ATAAATTAAAA | TCAAACAAAT | GAATCCATTA | TTAAAAAAT  | AATAATAAAG  | TGGAAGGTGA  |
| -2510 | ACCANATCCC ACGTCC  | CCAAC CGCATACGGA | CCTAAATAAT        | ATATAGTTTT  | TTTTTGTTTT | TGGCAGCAAC | CTAAATAATA | TAATTATCCT  | ACTCTTTTTT  |
| -2410 | AATATCAGTA TATTTA  | ACTIA AAGAAAATGC | CAAATTAATC        | AGTACATTGT  | GATTTCGCTT | CIATATATA  | TTTGTGACAC | AAGTTTTGCT  | TATTATATAT  |
| -2310 | AGCACATCGC TATTTC  | CCTCC ACGTCATTIA | CAATCCCATT        | AGTAGTACTA  | CIAACAAGIA | ATAACATATT | ATTCCTAAAA | CAAAAAAAAA  | AAAAAAAAA   |
| -2210 | ACAGAGAGAA TAATTO  | CACCT GGAGAACTAT | TATTCTCCCA        | TGATGTTAAA  | AAACGTTTTG | CATGIAGIGT | TGCTGCATTT | GGTTTTTCAT  | AAAACAATAT  |
| -2110 | TACGAATTTG TCTCTT  | IACAA TTTAGTTGCA | AGAAAAAAGA        | AAGAGCAGTA  | AATAAGTTAA | TTGGGTATAA | ATAGTCAATG | TGAAAAACTG  | ACTGATTGGG  |
| -2010 | GTTTAATTTT GATTCA  | AGATG TAAATGGACG | TAAACTTTTG        | TTGATGAATT  | GAAGAATCTT | GGCCTTTAGC | TAAGAACCIA | ACCTTCIAGA  | AGAGGGCCAT  |
| -1910 | CATCATGCAT GAGGTO  | GAGTG ATTTTGIACC | AATAGATIAA        | ACAAATTGAA  | ATTCAACTAC | TCTCTCTCTC | TCTCTCTCTC | TTTTTCGGTT  | TTTTCATCTT  |
| -1810 | TTTCAAIAAA CCATIA  | ATTCT TTTTCGTTTC | TTCTCACATT        | TTCCACCIAA  | CTIACCAAAT | TTCACAATTA | AGTTCAACTT | TTTTTTGTTIA | GCATACATGG  |
| -1710 | ACAGTACACA GTAGAT  | IACIA IAGTTIAATT | ATTCTCTCCT        | ATATACTGTT  | ATGTGTTCIA | TTCTTCAACT | ATTCTCCTGA | CATACGAATT  | ACTACATACG  |
| -1610 | TATATGATIA GTGTTC  | STCGA TCGIATTCIA | AAAATATAGA        | TACGATTAGT  | GCIATAATAA | TATTCCGTCC | AGTTAGAGTT | CAACATIATT  | TATAAAAAAA  |
| -1510 | CTCTTAATAA GTCTTG  | SATTT TTCAAGTCTC | TAATATGAAA        | GAAATAGAAG  | TTGGTTAGAG | AAAACCATTC | TAAGTCAAGG | TTCTAGAAGG  | CACATTCTTT  |
| -1410 | AATTCAAATA GTTTAT  | TCATA TATGTATATT | TCIPATTIAT        | ATGIATGTGT  | CATGGTGGTT | CTTGTTGIAT | TGTTTTTATA | CTGAAAIATT  | AAAGAAACAT  |
| -1310 | GAGCATCATC ACAAAA  | IATTT TAAACATGAA | GTGCTTGTCA        | TTTGGTGAGA  | GTAATTTGAA | AACCATATAT | AAGTTACAAG | TIATCCTGCC  | CACACATATA  |
| -1210 | ATTAGTIATT TGATAN  | ATGCT TTGTTTAATT | AGCAAGTGAT        | TGIATIAGGG  | TIAAGTTCIA | GATATATIAT | TGATTAAAAA | AACAATAACT  | AATCCAGTGC  |
| -1110 | AGTCTATATA TTAGAG  | GAAAA GACTGTTGAC | CAGTACAACA        | AAAACCTCAT  | AGGCTATATA | GTTGACCTGC | ACTTGTCCAA | AAAACACTCA  | TIAACTTIAC  |
| -1010 | CACCIACCIC CACIAC  | CTTCA TIAIATCTTC | TCTTCGTIAT        | TGCTACCAAA  | TIATTCAAGT | TTCCCCTTCC | TTTGTIAGAC | CCAAATTTTT  | ACTTGTGACC  |
| -910  | TATAATATCT GGCGAT  | IAAAA GCCATTCACA | AACTTTTTGT        | TTIACTGAAT  | TTIAGGTTTT | CIACATIAAT | TTTCACCCGC | CIAAGTTTIA  | CIACAAACTT  |
| -810  | AATTCATACG ATAGGT  | IAAGA GACTCCAAAA | TAAAAAAAAA        | AAATTACTGT  | TTGIACIAAA | TCGGTCGAAG | TTAAAAGACG | ATTTGTCAAT  | AAATGIACAC  |
| -710  | AGTCGAAIAC TCGAAI  | TTGTC ATGIATTGAT | TAATTTCTTG        | ACAGAGTTGG  | TTTATATTT  | GIACIAAAIA | AAACTTGTTG | CAAAGTAAAA  | AAAGAAAGAA  |
| -610  | AAAAAATIAA AGAAGI  | IAGCT AAATAATTTT | GGTTTATGIA        | TATACGAACA  | CGAGAAATTT | CTTTGATIAC | TATATATATA | TATATATATA  | ATTIAAGTCA  |
| -510  | GAAATATIAA ATTTGT  | TTGTC ATGATIATIA | AAAAAATGTC        | ATAGCTTTAT  | CAAAAGACIA | TGATGCCATA | TATGTCAAGC | TTCTCACTIA  | TTGTACCAAA  |
| -410  | ACGAAAGGCC ACCATA  | ACACT ACTCATTCAA | ATCCATCCCA        | CCAACTCACA  | TCIAGAAGCA | ATTATAAGTT | CAACTCTCTT | TCTCTCTCCT  | TTTTCTATCAT |
| -310  | CIAGAAGCAT TTGTGT  | IATAT ATATATATGT | GTGIAIATTC        | CTCTCIAGCT  | TIAAGTCAAA | ACCCTATATA | AACTATACAC | CAAAGCTTTG  | AACCTTCAAC  |
| -210  | CAAACCCAAA ATCCAA  | AGTGC CCCACCAAAT | GCTTCAATCC        | TCTTCCACIA  | CACAAAAAAA | CAACTIAATC | CCTTTAIACC | CTTTTAGCCA  | AAACCCTCGC  |
| -110  | TAAAAGCCAA TCCCTC  | CAATA TAAAATAACA | AGIAGAATTG        | ATCTGCCIAT  | ATATAAGATT | TTGAGACGAA | ATAAGATCIA | AACCACAAGA  | AAGAAAGIAA  |
| -10   | ACATAAAAGT ATG     |                  |                   |             |            |            |            |             |             |
|       | Promoter fragments | No. 14           | No.               | . 15        | No. 16     |            |            |             |             |
|       | cis-elements       | AC-I             | AC                | -11         | AC-III     | MYB-1      |            |             |             |
|       | Promoter:GUS       | > MY             | MYB4 35smini: GUS |             | → N        | YB4:GUS    |            |             |             |

Supplemental Figure 4. A schematic representation of MYB4 binding *cis*-elements in the *MYB4* 5' upstream sequence.